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A SELECTION RULE ON ANGULAR MOMENTUM TRANSFER IN 
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An analysis of 50 expertmenta[ data on polarization and correlations of polarization 
in the reactions lrN ~ pA, wA and KN ~ K'A, pE*, q)~* strongly suggests a pure AJ = 1 
transition at the baryon vertex. A plot for testing graphically the linear constraints of the 
selecnon rule AJ = 1 is proposed. 

1. Introduction 

The study of differential cross sections in high-energy physics has revealed simple 
and fundamental  laws for the dependence on energy and on momentum transfer. 
Similarly since all these reactions involve spinning particles, the study of polarization 
effects may allow the discovery of  simple and fundamental  laws for the dependence 

on angular momentum transfer. 
As an example of  such a study we have analyzed all available data on polarization 

correlations in hadromc reactions of  the type 

0-½ + ~ 1 - 3  + . ( l )  

While the change of  spin at the baryon vertex could be obtained by  both  angular 
momentum transfers AJ  = 1 and 3 . / =  2, we find that the experimental  data strongly 
suggest a pure AJ  = 1 transition. It would be very worthwhile to check whether this 
selection rule AJ  = 1 is valid in other hadronic reactions in which a baryon jumps 
from the }+ octet to the 3+ decuplet  (just as for instance the A / =  ~ rule has been 
well established in all seml-leptonic decays with change of  strangeness). 

Reactions of type (1) are among the most complicated polarization measurements 
currently performed in high-energy physics: at least 19 significant polarization para- 
meters can be measured. In a communication to the second Aix-en-Provence Confer- 
ence [1 ] we proposed a rather powerful test of the rule AJ  = 1, using only three 
polarization parameters,  corresponding to the joint  polar angle decay distribution of  
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Fig. 1. (a) Polarization domain of Joint polarization for particles with spin 1 and 23- for the space 
6 D of the three measurable diagonal parameters of the Joint density matrix. The prediction of 
the rule ,xd= 1 is the segment AQ m the faceACD of the tetrahedron. Note that opposite edges 
of the tetrahedron are orthogonal. (b) The two triangles are projections of the tetrahedron on 
the two orthogonal planes orthogonal to the edges CD and AB respectively. If a point is inside 
the two triangles it is inside the tetrahedron. We have plotted all the data available in the htera- 
ture (50 measurements). In order not to emphazise data with large errors, instead of darwing a 
tull cross of errors for each point, we plot only 9 points on each cross. 

the  f inal  resonances  in t ransvers l ty  q u a n t i z a t i o n .  We p re sen t  this  tes t  in fig. 1 for all 

da ta  we f o u n d  in the  l i t e ra ture .  The  th ree  po la r i za t ion  p a r a m e t e r s  are the  coord ina te s  

of  a po in t  in a 3 -d imens iona l  po la r i za t ion  space. By angular  m o m e n t u m  and  pa r i ty  

conse rva t ion  the  e x p e r i m e n t a l  p o i n t s  shou ld  be  inside th~ po la r i za t ion  d o m a i n  w h i c h  

is the  t e t r a h e d r o n  A B C D .  The  se lec t ion  rule A J  = 1 p red ic t s  t h a t  these  p o i n t s  shou ld  

lie on  the  l ine segment  A Q  in the  face A C D ,  wi th  Q on the  edge CD. The  ag reemen t  

o f  the  50  e x p e r i m e n t a l  po in t s  w i t h  the  p red ic t ions  o f  the  rule IS qu i te  spec tacu la r  *. 

* In order to show that the effect is a real one we have plotted the same parameters in hehcity 
quantizatlon. In that case the rule AJ = 1 imphes no relation between the parameters and m- 
deed the experimental points are not clustered, they fill a large domain m the tetrahedron. 
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In this paper we present a more complete graphical test of  the rule AJ = 1, using 
seven polarization parameters instead of three. In sect. 2 we give some general con- 
siderations on the tests of  theoretical predictions by polarization measurements. In 
sect. 3 we recall how the polarization observables of  reaction (1) are measured and 
we give their relations with the transversity amphtudes. In sect. 4 we discuss the se- 
lection rule AJ = 1, its predictions for the transversity amplitudes and for the pola- 
rization observables and we propose a plot for testing the linear constraints predicted 
by the rule. Sect. 5 Is devoted to a test of the rule against all the data found in the 
literature. 

Before going to the body of  the paper we would like to mention that the selection 
rule AJ = 1 is contained in some more specific models. For instance the Stodolsky- 

+ + . . . .  
Sakurai model [2] for the reactions 0 - 1  ~ 0 - 2  3- lmphes AJ = 1, since it assumes 
that the reaction is dominated by the M1 transition. Simdarly it is well known that 
the quark model [3 -7 ]  implies the AJ --- 1 rule for all reactions with a transition 

1 + 3 q= from the i octet to the ~ decuplet. Indeed in this model the quarks are in an S 
1 T  3 + state and the spin change from ~ to ~ during the collision is only due to the spin 

flip of  one of  the quarks and the spin flip of  spin ½ particle creates a pure AJ = 1 an- 
gular momentum transfer. 

2. How to test theoretical predictions by polarization measurements 

Every measurement procedure relies on some universally accepted first principles. 
Such data, i.e., the measures with their errors, can be used only to test the predic- 
tions of a theory which respects these first principles. Strictly speaking, theories (or 
models, or rules) can never be proven. They are only disproved whenever their pre- 
dictions disagree with experimental data. However, the confidence in a theory will 
grow with the number of  its experimental verifications. 

Polarization measurements provide a good example o f  this situation. The N ob- 
served polarization parameters of  a particle or a set of  particles form an N-dimension- 
al Euclidean space, the polarization space 6N. First principles as angular-momentum 
or parity conservation define a domain cb in ~N, the polarization domain *. The re- 
sult of a polarization measurement is one (or several) points E with its ellipsoid of  
errors AE. The size of  AE with respect to that of  c/) is an evaluation of  the precision 
of  the measurement. 

A theory (or a model or a rule) which respects the first principles defines a domain 
c-b T in c/). The smaller ~ T  lS compared to ~ ,  the more predictive is the theory. A 
quantitative test of  the theory can be made by a X 2-calculation. A simple geometri- 
cal evaluation consists in the comparison of the distance E T ,  from the experimental 
point E to its nearest point T of  C/)T, with the size AET of  the error in the direction 

* The geometrical description of polarization is exposed in several papers [8-10]. For the un- 
famdlar readers we have summarized the mare Ideas m appendix A. 
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ET. I f E  is in Q)T, E T  = 0 and the predictions of  the theory are perfectly satisfied. 
In general, the agreement will be considered good if the distance E T  is of  the same 
order of magnitude as the error AET. Of course, this comparison is meaningless if 
the measurement is not precise enough *. 

In general the statistics of  reaction (1) is too poor for measuring the polarization 
at sharp values of  the momentum transfer t. The data IS integrated over large bins in 
t and sometimes it is summed over several values of  the beam energy, i.e. of  the in- 
variant s. The experimental point  E which results from all these summations is the 
barycenter of  the points E(s, t) for the given values of  the kinematical lnvariants. In 
that case the domain c/) T must be replaced by the set of barycenters of  points of  
c/) T, i.e. by its convex hull A T  which is larger than c/) T when the later is not con- 
vex. In this paper we shall consider a slightly poorer test since we shall replace the 
domain c/) T by  the intersection with c/) of  the smallest linear manifold ~T which 
contains it. This corresponds to considering only the linear constraints between ob- 
servables predicted by  the theory,  as they are invariant by  integration in polarization 
space. This procedure was first proposed in ref. [5] for testing the predictions of  the 

quark model. 

3. Polarization observables in reactions of  type (1) 

For  most hadronic reactions of  type (1), the final resonances undergo two-body 

decays of  the type 

3 + 1 -  -+ o - o - ,  -+ ½ + o - .  (2)  

Polarizations and correlations of  polarization are measured by observing the joint  
decay of  the resonances with respect to some orthonormal bases: ( x , y ,  z) for the 
meson and (x ' , y ' ,  z') for the baryon. We denote by  ~2 = (0, ¢) the polar and azi- 
muthal  angles of a specified spin-0 meson emitted by the vector meson ** and by 
~2' - (0' ,  ¢ ' )  the angles of  the spin-0 meson emitted by the baryon ***. The joint  an- 
gular distribution I(0, ~, 0' ,  ~ ' )  is characterized by its moments  

LL' = 
YMM' (3) 

* If for instance the size of A E turns out to be of the same order as that of q) then nothing is 
measured and the experiment will be m good agreement with any prediction co T- For such 
an example see ref. [ 11 ]. 

** For the three-body decay 1 -  --, 0 - 0 - 0 -  (e.g. to 0 ~ rr+*r-*r o) the angles s2 =- (0, ~) are those 
of the normal to the decay plane. 

*** The baryon may undergo a sequential decay, for instance Z* ~ Art, A ~ pTr. In this case be- 
cause of panty violation in the decay of the A an analysis of the sequential decay angular 
distribution yields more reformation on the polarization of the final state, see refs. [12,13 ] 
We do not consider this case here since the data is meager. 
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which satisfy the identities (the bar means complex conjugation) 

s + t s 

YMM'LZ" = (_I)M M yL~I_M, (4) 

By angular momentum and parity conservation in the decays (2) the only non-van- 
ishing moments are those with 

L = 0 , 2 ,  L ' = 0 , 2 .  (5) 

Transversity bases are defined by choosing the third axes z and z' along the normal 
to the reaction plane of (1). In such bases the conditions on the moments (3) im- 
posed by parity conservation in reaction (1) are easily expressed. They read 

L L '  t . = +M Is (6) YMM' 0 i fM odd.  

To de[me completely the transversity bases one must also choose the first axes x 
and x'  which fix the origin of the azimuthal angles ¢ and ~0'. We shall not discuss 
this choice here since the simplified test described in ref. [ 1] and the more complete 
test proposed here are independent of this choice. 

Once transversity bases are defined and after conditions (4), (5) and (6) are im- 
posed there remains 19 linearly independent real quantities to determine *. Even 
though they measure the real and imaginary parts of the moments )~M~ ,, most ex- 
perimentalists prefer to publish the values of some set of parameters which are 
either proportional to the moments (e.g. the multipole parameters :~M~'), or linear 
combinations of the moments (e.g. the joint density matrix elements pvu~ or the R 
and U parameters) **. In part (a) of table 1 we recall *** the relations between the 
moments y ~ , ,  the multipole parameters TLML~t ' and the density matrix elements 
P p p  • 

Hence the polarization observables for reactions of type (1) form a 19-dimension- 
al Euclidean space 619. A set of orthonormal parameters (Pt, i = 1 ..... 19) for this 
space is given by the real multipole parameters T~0o L' and the real and imaginary parts 
of the parameters ~ T~t~t' with M and/or M' :/: 0, cf. appendix A. We have no clos- 
ed form for the equations of the boundary of the observed polarization domain cO 
in terms of these parameters. However, we can give the equations of the projections 
of 4"~ on some low dLrnensional k-planes in ~19, cf. sect. 4 and appendix C. 

¢t r r l  

If those moments  Y~/~V/' which are expected to vanish do not,  it means that the experiment 
cannot be simply interpreted in terms of  pure resonances non interfering with the back- 
ground. In this case the test we propose is irrelevant. 
We want  to point out the irony o f  the actual.., situation.__ .,All expertmentalists, as far as we 
know, had first obtained the momentsy~/%/, = (Y~/Y~/,)from thetr data, before tranform- 
mg them into their pet  system of  parameters, (TL~/,, p ~ ' ,  R and U, etc ...). So, for using 
their data, we had to write the, programs making all the reverse transformations. How much 

L L  , simpler it would be if the Y M M  would be published by all. (Some experimental  papers dis- 
cuss thetr data, e.g. in figures, without  even publishing 10. 
For a proof  of  all these relations see refs. [8,13].  



5 20 M.G. Doncel et al. /Selection rule on angular momentum transfer 

Table 1 
l + ~+ Observables of the reactton 0 - ~  ~ 1 -  in terms of  the transverslty amphtudes  

(a) Relations between the moments  and the polarization parameters 

' - -1 /2  L L '  4 ~ y ~ ,  = C(L)C'(L')2vS[(2L + J)(2L' + 1)] T ~ ,  

3 , , , 3 , /.t ' =C(L)C'(L')  ~ <I~LMIlv><2~LM 12v >pv ~ 
~, Id', v ,  V' 

with C(0) = C'(0) = 1 ,  C(2) = - ~ / 2 ,  C'(2) = - 1 ,  

(b) Transvermy amphtudes  (c) Relation between observables and amplitudes 

h 20 = AA + AB + &C + AD 

l 1 , T~02o = ( 1 / x / 1 2 ) ( - a  A + a B a ¢ + a o ) / 2 o  

e 0 3 T2~ = (11~/24)(2a A - 2 a  B - a C + aD)/2o  

1 7"20 = (1/X/24)(--2AA -- 2AB + AC + AD)/2a 
0 c' 2 I 

1 ~ T~02 = ( l / x / 3 )  ( ~  la) + <b le> + (c I/3 ) / 2o  
b 0 -~. 

3 x/~ T222 = ( l / x / 6 ) ( - 2 ( d  [a)+ (b le)+ (c I/~)/2a 

0 3" - ~  ~ T 22 = (1 / \ /2 ) ( ( f le )  - (clb))/2a 

0 d' 3 20 x/2T20 = (1/x/2)((fle> + (c Ib>)/2o 

A ~ t '  = a 0 ½ 0 x/2 T2222 _- (cle>/2o 

0 a'  _1  ~ T222 = <b 135/20 

d 0 _3  x/~ T212 = (1/x/2)((ale) - (dlb))/2a 

f 0 3 ~ r2121 = (1/~/2)((aly3 - (dlc))/2a 

1 
0 b' 2 - 1 Notatton 

1 
c 0 - ~  A A = ( a l a ) ,  A B = ( d l d )  ' A c = ( b l b ) + ( c l c )  ' 

3 0 e' - ~  
a D = <e le) + ( l i d ,  

o = ~. vp'h 

( X I Y ) = X Y + X ' Y '  ( X , Y = a , b , c , d , e , f )  

T h e  se t  o f  a m p h t u d e s  fo r  r e a c t i o n  (1 )  f o r m  a 12 X 2 t r a n s i t i o n  m a t r i x :  

' _ 3 1  1 3 1 l A ~  u ,' p = l , 0 , - 1 ,  p ' - ~ ,  , - ~ , - ~ ,  ~ = ~ , - ~ .  (7 )  

In  t r a n s v e r s l t y  b a s e s  for  in i t ia l  a n d  f ina l  pa r t i c l e s ,  p a r i t y  c o n s e r v a t i o n  imp l i e s  

A ~  ~' = 0 for  p + p '  - ~ o d d .  (8 )  
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Table lb gives an explicit nomenclature for the 12 non-vanishing complex amplitudes. 
As in ref. [14] the amplitudes with ?, = -½ are called a, b,  c , d ,  e , f ,  those with ;k = 
+l are called a' ,  b ' ,  c ' ,  d ' ,  e',  f .  

At fixed values o f s  and t the joint density matrix Of of  the final particles is de- 
duced from the transition matrix A and the initial polarization density matrix Pi by 
the general equation 

op f  = A p t 4  + , (9) 

where o is the differential cross section. For unpolarized initial particles p~ is the 
2 × 2 matrix ½ 1. The explicit relation between the matrix elements of pf  and those 
of A is written in table lb. From this equation one deduces the relations between 
the joint multipole parameters T ~ ,  and the amplitudes. They are given in table lc. 
Because of the summation over ;~, the amplitudes contribute to the observables 
through combinations of  the type 

(x ly> = x y  + ~ ' y ' .  (10) 

Eq. (10) can be considered as the hermitian product of  the 2-dimensional vectors 
Ix) and ly) defined by 

(x) 
Ix)= , ly)= , . (11) 

\ x /  

Since this hermitian scalar product is lnvariant for any transformation of  the unitary 
group U(2) (a 4-parameter group) only 20 of  the 24 real amplitudes are effective de- 
grees of  freedom *. Furthermore at fixed value of the differential cross section o, 

o = (ala) + (b Ib) + (c lc)  + ( d i d )  + (e le)  + ( f l )9 ,  (12) 

the 19 polarization parameters depend on 19 degrees of  freedom. Consequently the 
"amphtude domain" c/) A allowed for the polarization parameters by eq. (9) has the 
same dimension as the polarization space. It has been shown [16,17] that the domain 
~ A  is not convex and hence it is smaller than C/)ob, but  its convex hull c/) ~s equal 
to c/). 

4. Predictions o f  the rule AJ  = 1 

Let us denote by A~' the 4 × 2 transition matrix between the spin spaces of the 
baryons, for any value of the quantum number/a of  the final meson 01 = 1,0,  - 1 ) .  

* This means that there is a U(2) ambiguity m the reconstrucnon of the amphtudes from a study 
of the final state. Such ambiguities were pointed out by Simonms [15] and are studied in 
more details m refs. [14,16]. 
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For any rotation R of the bases for the baryons the transition matrix A is transform- 
ed into RA according to 

(RA)7~' = D312(R)~u 'A~'DI/2(R)~ x . (13) 

We denote by.~ the 8 × 1 matrix deduced from A by transposition in the column 
index, I.e., 

,~xu' =A~' .  (14) 

In the rotation R this matrix transforms as 

(R "~)tm' = D 1/2 (R)t D3/2 (R)~'~Xu:,  ( 15 ) 

or 

R ~  = (DI/2(R) ® D 3 1 2 ( R ) ) ~ .  (16) 

It is well known that the representation D 1 and its complex conjugate D / are equiva- 
lent. In particular one has 

D I I 2 = I ' D I I 2 I ' - I '  W l t h P = - 1  0 " 

Therefore, from eqs. (16) and (17), one has 

(r ® = (oi]2® D312)(F ® n),~, (18) 

i.e., the amplitudes in the matrix (1 ~ ® ll)A are transformed under rotation by the 
direct product D 1/2 ® D 3/2 whose reduction formula is 

D 112 ® D  3/2 ~ D  1 ® D 2 . (19) 

Thus the transition matrix between the spin spaces of the baryons can be split into 
two parts which transform according to the representations D 1 and D 2 respectively. 
The selection rule ~a r= 1 at the baryon vertex is expressed by imposing that the part 
which is transformed by D 2 vanishes. 

The consequences of this rule for the transverslty amplitudes in table lb can be 
computed explicitly from the Clebsch-Gordan expansion 

= (~;k~te, IJM) IJM). (20) 
J= 1,2 M 

For/a = 0 and 1 one gets, respectively, 

(P ® 1 ) A = d ' 1 2 2 ) + v / ~ ( a ' - a ) 1 2 0 ) - d 1 2 - 2 ) + x / ~ ( a ' + a ) l l O ) ,  (21 a) 
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( r  ® 1)A = l(x/~ c' - e)121) + ~ ( f ' -  X/'-3 b)12 - 1) 

+ ~(c' +x/3 e ) l l l )  + ½(X/3 f '  +b) l l  - 1). (21b) 

The corresponding equation for p = -1  is deduced from eq. (2 lb) by the substitutions 
c'  -+ b ' , f  "+ e' ,  b -+ c and e -+f. Therefore the rule AJ = I (i.e., the requirement that 
the coefficients of the vectors 12M) should vanish) yields seven complex conditions 
between the 12 amplitudes, cf. table 2a, 

d = d ' = 0 ,  V r 3 b  = f ,  V ' 3 c = e  ' , (22) 

a = a' , x / 3  c '  = e , x / '3  b ' = f , 

and leaves five linearly independent non-vanishing amplitudes a, b, b', c, c'. 
We now turn to the relations between the polarization observables implied by the 

conditions (22). Using table 1 c it is easy to write the 19 quantities ,/.z oT~,I~M , in terms 
of the amplitudes a, b, b', c, c', see eq. (B.2). Smce the observables are independent 
of the overall phase of the amplitudes, at fixed values of the differential cross sec- 
tion o, 

o = lal 2 + 21bl 2 + 21b'l 2 + 21c:12 , (23) 

the number of degrees of freedom is 8. Thus the 19 multipole parameters must sa- 
tisfy 11 constraints. These constraints are written explicitly in appendix B. Six of 
them are linear, see eq. (B.3); they are the class A conditions of the quark model 
[5]. The five other constraints are of higher degree, eq. (B.6), (B.8). 

Since there are six hnear constraints, the domain c-/) T predicted by the rule A J=  1 
is contamed in a 13-plane 6 w of the polarization space 619. According to the gener- 
al considerations in sect. 1, for the present experimental data, we shall only check 
the rule AJ = 1 against the hnear conditions (B.3) which are invariant by integration 
in the polarization space. For this we must parametrize the 6-plane d p orthogonal 
to the plane 6 w. It is interesting to consider in 6p three mutually orthogonal 2- 
planes parametrized by the coordinates (X1, Y1),(X2, Y2) and (Xa, Y3), respectively. 
Table 2b shows explicitly the orthogonal transformation which relates-these parame- 
ters to the multipole parameters. By the orthogonal projection on 6p the whole sub- 
space 6 T is projected on the point Tp, cf. table 2c, 

XI = - ~ ,  YI =~/ -~ ,  X2 =0 = Y2 , X3 =0 = Y3. 
(24) 

Let Ep be the projection of the experimental point E on 6e. The distance E p T p  

gives directly the discrepancy between the data and the theoretical prediction. 
In ref. [ 1 ] we considered a 3-plane 6D parametrized by the coordinates ( X ,  Y ,  

Z) defined in table 2b. The intersection of this 3-plane with 6 p is the 2-plane (Xl, 
Yi). We call Z1 the third orthogonal coordinate in 6D- The projection of the polar- 



Table 2 
Test of the selection rule AJ = 1 

(a) Relations between the transversity amplitudes m table 1, ~mposed by the rule AJ = 1 

~ = ~ ' ,  d = a ' = 0 ,  e=~/3c', e '=~3c ,  .f=~/3b', f = ~ / 3 b  

09) Orthogonal transformation which defines the coordinates 

z = rgO 

: - g + o o : + 4 : ~ o  ~ 

: - ~  ~o~ - ~ - ~  - ~ / 5  - o o  

(c) Linear constraints implied by (a) 

x, - - -  ,~o~ , Y , = ~ ,  X2 = Y2 =X3 = Y3 =0  

(d) Coordinates 
or X 1Y1Z1 

(X Y Z) (X 1 Y1 Z1) 

,=<-~, o,- , /~:< 0 , - 5 ~ ,  0 

t Wv  f ' ~ ,  

~:< 0, - 4 , ~ : < - 9 / ~ ,  ~ ,  ~,~, 

of the tetrahedron vertices A, B, C, D and of the point Q, m the 3-plane XYZ 

(e) Projechons of the polanzahon domain Cl) on the 2-planes X 2 Y2 and X 3 Y3 

x~ + ~ .< 9 x~ + ~ < 

(f) Projections of the intersection of C/) by the plane XI = - ~ 1 ~ ,  Y1 = ~/-~,ZI= (~-l- 4 ) ~ 4 ~  
(l A =O, IQ= 1) 
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lzation domain c/) on this plane is a tetrahedron ABCD. The projections of  the tetra- 
hedron on the 2-planes (X, Z) and (Y, Z) are triangles. The prediction of  the rule 
A J =  1 is the projection of  6X on 6D in c/); this is a line segment AQ lying m the 
face ACD of the tetrahedron with Q on the edge CD. The coordinates (X, Y, Z) and 
(X1, Y1, Z I )  of  the vertices A,  B, C, D and of  the point Q are given in table 2d. 

The plot we propose here for testing the hnear constraints of  the selection rule 
AJ = 1 consists of  five figures corresponding to the five 2-planes (X, Z), (Y, Z), (XI,  
YI), (X2, I"2) and (X3, Y3), see fig. 2. 

Under rotations (by the angles ~ and if' around the normal to the reaction plane) 
of  the transversity bases for the final meson and baryon, the multipole parameters 
~ML~/' transform as 

(2s) 

Therefore the projections o f  the experimental points in the 2-planes (X, Z), (Y, Z) 
and (X1, Y1) are invarlant, while their projections in the 2-planes 0(2,  ]"2) and 0(3,  
I"3) are rotated by the angles 2ff and 2if ' ,  respectively. This does not affect the 
linear predictions of  the selection rule AJ = 1. They are independent of the choice 
of  the transversity frames (e.g., t-channel or s-channel transversity frames or Dono- 
hue-Hogassen frames, for the meson or for the baryon or for both final particles). 
The plots drawn in sect. 5 for checking the rule AJ = I use data measured in t-chan- 
nel transversity bases for both particles. 

p.., jiB: 1 . '  c 
• / x ,  

Fig. 2. Projections of the polarization domain on the three 2-planes (X1, Y1), (X2, Y2), (2(3, Y3) 
which span 6 p. The selection rule ,~r = I predicts the point Tp whose projections are respectively 
the point A = Q and the centers of the circles. We have plotted the same experimental events as 
in fig. lb. If the experimental points Is projected on A = Q m (X 1 Y1), then by angular momen- 
tum and parity conservation its other prolecnons must be inside the dotted circle in (X2 Y2) 
and at the origin of (X3Y3). 
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Although the proposed "tetrahedron test" of ref. [ 1 ] was very predictive (AQ is 
a line segment in a three dimensional domain) it could be argued that it is incomplete 
since only two of the six linear conditions of the rule AJ = 1 are tested. But this is 
not the case, as we shall explain below. 

It would be difficult to draw the 6-dimensional projection on 6 p of the polariza- 
tion domain c/), but it is very easy to draw the three projections on the 2-dimensional 
planes Xx Yl, X2 Y2, X3 Y3 ; it is the triangle BCD and the two circles, cf. table 2e, 

X ~ + Y ~ < ~  , X ~ + Y ~ < - ~ ,  (26) 

respectively. We explain in appendix C how to compute them. We also prove in this 
appendix the following result. If  the two linear conditions of the tetrahedron are 
satisfied (i.e. the projection 6D of the expertmental point falls on the segment AB), 
angular momentum and parity conservation imply 

+ 9 1~ , X3 = Y3 = 0 . (27)  

This result is easy to understand qualitatively. Since the projection of 6T on the 2- 
plane 6p1 spanned by X1 Y1 is on the boundary (point A = Q) of the projection 
(triangle BCD) of c/), the 17-dimensional plane 6±, orthogonal to 6 P1, at A = Q is 
tangent to c'/). Its contact with c/) ~s much more than one point, but it is much smal- 
ler than c/) so it has a smaller projection than ~ on the two other 2-planes X2 Y2 
and X 3 Y3. 

If the projection of the experimental point on the tetrahedron falls on a point 
E D in the segment AQ, we can even use this reformation to decrease the limit of 
X~ + Y~. As we prove in appendix C if l is the linea~ coordinate Of ED on AQ, 

t=AeD/A_O, (28) 

then one has, cf. table 2f, 

X~ + Y~ < 1-6o 12" (29) 

5. Experimental  test o f  the rule A J = 1 

We have gathered from the published literature a set of 50 experimental points 
contained in 16 different papers. The nature of the reaction, the beam energy, the 
number of bins in momentum transfer and the references of all these papers are 
given in table 3. It may seem totally irrelevant to mix all these data. However in or- 
der to show that, for all reactions of type (1), the experimental results are strongly 
in favor of the selection rule AJ = 1, we have plotted, in fig. 2, the 50 experimental 
points altogether. The clustering of the data along the lines or at the points predict- 
ed by the rule is impressive. 
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Table 3 1+ 3+ 
Experimental data on joint polarization for reactions of type 0-~  ~ 1-~ 
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Reaction Beam momentum (in GeV/c) 

(a)  rr+p ~ pOA++ 
(b) ~ wa ++ 

(c) K+p ~ K *0A++ 

(d) K - n ~  K *OA- 

(e) K-p  ~ p-X *+ 
$r. *0 

3.-4.[G16, 3.7[MI8,5.[AI1,8.[B]l ,  11.71114, 13[P16 

3.7[M]4, 5.[A] 1, 8.[B] 1, 11.7[L]3, 13[P]5 

1.4-2.21K11, 1.TIN] 1, 2.1-2.7[F11, 2.5-3.2[E11, 3.1 [HI 1, 
4.3-5 [O11, 5.[C] 1 

3.[D] 1 

3.9-4.6[J l 1 

3.9-4.6[J11 

The capital letter in [ ] gives the reference below, and the following figure indicates the number 
of experimental points (for different bins in momentum transfer). 

[A] Bonn-Durham-Nijmegen-Pans-Strasbourg-Turin Collaboration, K. Bockmann et al., Phys. 
Letters 28B (1968) 72. 

[B] Aachen-Berlm-CERN Collaboration, M. Aderholz et al., Nucl. Phys. B8 (1968) 485. 
[C] W. de Baere et al., Nuovo Cimento 61A (1969) 400. 
[D] SABRE Collaboration, B. Haber et al., Nucl. Phys. B17 (1970) 289. 
[E] G.S. Abrams et al., Phys. Rev. D1 (1970) 2433. 
[F] A. Borg, Th~se de doctorat 3~me cycle, 1970, Unlverm6 de Paris. 
[G} D. Brown et al., Phys. Rev. D1 (1970) 3053. 
[H] K. Buchner et al., Nucl. Phys. B29 (1971) 381. 
[I] R.O. Maddock et al., Nuovo Cimento 5A (1971) 445. 
[J] M. Aguilar-Benitez et al., Phys. Rev. D6 (1972) 29. 
[K] S.C. Loken et al., Phys. Rev. D6 (1972) 2346. 
[L] D. Evans et al., Nucl. Phys. B51 (1973) 205. 
[M] K.W.J. Barnham et al., Phys. Rev. D7 (1972) 1384. 
IN] A. Berthon et al., Nucl. Phys. B63 (1973) 54. 
[O] G. Dehm et al., Nucl. Phys. B71 (1974) 52. 
[P] J.A. Gaidos et al., Nucl Phys. B72 (1974) 253. 

For  a more detailed study, it is bet ter  to consider separately each experiment for 
each reaction. Since it was not  possible to present twenty-one figures in this paper 
we have restricted ourselves to six. Five of  them correspond to experiments with the 
largest number of  bins m momentum transfer. Experiments [M] and [P] of  table 3 
have been performed at the present extreme values of  energy (3.7 GeV and 13 GeV 
for the rr beam) and for both  reactions rr+p + ~ p°A++ or 6o°A ++ (figs. 3 and 6). The 
AJ  = 1 rule is very well verified in all four cases. All experimental  points are grouped 
near Tp defined in eq. (24). Furthermore each figure has also (at the same scale) the 
plot proposed in ref. [ 1 ] .  This tetrahedron plot  shows very interesting features. In- 
deed if one were only interested in the AJ  = 1 rule, it would be sufficient to use the 
three projections on the 2-planes XI Yl ,  X2 I"2, X3 Y3. The plots o f  figs. 3 to 8 use 



Fig. 3. Test of the rule zXJ = 1 for the experiments 7r+p ~ pOA++ ref. [M] of table 3 at 3.7 
GeV/c. The agreement is excellent Except for the bin with larger Itl (for which another mecha- 
nism takes place), all the other experimental points are near the point Q, which represents pure 
unnatural parity exchange or one-pion exchange, see ref. [18]. 

z z 

Fig. 4. Test of the rule AJ = 1 for the experiment ~r+p --, aO~ ++ ref. [PI of table 3 at 13 GeV/e. 
The data is remarkably similar to that of fig. 3 at 3.7 GeV/c. 
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Fig. 5. Test  o f  the rule A J  = 1 for the exper tment  7r+p --* toOA ++ ref. [M] of  table 3, at 3.7 
GeV/c. The agreement is excellent. Since one-plon exchange is tmpossible, the data lies on the 
segment AQ farther from Q than the corresponding p0 data at the same energy (fig. 3). The 
height of the experimental point in the upper triangles represents the mixture of unnatural (top) 
and natural (bottom) parity exchange. 

seven dimensions, and the degree of  freedom left by the rule AJ = 1 is the position 
along the segment AQ. Using, as at the end of  sect. 4, the parameter l for the linear 
coordinate on A Q  (l = 0 in A, l = 1 in Q), l measures the mixture of  unnatural (Q) 
to natural (A) parity exchange in this reaction [ 18]. From this point of  view, p0 
and ~0  production are very different. We refer to the caption of  figs. 3 to 6 for 
more details. Fig. 7 shows the whole pubhshed data (seven points from seven differ- 
ent experiments) for the reaction K+p ~ K*°A++; it also satisfies the AJ = 1 rule. 
Finally fig. 8 shows the data on rr+p ~ p°A++ at the same energy as that of  fig. 4. 
The comparison between the two data shows the usefulness of  a polarization plot. 

To conclude, the very simple tetrahedron plot that we proposed in 1973 is not 
only a fairly complete test of  the rule AJ = 1 for the present data with rather large 
bins in t, but  it also yields the physical parameter l (e.g. for experiment [J] with a 
~4  GeV K -  beam on proton, l is 0.2 for p - Z  *+ production and 0.7 for ~ . o  pro- 
duction). 

Of course more complete polarization plots could be performed, even in this 
comphcated case with 19 measurable polarization parameters. This paper and ref. 
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/•Dwm D ~ l z C 

Fig. 6. Test of the rule AJ = 1 for the experiment 7r+p --, w 0A++ ref. [PI of table 3, at 13 GeV/c. 
Although the errors are larger than at 3.7 GeV/c (fig. 5) the data presents the same features, but 
with more natural panty exchange. We recall that only the upper half of the segment AQ is allow- 
ed by angular momentum and panty conservation in the forward and backward directions. We 
remark that as It l increases the experiment data start from the middle of AQ (point 1), go down 
(points 2 and 3) and return to the upper half of AQ in the backward direction (5). Similar oscil- 
lations but of smaller amplitude can be observed in fig. 5. 

[ lb ]  are examples o f  what  can be done.  We can supply the same or more  detailed 

plots for the different  exper iments  of  table 3. 

Appendix  A 

Polarizat ion space and  polar iza t ion  d o m a i n  

Polarizat ion is described by a hermlt ian ,  positive,  trace one mat r ix  p, the densi ty 

matr ix .  The n × n hermi t lan  matr ices  form an n2-dimenslonal  space Cn2, wi th  the 

natural Euchdean scalar p roduct  

(/91,02) = tr PiP2  • (A.1) 

Positive hermit ian  matr ices  (i.e., wi th  non-negatwe eigenvalues) form a convex cone 

e in ~n2 and the trace one matr ices  f rom a hyperplane  ~N (iV = n 2 - 1) called the 
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Z Z 

D ~bL.A=B I I  C 

Fig. 7. Test of the rule ~ = 1 for the reactions K+p ~ K*0A ++ for seven experiments, refs. 
[N, K, F, E, H, O, CI of table 3, at energies between 2 and 5 GeV/c, and for integrated values of 
t. So the forward direction has a bigger influence. The data is remarkably precise and well clus- 
tered, except for one aberrant projection in (X3, Y3) incompatible with angular momentum and 
parity conservation. (It might be a misprint in the paper of ref. [H] ~). 

polarization space. The density mamces are in the intersection of e and 6N- They 
form a convex domain c/) called the polarization domain. 

An orthonormal basis is defined in g~v If the coordinates p,, i = 1 .. . . .  N of a den- 
sity matrix p with respect to this basis are such that 

N 

( 0 , p ) =  trp2 = 1 +  ~ (p,)2 . (A.2) 
n t = l  

For instance, consider the multipole expansion of the (21 + 1) X (21 + 1) density 
matrix of a spin-/pamcle 

P~u = ~ | ~  (JIJ-LMI/v)7~M (A.3) 
L,M V 2 L + I  

One has 

1 
tr p2 _ 

2/ '+1 

21 

- - -  + ~ [(ToL) 2 +  ~ 21T~I 2] . (A.4) 
L = I  /1 , />0 
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Fig. 8. Test of the rule AJ = 1 for the reaction ~r+p --* p 0A++ at 3 to 4 GeV/c, ref. [G] of table 3. 
It is the same reaction at the same energy as fig. 3. The comparison of the two figures shows 
that this data is less precise and much more scattered. The possibility of such direct comparisons 
is a by-product of this type of geometrical test. 

Therefore the multlpole parameters T~0 and ~ Re ~M, ~ Im ~M (M > 0) are the 
coordinates of  p with respect to an orthonormal basis. The boundary of  c/) is formed 
of positive matrices with rank less than their dimension n. Thus the domain c/) can 
be explicitly defined in terms of  a set of  parameters Pi as the convex domain con- 
raining the origin Po of  C N and bounded by the surface with equation det p = 0. 

In most high-energy experiments it is not possible to observe p completely: only 
some of  the parameters Pi (e.g. the multipole parameters with L even) can be mea- 
sured. In our geometrical language, this corresponds to observing only the orthogonal 
projection Oob o f o  on a subspace Cob. The domain allowed for Pob is the projec- 
tion C~ob of  C'/) on Cob- If  the intersection of  c/) by Cob and its projection on 6oh 
are equal, the plane Cob is called an equatorial plane of  c-/) and then Pob must be 
positive. But if Cob is not an equatorial plane, Pob is not necessarily positive. This 
is the case for the plane Cl9 considered in the main text [17].  

For the most usual experimental situations, the domain ~ ob was first described 
in ref. [19] for spin 1 and in ref. [20] for spin 3. A more detailed study of  the ma- 
terial in this appendix can be found in refs. [ 8 - 1 0 ] .  



M.G.  D o n c e l  e t  al. / S e l e c t i o n  rule on  angular m o m e n t u m  transfer 533 

Appendix B 

Constraints predicted by the rule A J  = 1 

Table lc  gives the expressions of  the 19 observables in terms of the 12 complex 
transversity amplitudes. Using the relations (22) implied by the selection rule AJ = 1, 
these expressions read 

o = l a l  2 + 2 1 b l  2 + 2 l b ' l  2+21c l  2 + 2 1 c ' 1 2 ,  

T~oo 2 = (12)-1/2 [-la12 + Ibl 2 + Ib'l 2 + lcl 2 + Ic'12]/cr, 

= (24)-1/2 [21al 2 + Ibl 2 + Ib'l 2 + Icl 2 + Ic '12]/o,  

= (6)-1/2 [ - l a l  z + Ibl 2 + Ib'l 2 + [cl 2 + Ic '12]/o,  (B.1) 

rg~ 

rgo o 

~ ]  = ( 2 )  - m  [ca' + b c ' l / o ,  

rg~ = ~ [ca' + a~ ' l /o ,  

T~g = ½ [ca + bT ' l / o ,  

73 ° = [ca + b 7 ' l / o ,  

T22 -3- 1/2 ---~, 
= (~) cc I o ,  

r~=_ 2 = (~)'/~c-~'/,, , 

r ~  = (~)1/~ [a-~' + c ~ ] / o  , 

,22 " 3 - 112 
T 1 - 1  = ( ig )  [aa + b~ff]/o.  (B.2) 

By inspection of these expressions one readily gets six linear constraints between 
the observables 

1 
7~ ° = v ~  ~ o  = = 7 ~ -  2rgg ,  

T~ ° = 27"222, ~== =V~" Tg~. (B.3) 

In addition the observables satisfy non-linear constraints. To simplify their writing 
we define the new set of  observables 

A - lal2/o =~[1  - (24)'/=Tg~] 

B - ( c a '  '--' 2o + b  c ) / o =  T2o , 

B'  - (ca' + bc ' ) / o  = (2)1/2 T~o ~ , 

C = c U / o  = :2~1/2T22 
~3:  * 22 , 

D = ( ~ '  + d ' ) / o  = (~) ' /~  r~ =, , 
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E =- b 'b /o  = [2"~ I/2 "p22 
~,3J ~ 2 - - 2  

F = (ab + b'a-)lg = (~-)1/2 T]2__ 1 . (B.4) 

The observables are independent of  the overall phase of  the amphtudes, thus we 
may assume that the amplitude a is real positive. Then it is straightforward to per- 
form the "amplitude reconstruction" i.e., to compute the amplitudes in terms of  the 
observables, cf. ref. [14].  One gets 

a -'- N / ' ~  , 

-L a' 1 (F +_ 2 - 4 A E )  = ~  

c, = (D + 2 - 4AC . (B.5)  

The modulus of  these amplitudes is related to the differential cross section o by eq. 
(B.1). This tmplies the constraint 

A 2 + IDI 2 + ID 2 - 4ACI+ IFI 2 + I f  2 - 4 A E I = A  , (B.6) 

which is of  degree 8 in the observables. Furthermore replacmg the amplitudes by 
their values (B.5) in the relations 

oB = 1(c + -c')(b + b ' )  + ~ ( e  - -c ' ) ( -b  - b ' )  , 

~-(c o f f  = l ( c  + c ' ) ( b '  + b)  + 2 - c ' ) (b '  - b)  , (B.7) 

one gets (2 complex = 4 real) cubic constraints, 

A B  2 - B D F  + C F  2 + D 2 E  + 4 A C E  = 0 ,  

A B  '2 - B ' D F  + CF  2 + D2 ff~ - 4 A C E  = 0 .  (B.8) 

We remark that the observables are invariant for the simultaneous exchange b ¢" b '  
and c ¢, U. Indeed once an arbitrary convention is made for b, b ' ,  eq. (B.8) resolves 

-- t  the ambiguity for c, c . 

Appendix C 

Projection o f  c-D on X2  Y2 and )(3 Y3 

In this appendix we estabhsh formulae (26), (27) and (29). 
(1) We first study the projections of  ~ A ,  the non-convex amplitude domain. 
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Using tables lc and 2b we find 

X3 + iY3 = (dla)/2o. 

With Schwartz inequality we obtain 

IX3 + iYa I <~ A~A/2OX/-~B/20. 

Since the sum of the two factors on the nght side satisfies 

(C.1) 

(C.2) 

+ An ~< 1 , (C.3) 
20 20 

the maximum of IX 3 + iY31 is obtained for A.4 = AB = 1/4o, A c = A o = 0; 

IXa + ira I~< ½ i.e. X~ + Y~ ~< ~ .  (C.4) 

Similarly, we find from tables 1 c and 2b 

1 
Xz + iY2 = ~  ((.fie) - 3(clb))[2o. 

Hence 

1 ~ ( [ { f l e ) [ ' +  3l(clb)[)~< 2 ~ 1 0  AD + 3AC IX2 + iY2 l< ~o 2o 

(c.5) 

(C.6) 

The maximum is obtained for AA = An = Ao = 0; A c = 20, 

3 
IX2 + iY2 I< 2 ~  i.e. X~ + Y~ < 9 . (C.7) 

These two projections (C.4) and (C.7) of  c/) A are circles: they are convex; so they 
are also the projections of  the convex hull c/) A of  cD A. This establishes formula 
(26). 

Let us assume that the rule AJ = 1 is satisfied, i.e. the relations (22) hold, e.g. 
d = d '  = 0; this implies (dla) = 0 in (C.1) so 

X3 = Y3 = 0 .  (C.8) 

This result was already estabhshed in ref. [21 ] (their appendix) and in ref. [22].  
The former reference makes for its own data a test similar to that of  the tetrahedron. 
However, this data is not published so we do not use it in this paper. 

From the relations in (22) involving b, c, e , fwe  obtain A o  = 3A¢;  with this 
constraint the maximum of the bound in (C.6) is obtained for A.4 = AB = 0, so 
A C = IO,  A O = 3 0  and 

X 2 + y2  < 9 (C.9) ig0-  
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When the relation (22) holds, only the amplitude a corresponds to a natural parity 
exchange (indeed/l = 0 in A ~u' of table 1 b, cf. ref. [ 18 ] ); the other amplitudes b, 
b', c, c' correspond to unnatural panty exchange ~ = +-1 in A~U'). Hence we can de- 
fine 

1 - l - (ala)__ _ A A  (C.10) 
20 20 

If l is fixed, the maximum of the bound in (C.6) is obtained for A a = 0 but A a = 
2o(1 -- l) so A c = ½lo, &O = {lo and 

X~ + Y~ <~ 91"-~2 . 
160 (C.11) 

(ii) Although (C.8) and (C.9) are identical to (27) and (C.11) to (29), they have 
only been established assuming the rule AJ = 1 is satisfied. We now prove (27) and 
(29) assuming only angular momentum and parity conservation and that the projec- 
tion on 6 D of the experimental data falls in a point ED of the segment AQ. 

The joint polarization density matrix p for spin 1 and ~ particles is a 12 X 12 
matrix and has therefore 143 observables. If these particles are produced in a reac- 
tion 0 + ½ -~ 1 + { with unpolarized target, parity conservation implies 72 linear 
relations among them. In a transversity basis, with a suitable reordering of lines and 
columns, p is a direct sum of two 6 × 6 positive matrices. The projection of p on the 
symmetry 35-plane d as of observables defined by "L ~ + L2 even" is P(3s) = P"® 
p,,r (ref. [17] as simple extension of ref. [18]). The observable Pob is the projec- 
tion of P(as) on the 19-dimensional polarization space d C E as of observables de- 
fined by "L~ even and L2 even". It has still the structure p = p' ® p,T but E ~s not 
an equatorial plane so p' is not necessarily positive: we can only use the fact that p' 
is an orthogonal projection of the positwe p". 

Any principal 2 × 2 submatrix Piial 

Plial ~Pii Pii 

of the positive matrix p"  is positive. Let us consider the three submatrices 

[oo - zo o) i : l , { ,  ] : - 1 , { ,  Pl =~ , (C.12a) 
~ZD DD + 

i = 1,--~,  ] = - 1 , - ~ ,  PlI = 1 I  ZCc - aC ZCD e *e~ ' (C.12b) 

(c.12c) 
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The coordinates of these matrices in the observable space ~ are 

D X = A X / 4 e ,  ~ D  x = ½, (X = A , B , C , D ) ,  
x 

1 
(ZD -- 3Zc) = X2 + iY2 , 

(C.13) 

(C.14) 

2Z3 =X3 + iY3 • (C.15) 

The coordinates ac, ao and x/~0 (Zo + 3Zc) are orthogonal to 6 m 6 35. Since 
they are not observable they are called ghost parameters [I 7]. The positivlty of the 
PI,n,In matrices in (C. 12) implies 

Dx>~O,  X = A , B , C , D ;  (C.16) 

moreover Phi ~> 0 is equivalent to 

(X~ + y2)=  41Z312 <~4DADB, (C.17) 

which is identical to (C.2). 
Similarly, PI I> 0, an/> 0 are equivalent to IZD I < Do,  IZc I <~ Dc,  so 

1 1 
IX 2 + iY  2 [ < ~  (IZD l+ 3 IZcI) ~<'----A~,, (Do + 3Oc) ,  (C.18) 

VlO V l o  

which 1S (C.6). So we have proven again (27). In E D, the equation of the segment 
AQ is given by 

D B = 0 (face ACD) ,  (C.19a) 

DD = 3Dc • (C.19b) 

Eq. (C.19a) combined with (C.17) yields )(3 = Ya = 0. Eqs. (C.19b) and (C.10) yield 

1 3l 
x/TO (DD + 3Dc) = 4 x / ~ '  (C.20) 

so, with (C.18)  

X~ + Y~ ~< ~ l 2 . (C.21) 

The dotted circle in figs. 3 to 8 corresponds to the maximum l = 1. We have al- 
ready emphasized the physical meaning of l. We add here, without proof, that for 
forward or backward reachons, angular momentum and parity conservation require 
[8] 

! ~< l ~ 1 (C.22) 2 
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