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Abstract: Applying our geometrical formalism, we make a general study of angular
momentum and parity conservation in the most frequent two body strong decays,
in order to propose new tests for the determination of the spin of the decaying
particle.

1. INTRODUCTION

Determination of spin value can be partially based onany general
physical principle *, established law ** or proposed model ***. However it
ultimately relies upon the conservation of angular momentum. In this paper
we present some new considerations on rigorous spin tests based only on
angular momentum and parity conservation.

The efficiency of spin tests depends on many factors. It may happen that
one can unambiguously determine a spin from one particular experiment,
or from a small fraction of the known experimental data. If this is not the

* The principle of detailed balancing assumes time reversal invariance. The two
reactions 71d" = p*p" helped to determine the 7+ meson spin: ref. [3]. Isoparity
congervation is useful to eliminate spin values of a new non-strange meson
resonance M of isospin {:ex. M— 27, j+ ¢ is even:ref, [4].

** Brehmgstrahlung and pair production cross sections increase rapidly with spin
j: ref. [5] established for the cosmic ray p-particle j< 3.
*k* Ag an example of study of spin determination based on the quark model, see
ref. [6].
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case, one wants to know how to use the full data, without loss of informa-
tion, for the spin determination.

In a previous work (ref. [1]) we implicitly solved this problem. Indeed
we explain there how to construct the domain @j of polarization density
matrices which can be observed in a given kind of experiments, when one
assumes a value j for the spin; and we explicitly construct domains ff)j for
j < 3. Angular momentum and parity conservation can only exclude the
conjectured values of j, for which the representative point of the experimen-
tal data is outside °Dj.

Here we apply our general method explicitly to the problem of spin
determination from angular distribution measurements. Without any as-
sumption on the j value, the result of the experiment is described by a point
in a space < in which the domains D ; can also be represented for all j
values (and even for the limit j — »). As we will see, in the concrete ex-
amples we study, there are regions of ¢/ common to all 5Z)]' and other re-
gions contained only in one, or very few, (Dj. If the experimental point
falls in one of the former regions, the experiment has no potential useful-
ness for spin determination. If it falls in a region of the latter case, one
has a strong incentive to increase the experimental accuracy!

Consider the three most frequent strong decay modes:

(a) the two parity conserving meson decays of the type:

M —0"+0", necessarily with natural parity 7 = (- 1)J, (1)
jT—17+0",  when the parity is natural, n=(-1J, (1)

(b) the parity conserving baryon decay of the type:
j—%+0" with any parity . (2)

The angular distribution of their decay products depends only on the spin
and polarization of the decaying particle and nof on the dynamics of the
decay. It contains only L~even spherical harmonics up to Lg < 2j.

In sect. 2 we present a summary of our geometrical study of the polari-
zation domain and of the method to translate the data of an angular distribu-
tion into a point of the polarization space. In sect. 3 we give a complete
study of the decays (1), (1') and (2) when L, = 2. Sect. 4 contains a partijal
but practical study of the same decays when L, is larger.

2. GENERAL FORMALISM

This section contains an abstract of some parts of refs. [1, 2]. It
presents a geometrical description of the polarization of a particle, and of
the relation with the angular distribution of its two-body decay products.

2.1. Polarization domain
2.1.1. We consider here the polarization states of one particle of mass m >0

and spin j for a given value p of its energy-momentum { p* = mz). Each
polarization state is described by a density matrix p, which represents a
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Hermitean, trace one, non negative linear operator acting on the (2j+ 1)-
dimensional Hilbert space 962j+1:

p*=p, trpo=1, p=0. (3)

We call 6N+1 the real vector space of all (2j +1) by (2j + 1) Hermitean
matrices, and CN the hyperplane of trace one Hermitean matrices. Their
dlmensmn are respectively N+1 and N with N=(2j + 1)2 - 1. The set of p
which satisfy egs. (3) is a subdomain @j of

(DjC CNC CN+1- (4)

It is a convex domain, called the polarization domain.
2.1.2. The vector space ¢p,1 is a Euclidean space with the natural scalar
product:

(p1, P2) = trpy pg . (3)

The metric (5) on €y, 1 induces a fuclidean metric on €. We choose the
unpolarized state, whose density matrix is

1
Po—mna (6)

as origin for the vector space Cp. States such that
p2=p (7)

are the pure states. The degree of polarization d of any state p is propor-
tional to its distance to the unpolarized state p. As we normalize dp to 1
for pure states, it is given by:

1

osdp—[2]+1(p Po P - p);lisl. (8)
Therefore it is convenient to introduce in € i the metric induced by (5)
with the normalization (8):

d(pq, Py) = [ (P1- Py, P1- Pz)}l = [2]2] tr(py -92)2]2 : (9)

2.1.3. Let us study the rvank of matrices p, i.e., the number of their non zero
eigenvalues. The density matrix of a pure state is a rank one projector
whose eigenvector (defined up to a factor) is the state vector. The domain

(Dj is the convex hull of the pure states. The matrices p of the interior of

D; have rank #n = 2j+1. On the boundary, 3 D ;, the matrices have a rank

k strictly smaller than ». The dimension of the manifold 8k(D of density
matrices of rank % is:

dim 8, D; = 2nk-k2- 1. (10)

2.1.4. The little group of p, i.e. the subgroup of the orthochronous Lorentz
group which leaves invariant the energy-momentum p, is isomorphic to
0(3), the three dimensional orthogonal group. So we call its elements
"rotations" and "reflections" because they are conjugated of genuine
rotations and reflections by the "boost" which transforms the particle
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from rest to the velocity p/E with p = (E, p). This group acts on 9(2]'+1 by
the irreducible linear representation D\ (j spin, 7 parity) and, on &y,
by the reducible linear representation (up to an equivalence)

2j piL,+)
@D . (11)
In the corresponding decomposition of €y,
Lol L)
cy=0, ¢, (12)

the (2L + 1)-dimensional space L) carries the components of the 2Ltn-
multipole p(L). Indeed the direct decomposition (12) corresponds, for each
density operator p, to the multipole expansion:

N
p=py+ il o) (13)
L:

2.1.5. The effective polarization domain, @j, of the density matrices of a
spin j particle that can be actually produced in a given kind of reactions, may
be smaller than (Dj. Let us consider three examples of such production
conditions:

(i) The production reaction conserves parity, the beam and target are
unpolarized, and there are only three linearly independent observed
energy-momenta; e.g. quasi two-body reactions such that

7t — K*t st (14)

7"p— TTN*T | (15)
where K* and N* are resonant states of unknown spin. The space-time
hyperplane which contains the observed energy-momenta is a symmetry

plane for the reaction. We note B the "reflection” through this plane I This
reflection acts on Hgj,1 by D{J;M(B) and on € by a symmetry through a

k-dimensional plane ¢B). Therefore the domain ‘7)]- of " B- symmetvic"
density matrices is the intersection

2B g 1 eB) (16)
J J
The dimension of @&B) is also k:
k=2j(j+1) for j integer , (17)
k=2j(j+1)-z forj half-integer . (17")

Note that fD(-B) is a convex domain, since it is the intersection (16) of two
convex domains. (For more details see refs. [1, 2], 1A3).

(ii) The production reaction is collinear, e.g. forward or backward
production of particles in a two-body reaction with unpolarized target and

1 The vocabulary "B-symmetry" is in reference to .7\ Bohr {7].
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beam. Then (D] is the intersection @( of @ with a k'-dimensional plane

C (C
C( ). The domain fD ) is convex and has d1mens1on k' =2j+1.

(iii) The productlon reaction imposes a restriction on the rank of the
final particle density matrix. Indeed the rank of the product of matrices is
smaller than or equal to the smallest rank of the matrices of the product.
Hence the polarization density matrix of the final state,

o = T T™ (18)

cannot have a larger rank than that of pj, the polarization density matrix of
the initial state. For instance in reaction (15) the density matrix of the N*
has

rank p(N*) < 2. (19)

Note also that the rank of the sum of matrices cannot be larger than the
sum of their rank. So in reaction (14), if the polarization of the Z* is not
observed one must complete eq. (18) by a summation over the two polariza-
t1on states of the Z)+ then the rank condition for the density matrix of the
K" becomes

rank p(K") < 4, (20)

which is a constraint if the K* has spin >1. (For more details see refs.

[1, 2).

2.1.6. Often, the density matrix cannot be completely measured. Therefore
the obsevved polarization domain @7 is the projection of “D; on the k-plane
of measurable parameters. For instance, the angular distribution of the
decay products in a parity conserving two-body decay contains only even-L
spherical harmonics, In other words, this decay is not sensitive to the
odd-L multipoles p L) of p. What is observed is then the projection of p on
the subspace ‘ ‘

® even - N 1)

2.1.7. Let us study some symmetry properties of a convex domain D which
will allow us to relate the production and observation conditions we have
considered. Let Py, Ps... be projectors of €y, orthogonal with respect

to the scalar product (9). Each projection P; @ of the convex domain 2 is
convex and it contains the intersect ion by P; CN

PfD S(Dn P& . (22)

When projection and intersection coincide, we say that P; €y is an equato-
rial plane of ). A symmetry plane of D is an equatorial plane, but the
converse is not always true (think of the equatorial plane of an egg'). For
instance, the diagonal matrices form an equatorial 2j-plane of (Z)] which is
not a symmetry plane. When P;P; = P; P; the planes P; (SN and P] Cpy are
perpendicular¥. The 1ntersect10n of perpendlcular equatomal planes is an

¥ We should have said that the two planes are perpendlcular or that one is included
in the other, but for short we call them perpendicular. As a special case, the

planes Pi En and Pj CN are said to be orthogonal if Pin = }}Pi =0,
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equatorial plane. Note that the intersection of two perpendicular symmetry
planes is not in general a symmetry plane. However if CZ- is any plane
perpendicular to the symmetry plane Cg, then Cgand €g 1 €;are sym-
metry planes of the intersection N CZ- and of the projection PZ-(D.

The planes & E) and € B) that we have introduced are examples of
perpendicular symmetry planes of the polarization domain ;. So their
intersection ¢(E,B) is a symmetry plane for both subdomains DY) and

@(B). Furthermore the symmetries through C(E) and C'(B) transform any
matrix p into a matrix p' of same rank. Therefore the rank of e.g. the
projection PEp is

rank Ppp = rank +(p+p') < 2rank p. (23)

For instance in reactions (14) and (15), if one observes only the even polari-
zation of the K* and N* (through their parity conserving decays) eqs. (20)
and (19) impose that the observed density matrices have a rank

rank p(E)(K*) < 8, (24a)
rank pE)(N*) < 4 . (24D)

These are constraints for spin values j(K*) > 3, j(N*) > .
2.1.8. We prove in appendix A.1 another useful geometrical property of Dj,
namely its invariance under the polar lransformalion with respect to the
sphere S centered at po and of radius
-1

R = "2]— .
As a consequence, for any plane €;containing p,, the intersection ¢; r1 (Dj
and the projection Pi D; are polar transforms of each other with respect to
the sphere S /1 €;. Thérefore when £; is an equatorial plane ¢; N (Dj
= P; (Dj is self transformed.

2.2. Angulay distribution domain for two-body decays

2.2.1. For a two body decay, we denote by J(6, ¢) the normalized angular
distribution of one of the decay products. It is a real, normalized (i.e. its
integral is unity), non negative function defined on the unit sphere § of the
three-dimensional space orthogonal to p, the energy-momentum of the
decaying particle 1.

9(, ¢) = 9(6, @), (25a)
+1 27
foda = [ [ 9, ¢)dcosbdg =1, (25b)
Q -1 0

t The coordinates 6, @ of § give the space directions of the considered decay pro-
ducts for any rest frame of the decaying particle. Of course, these coordinates
can be defined in a covariant way from the energy momenta of the involved
particles. (cf. ref. [8].)
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ge, o= 0. (25¢)

We call Qj' the Hilbert space of square integrable functions on £ with the
scalar product

(91, 990=f 91 92d9. (26)

We are interested in the "angular distribution space", i.e. in the subspace
Y of functions which satisfy eqs. (25a) and (25b). The functions of @/ which,
in addition, satisfy eq. (25c) form the "angular distribution domain", A. It
is a convex domain containing the isotropic angular distribution

_ 1
T 47

Any measurement of a two-body decay angular distribution can be repre-
sented by a point

9o (27)

ye AT Yo @',
The group of "rotations" and "reflections" (little group of p isomorphic
to 0(3)) acts on €, and therefore on Q'
It leaves g invariant; its action on Yis the real linear representation
(L, +)

o0
D=9, D , (28)

which yields the multipole decomposition of the space U

—a® (L)
Cy _®L=1 Cy’ ’ (29)

and the multipole expansion of an angular distribution

9= 95+ 2 9@, (30)
L=1

2.2.2. The parallel to the previous subsection is obvious. We can introduce
symmetry planes and equatorial planes of A, such as y(E) and y(B), for
which the intersection, A(E) and A(B), coincides with the projection. We
will prove in appendix A. 2 that the domain A is also invariant under the
polar transformation with respect to the sphere centered at the point 9,
and of imaginary radius

-1

'E.

Thus, also, for any k-plane of U containing J,, projection and intersec-
tion are polar transforms of each other.

2.2.3. Consider the two-body decay of a spin j particle in a polarization state
p € D; The decay angular distribution 9 is a linear function of p. Geo-
metrically, the decay mode (i) of a spin j particle is therefore represented
by a lineay mapping

R:
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Table 1
Decay coefficients A;(L, j) for the modes () = (1), (1), (2).

(a) Decay coefficients for mode (1) [j— 0+ 0]
PN A 2
VamN (L) = -1 123 @i 12 ( )
0 0
10, for odd L
= (L L L L-1j-% ,
122 (1) e antH ey + e B g -y 1)
for even L .

To interpret, cf. (d) below; e.g.:

(S

Vamn, @2,5) = -7 205+ 1)/(2+3) (27~ 1))

1
T4Tx (4,5) = 3j[(j+2) G+ 1) (- 1)/2(25+ 5) 25+ 3) (2 - 1) (2~ 3))?

(b) Decay coefficients for mode (1') [§7—1 +07, 7 = (-1)/]
- fiiL gL
Samg (L) = 1 iz ) P ( )
i i 1[% o o

30, for odd L

1 L 1
0P+ 0L - (v /23 G+ D1+ L= 1P g - E2) R

for even L .,

To interpret, cf. (d) below; e.g.:

-1
VaTr(2,9) = 2[00 + 131 [(27+3) 25+ 2) (2§ - 1] ®

1
2

aTA(4,5) = 301G + D= 101 [( + 2) G - 1)/2(25+ 5) (2+3) G+ 1) (27 -1) (2 -3)]

(c) Decay coefficients for mode (2) [j — 5 +0]

J _L
)1+(21>

.

j-L 1L
[amy(L, ) = <17 2 izjei i
0

Dl
Dl

30, for odd L
1.( L 1 1 1121
03 ) B LG - LI L 1Flggj - 1f £y
for even L,
To interpret, cf. (d) below; e.g.:

1
Vama,(2,7) = -3 [(2j+3) (2/-1)/(2j+ 2))*
1

\/4_7r7\2(4,j) = 31(2+5) (2j+3) (2 - 1) (24 - 3)/(25+ 4) (2 + 2) (2§ - 2))*

a!l [5] a!l

“h(a-p % <

(d) Shorthands: (Z) (@-b)
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A 4(7)
éN—"—’C:)J (31)

So the angular distribution of the decay mode (i) of a particle in the polari-
zation state p is represented by the point

y=x([e] - (32)

Poincaré invariance requires this mapping to be equivarianti for the
"rotations" of the little group of p. This implies that A;(j) maps each

multipole subspace CJ(VL) into the corresponding Cy(L)

;Li(L, .7)
L
(\y( ) ’

and that these 3;(L, j) mappings reduce to multiplication by a scalar. We
denote these scalars also by A;(L, j) and call them decay coefficients.

As we announced in the introduction, these coefficients do not depend
on the dynamics for the decay modes (i) = (1), (1'), (2); they are functions
of jand L only. These functions are given in table 1. On these examples,
one can verify that for two body decays, angular momentum conservation
implies

(L)
N

AZ-(L, j)=0 for L>2j, (34)
and parity conservation implies (cf. ref. [2])
M(L, j)=0 for Lodd. (35)

2.2.4. In this paper, we are interested in spin tests from the angular distri-

bution in decay modes (i) = (1), (1'), (2). The procedure will be to represent
this experimental angular distribution, 9, by a pointy e Q. In any case,

it must belong to A. In addition, for each spin value j, we can consider in
Y the domain

J
that, in short, we will denote byx; D;. The values of j for which the cor-
responding domainA; (Dj does not contain the experimental point y, are
excluded by the experiment.

2.3. Multipole expansions
2.3.1. It is customary to use for a basis in the complexified of the space
N+1» the real, non Hermitean matrices T(j)&%) whose elements are:

m L J

Gm'LM|jm)=V2j+1; . (37)
i M m

(™, -

f This word, commonly used in the mathematic literature, means that the image by
A of a rotated point of €y is the rotated of the image point by the same rotation in

Y.
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They transform under a rotation R according to the law:

(J) L) (7)) -1 (L (L) o M
Dy TGy DR = T DR, (38)
So any Hermitean matrix p acting on 962]41 can be expanded in this basis:
2ji +L -
2L +1 (L (L
>z YR @), (39)
L=0M=-L ¥
and one shows that the multipole pavameters tl%) satisfy:
({trp=1 =>)t§)0):1 , (40)
* _ r) _ M (L)
(p" =p=)ty, =1t . (41)
The degree of polarization dp defined in (8) is
2§ +L 1
B 2L +1 ) 2\2
dp_(E x5 |t 12y (42)

L=1 M=-L

2.3.2. We prefer (cf. ref. [1,2]) to introduce a real orthonormal basis of ¢p,

made with Hermitean matrices
(L) ]/ZL +1 , (L)
Q 0 2j TO ’
Py
= oMyEERL y (ra sy ) )

J
e = MY EEL Lz -1y ), se)

(43a)

Q(Jj
(0<M= L)

such that
( LI, 2j+1
We denote by 7’(1\14‘) the coordinates of p in this orthonormal basis:
. 25 +L
2 (L)Y (L
ey D D QUi (45)
L=1 M=-L

The degree of polarization is, as function of these normalized multipoles

(L)

parameters v;,",
27  +L

a-=(25 T PP (46)
L=1 M=-L
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Table 2
Multipole parameters.

(a) Multipole parameters of the polarization space €y

M VRL+1)/j Re t](é“)  forM > 0 :
AL = erpQll) - Verrn/z 0 form -0

oM V@L D/ mih) | for m<o.

(b) Multipole parameters of the angular distribution space cy

yg\l/;) - (Y](‘fi)) = f 98, yl(‘f/;)(e, @) dcos 0 do

(c) Relation between the multipole parameters in (a) and (b)
@ _ ]/2L+ 1 (D
yM = 2]' Ai(L,]) tM

(—l)M V2 Reygé') , forM > 0

ML Tp G) = s for M =0

(—l)M \/Elmy(_lj/)l, forM <0

(For concrete values of 7\i (L, j), see table 1.)

(1)

1
For j = 3, the Qs are the Pauli matrices and the three "5&4) are the com-
ponents of the usual polarization vector. The explicit relations between the

T(L) and the t_gé:) are given in table 2a.

2.3.3. It is customary to choose as an orthonormal basis of the Hilbert space
Q' the spherical harmonics Y%IJ‘)(@, ),

+1 27

(Yg})’ YE&?) i _f1 of Yz(tjxf)(f), @) Yg}.')(@, ¢)dcostdg =6

LL Oupr - (41)
We denote (cf. table 2b) by yﬁlj) the expectation value (Y%b of the spheri-
cal harmonics for the angular distribution 9 . They are the components of

the representing point y € /; the expansion of 9 in spherical harmonics
reads

[-¢] L —_—
1 > ERIA NI
96, @) =g+ L vy YoU8, ) . (48)
47 L-1 M=-L M M
The reality of 9 implies
(L) M (L)
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For a particle of spin j and density matrix p with the explicit form
given in eq. (39), the angular distribution, y = 2;{(}[p], for the two-body
decay mode (i), reads

2] AL —
90, o) = ZL Lil |/2L2]”x(1. ])MEL tﬁé)ygﬁ)w o). (50)

The coefficient in front of )\i(L, j) is the square root of that which enter in
.the expression for dg, cf. eq. (41). It disappears when one uses the nor-

)
).
malized multipole parameters r% (cf. table 2c¢).

3. QUADRUPOLE ANGULAR DISTRIBUTION.

From the preceding study we are now able to discuss the efficiency of
spin tests from observed quadrupole angular distribution. We will apply
this discussion to the decay modes (1), (1'), (2).

3.1. Geometry of the quadrupole domains
3.1.1. We need to study the following domains: the quadrupole intersection
and projection of the j-dependent polarization domain,

@(2) ;0 @ @;2): p‘z)@j, (51)
and of the angular distribution domain from two body decays,
A® - an @) 22) 2 9@y (52)

where P(2) and ?(2) are the orthogonal projectors on the quadrupole sub-
spaces of respectively €y and @/, Since Dj, &£\¢) cy )are invariant
by 0(3), the little group of p, the domams (51) and (52 are invariant too.

3.1.2. The group 0(3) acts on ¢(2) and Cy by its irreducible linear represen-

tation D{2,+). But since the "reflection” through the origin acts trivially,
we cons1der only the action of S0(3), cf. e.g. eq. (38). This action decom-
poses €(2) and fy’ ) in orbits. The dimension of the orbit space is

vg =dim ¢@)_dim s0(3)=5-3=2, (53)

i.e. two algebraically independent invariants are necessary to characterize
each orbit. As we saw in subsect. 2.2, the dilation A(2, j) maps & 2) onto
<y(2) for each value of j and each understood decay mode (i). Therefore
the same mvarlants (up to a factor) can be used for the orbit spaces of
&(2) and fy’ . The unitary representation D(2)ig equivalent to a real,
therefore orthogonal, representation; it preserves the length of vectors.
We choose as first invariant:

+2 +2
o= L 2. D pR2 (54a)
M=-2 M=-2
We establish in appendix A.4 that another algebraically independent invari-
ant is
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D s () )

2 2
103 (RPRP,0) 0,0,

S| 2 -1 -2
2 2),2 2) 2 2),2 2),2 2) 2
o L1123 (120 15 1)k (07 5 D1P))
2
: +3V6 Re <y(12) y522)>. (54b)

We have given the invariants in the space Cy(z); to obtain the invariants in
the space 6(2), put A =1 everywhere and consider only the first equality
in eqs. (54). In both spaces these two invariants satisfy the necessary and

sufficient conditions (cf. appendix A.4)
3
a=0, <g<al. (55)

1
[

In the following, we will prefer another set of two algebraically indepen-
dent invariants, A&, An, because they are homogeneous to the coordinates
M’]lzl or y(]‘%[. The algebraic relations between the old and the new invariants
are:

a=22%(t24n2), g =rIn(n2-32). (56)
To inverse these relations I, define w by:
-im < 3w < 37, sin 3w = —Ba'% . (57a)
Then A&, A are defined by

A =Va cosw , A= Va sinw. (57b)

We also prove in appendix A.4 that all points of €@) or cy(2) which have the
same values of @, 8, or of A{, An, are on the same orbit of SO(3), i.e.
they can be transformed into each other by a "rotation".

The sector - 7 < w < {7 of the two-plane A&, An is therefore the orbit
space of AEQR) - y () for the action of so@3) i

We will find it more convenient to use below the full two-plane {AE , An}.
Then, in general, each orbit is represented by six points, which are trans-
forms of each other by a group c53 (isomorphic to the permutation group
of three objects), generated by the symmetry through the axes

w=42n+l) E=0, V3nzE=0. (58)

This group < 3 contains also the rotations by 27 around the origin. The
orbits with 1w| = i7 cut the two-plane {)\5, )\n} in three points only, one on

1 One cannot give A{ , A7 as real expressions in a, 3 or A2 ~ (2
X K : ’ M M
algebraic symbols including V.

H The situation is similar to that of the Dalitz plot for three identical particles. The
five dimensional phase space is invariant by 0(3), the little group of the total
energy momentum, and by the group of permutations of the particles. The orbit
space is a 47 sector of the Dalitz plot.

with the ordinary
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each symmetry axis. We shall call the two-plane {\£, An}, "two-plane of
meridian sections”. We shall explain why below.

3.1.3. Let uﬁ choose a quantization tetrad and consider the two-plane of
y 2) =2 (2 spanned by the coordinates Ar(z) (2). Two such two-

and M’O
planes, corresponding to two choices of quantization tetrads, are trans-
formed into each other by the "rotation" which transforms the quantization
tetrads into each other. We then verify that each orbit £,7 cuts each two-
plane of this family. Indeed, eqgs. (54) to (57) show that in such a two-plane

_ 2 _ (2
£ = Yy n=7y - (59)
Therefore we can identify the abstract two-plane {it, An} with the two-

(2)

2
plane {Mfz , M’(() )} corresponding to an arbitrary quantization tetrad.

Any S0(3) invariant domain A Dy, (e.g. A@]( ) A(Z)( ) (2), 3(2)) is a

union of S0(3) orbits, and, according to eq. (59), it is generatedby a %7

"meridian sector" of the "meridian section",

{Mfgz), Mf(()z)} APy (Z)inv . (60)

That is the reason why we call "two-plane of meridian section” any plane

{M’ (2) s AT )} and also the abstract plane {\£, An}.
For any AD; . the two-plane of meridian section {M,(Z), M,(()Z)} is not

in general a symmetry plane, but it is always an equatorial plane. Indeed
the S0(3) invariants «, § given in eqs. (54) are invariant for the symmetries

(2) A2) . 2
AV T € Ay, with (EM) =1, (61)
such that .
€g=€y=1, €_9€1€e1=1. (61"

Hence for any quantization tetrad, the three three -planes {M’(z) J\r(z)
Ar(z)} {Mf<2) M’<2) 7 2)} {M’(Z) M(z) At )} are symmetry planes of
each orbit, and therefore of any Dipy. That is not the case for the two-

plane {M’( ) A7g )} but, as it is the intersection of perpendicular sym-
metry planes it is an equatorlal plane for any convex, invariant domain,
Diny (cf. subsect. 2.1.7).

Consider the quadrupole component of the polarization of a spin-j par-
ticle. We have just shown that one can always choose the quantization

(2) (2) (2)

tetrad such that the only non vanishing v, are 75 ' and 73 ~. Outside the
exceptional cases 62 = 013, the right-handed tetrad is uniquely defined up
to the labelling and the sign of its axes. Hence, a quadrupole polarization
is completely characterized by this tetrad and the two invariants £, 7; the
in sector of the point £, 7 depends on the labelling of the tetrad axes.
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3.1.4. The B-symmetric domainv)x(D(B)has dimension 2 < N (cf. eq. (17)) and it
is not invariant by 0(3) but only by t\Zle subgroup 0(2) of "rotations" around

the normal to the reaction plane and the "reflections” through this plane.

In particular the domains A(D§B‘ 2) . A(D§B) 0 6(2) and )\@J(B’ 2)

= )\P(z) @](B) are three-dimensional and have only one axis of revolution,
Their meridian section by a two-plane containing this axis is identical to the
meridian section of the S0(3)-invariant full quadrupole domains A(Djz) and

M’ND;Z). Indeed it is easy to verify (see eqs. (63) and (64) below) that the
2 2
two-plane {M’g ), M’é )} is also a two-plane of meridian section for the
0(2)-invariant )\@(B’ 2) and A@(.B’ 2) in either transversity or helicity
quantization. J
The coordinates of the B-symmetric polarization states depend on the
choice of quantization axis (cf. ref. [1]). For quadrupole B-symmetric

B, 2 B, 2
polarijzat ion the non-vanishing coordinates of (5( ’ )and of Cy( »2)
= 2 EB52) and the invariants A, A7 are:
{(a) in any transversity quantization:

rf)z), ng), 1’522) ; ygz), y(zz) (complex) ;
=@ @) (622)
XE = A (r(zz)zwg)z)% - vzyP)| - @, (62b)
(b) in any helicity quantization:
I N J Y Ty
VE -%A(r(()z) +\/_37(22)) = -é(y(()z) +¢’6y;2)) , (63a)

1 V2 1v2 0

Those equations are independent of the spin j, In the simplest case of spin-
one or%, there still are experimental papers which prefer to give, instead

213 24
N e £ L TSl N 1 [ S B L G

of the 7’%), the value of the matrix elements of the density matrix p. For

arbitrary B-symmetric state, in any helicity quantization (such as s-
helicity, #-helicity = Jackson axes, etc.) the invariants £, n are, as func-
tion of the p,,;, for spin-one,

-1 _3
n=13 2(911‘*’9]_1) ’ (643)

s 2
2

[Nl
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of the pyyy, 9,y for spin-%,

1
n-= -ﬁ(p33—p11)—2p3-] ’ (653-)

_ (2 2 5 2z
b= [<\/—3—"3-1""33+p11) +5 Py ] : (65b)

For the particular case of B-symmetric, even polarization, spin-one

density matrices p, in f-helicity quantization Donohue and Hégaasen 9]

have already given as invariants the p eigenvalues, }(1-2n) and

é (1+7 + £ V3), and noticed the existence of the intrinsic tetrad that we
introduced before (at the end of subsect. 3.1.3). They also give the angle of
the rotation, around the normal to the reaction plane, which transforms

their quantization tetrad into the intrinsic tetrad.

3.1.5. We need to study the rank of the polarization matrices p which are pure
quadrupole: p € (D] . The points of the interior of @]2) represent matrices

p with maximal rank, i.e. rank p=2j+1. The rank is strictly smaller for
the points of the boundary (cf. subsect. 2.1)

afD(.z) =3D. n @ . (66)
j J

From a detailed study of 9 ](-2), using refs, [1,2] 1A6, one shows that all

2
points of 0 j have same rank except, when j is integer, for three "excep-

tional" points which are on the symmetry axes (58). One of them has for
coordinates:

JJj 2\4-1 - -
£=0, n = - VIoGG=D J S 1 2j3) 24+1) - gn
L j-i o iV 10(25-1)

The other two points are obtained by a rotation of %77 around the origin.

More precisely for pe afD](-z) one has

2j for integer j and non exceptional points , (68a)
rank p = { 2j-1 for integerj and exceptional points , (68b)
2j-1 for half integer j and all points . (68c)

The figs. 1 (a) and 2 (a) show the meridian sections of @§.2) for
§=1,2,3,4andj= 3 2 I while the figs. 1 (b) and 2 (b) show those of

@jz) for the same j-values. Since L = 2 is the only L even multipole for

A

(Dgz) - @gz) 2@ _op® 69)
- 2 3

2

One also proves that
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2@ 4

] for j=1, (70a)

'\\./-\
F
Hv

and

rofeo

(D(,z) > »/D(,Z)l for j= (70b)
j +

Jtz

3.2. Spin tests from quadrupole angulav distvibution

Let us study how the results derived in the preceding sections can be
used to determine the spin of a particle whose decay mode is (ii = (1), 19
or (2). We assume that one has measured some components y ) (cf. table

2) of the normalized angular distribution 9(4, ¢), for instance all compo-
nents for L < L. Then the procedure for spin determination is the follow-
ing:

(i) The decay modes (1), (1') and (2) are parity conserving, i.e.

X(L, j) = 0 for L odd (see eq. (35)). Thus one must first check that the
angular distribution 9(6, @) has no odd - L multipoles, i.e. y( ) =0 when L
is odd ¥,

(ii) If the production sectign is B-symmetric, subsect 2.1.5. (i}, one must
check that the components 3’11;‘) satisfy this symmetry I. These B-symmetry
conditions are:

in any transversity quantization

(L) _
Yy =0 for Modd, (71)

in any helicity quantization

) L (L)
Im ~

=(-1) (72)

(iii) If one has observed non-vanishing yl%) up to L = LO, of course the

spin value satisfies j = 3 L. In the case Ly > 2, see also sect. 4. In this
section we shall consider two general cases:

(L) _

(b) for L # 2, no information on the y(AI{‘) is known or taken into account,.

(a) for L # 2, one has observed all ypr

Case (a), which implies an infinite number of known values of y](é‘), has of
course much more information content than case (b}, which is expected to
have little power as spin test.

(iv) Compute the coordinates A£, A7 of y, one of the points in the two-
plane of meridian sections which corresponds to y, the point of 4 ) re-

{ If this is not satisfied, this simple analysis should not be carried through. Most
likely, the presence of non expected Y%I’) in the decay angular distribution reveals

the existence of interference between the resonance channel and the background.
In that case a more complete analysis is needed, e.g. ref. [2] 3.1.
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presenting the experimental data. In the general case use egs. (54) to (57).
For B-symmetric production reactions, when a transversity quantization
has been choosen one may use eqs. (62) and for helicity quantization (63).

(v) Check that y belongs to the meridian section

(a) of A(z), the quadrupole intersection of A,

(b) of X(2), the quadrupole projection of A,
where A is the domain of positive angular distributions I

These meridian sections are the dotted triangles of fig. 6. The meridian
section of Al2) is also drawn in each of the figs. 3 (a), 4 (a), 5 (a), while
that of X(2) is only suggested in the corresponding figs. 3 (b), 4 (b), 5 (b).

1/V4rm

Fig. 6. These four triangles are common to figs. 3,4,5. The meridian sections of
A(z) and 3(2) are the small and large deshed-line triangles respectively. Those of
AD (.3) and A SE) are the small and large solid-line triangles.

(vi) Study the relative position of § with respect to the meridian sections
(2)

] ’

(b) of the quadrupole projections Ai (D§2),

(a) of the quadrupole intersections x; D

I If not, this proves that the observed yﬁ) do correspond to a non positive angular

distribution. One precedure which might yield such a distribution is to measure
9(0, @) only for a limited domain of (8, ¢), and ask a computer to extrapolate on
the whole (8, @) range by a best fit method, without imposing ¢ (8, ¢) to be positive.
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of the j-dependent polarization domain <} ;, mapped into the space of angular
distribution, for the decay mode (i). TheSe meridian sections are shown,
for decay (1) in fig. 3, for decay (1') in fig. 4 and for decay (2) in fig. 5.

We now apply this study to each decay mode separately.

3.2.1. Decay mode (1): j— 0+0.
Case (a) (2)
(i) The meridian section of N fZ)j for integers j =1, 2, 3, 4, =, are

drawn in fig. 3 (a). Note that A(z) = AI(D(IZ), so the experimental point 3

must be inside the large triangle. We have the inclusion property:

(2) (2) (2)
AI(DID...D)\l(Dl 37‘1@]413"'3}‘1@00 . (73)

The limit 2D () is the small triangle.

All meridian sections of Al@]'(z)(j =1, 2,...,%) have three points in
common on the symmetry axes; they are the middle of the sides of the
large triangle. This reflects the property of the domains AD ].2) to be

tangent along the two-dimensional orbit corresponding to these three points
(subsect. 3.1.2).
(ii) If there are no rank conditions on the density matrices, and if

Y € Al@ f,‘.?), no value of j is excluded; ify # Al@ Ef), then j < jo’ wherejO

is defined by y ¢ )\1@ ](,2) ;2)
The existence of j, is guaranteed by eq. (73).
In practice, due to its limited precision, the value of the experiment as

(2)

[ce]

for j >jo, and y € AI(D for j =< jo.

spin test depends on the position of y outside Al@ . If y is near one of

the points common to all domains, the experiment has no potential power
as spin test. If § is far from these points, there is a hope to exclude spin
values, and a great incentive for more precise experiments.

In fig. 3 (a) there is a large region inside the large triangle, but outside
the circle which implies j = 1. For instance, in a B-symmetric experiment
with a pure quadrupole decay angular distribution, the positivity domain
A(2) of this distribution is a three dimensional cone of revolution whose
axis is A and meridian section is the triangle. If the experimental point
representing this angular distribution is outside the inscribed sphere
(2)
2
it is the following: a pure quadrupole angular distribution for this decay
suggests (but does not prove!) the hypothesis j = 1. If the polarization
analysis is made with this hypothesis, and shows a polarization degree
d, >, then the hypothesis is proved.

(iii) If there is a rank condition, the experiment becomes more powerful
as spin test. As we saw in subsect. 2.2 for unpolarized target and un-
observed polarization of the final baryon, the strongest experimental rank
condition is for reactions of the type (14)

(whose meridian section is that of Al(D ) then j = 1. Another way to say
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0 +3 —j+3. (74)
Then the polarization density matrix p(j) of the final meson has rank
v < 4. Its even polarization part has rank 7 < 8. When this even polariza-
tion is purely quadrupolar, condition (68a, 68b) shows that

for 2j+1 < 81i.e. =1, 2, 3 y must be inside )\l@-gz) ,

for2j=8 ie.j=4 y must be on the boundary A, D 512) ,

and j= 5 is excluded by the rank condition .

To summarize: in a two body decay j— 0+0 of a meson produced in reac-
tion of th:e}: type (74) with a pure quadrupole angular distribution, one has
1< j<44+

Case (b). The point y cannot correspond to a positive angular distribu-
tion if it falls outside K(z), the large dotted triangle of fig. 6 which is too
large to be fully drawn in fig. 1 (b). Angular momentum conservation N
restricts much more the domain of possible y. It is the union of all Al(Z)(jz).

There is no rank condition in all cases (b) since we have made an arbi-
trary projection on & (2). It is surprising that there still exists small
regions compatible only with spin-one: the neighborhood of the vertices of
the triangle Al@ 52) = Alfb(lz). Near the vertices of the traingle 7\1@ g),

there is a lower bound j, for j larger than unity.

3.2.2. Decay mode (1'): j77 —*1n1+0no, ming = (- 1.

Case (a). The domains 7&1,@§2) are much smaller than A

(2), whose
meridian section is the dotted line triangle (fig. 4 (a)) which must contain
9. Angular momentum conservation imposes in this case stricter conditions
than the positivity of the angular distribution. This decay is a poorer spin
test than the decay (1). Note that AI,CD (12) = xl,fD f). If 9 is inside the
circle, no value of j is excluded; if it is outside, j = 2 is excluded. See
fig. 4 (a) for more details. The rank condition depends only on the produc-
tion of the resonance and not on its decay; they are therefore similar to
subsect. 3.2.1 (iii). : ~(2) ‘ )

Case (b). Most of the regions inside ’\1'@«: are compatible only with a
lower spin limit j,, which depends on the region, with the exception of the
three corners of }\1' fAZJ)(lz) lying outside the sphere 7\1,(7) (22): there, all

possible integer values of j are possible, except j = 2.

{ The rank condition is practically lost when one integrates over a too large domain
of a variable (e.g. too large "bins") or folds down the data arbitrarily.
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3.2.3. Decay mode (2): j— 5+0.
(2)

Case (a). The AZ(D].
)

(2

l
2

also satisfy the inclusion condition

p(2) 5 (2) (2) (2)
A2”D% DAZ(D 3...3A2(Dj DAZ(D]'HD"'D )\2@00 . (75)

(2)

They are inside the sphere )\2@ 32 which is inscribed in A(Z) (see fig. 5 (a)).
7

Without rank condition each region inside this sphere corresponds to a
lower limit jo of j. All 7&2@;2) are tangent along the same two-dimensional
orbit that the domains AICD}Z) (j integer, cf. fig. 3 (a)). So in fig. 5 (a)

the middle of the sides of the dotted triangle are common to all domain,
and if 9 is in their neighborhood, the experiment is not useful for spin test.

Rank condition is very important. For unpolarized target, the stricter
condition appears in reactions of the type (15):

0 +3t—0+j. (76)

Indeed the polarization density matrix p(j) of the unknown spin baryon has
rank 7 < 2 (see subsect. 2.1.5), its even polarization part has rank » < 4
(see subsect. 2.1.7). Then eq. (68c) yields that:

In a two body decay j— 3 +0, of a baryon produced in a reaction of the
type (76), with a pure quadrupole angular distribution, the baryon spin
canbe onlyj =3 orj =3.

For j = % the experimental point $ can be anywhere inside the circle.
For j = 3, ¥y must be on the drawn curve.

. 3@ _ (2 (2)

Case (b). Since Ay /Dj - >\2 %j+1’ .
only a lower limit j, to the spin.

3.2.4. Table 3 gives the equations of all curves drawn in the figures quoted
in this section. Fig. 3 (a) and 5 (a) are very similar. This is due to the

o

each region inside AZ(ND imposes

following: each meridian section of A(z), of 7\1@;2) and )\2@;2), (j integer,

7' half-integer > 3) has two points on each symmetry axis. One point is
common to all meridian sections; its ordinate on the A7 axis is

an=-1/V5. (17)

The ordinate of the other point is, respectively
c_J+1 1 /A2 i W .
77]—2]_1 \/—5—5 T)] - 4]v \/3" (77)

we remark that
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Table 3
Equations of the curves in the figures of sect. 3.

(a) Figs. 1 (a), 2 (a)...5 (@) show the part of the algebraic curves
@i(& 1, L) = 0 which bounds the minimal convex domain containing
the origin £ = 7= 0. The homogeneity parameter [l represents unity
for figs. 1 and 2, and X2, §)/ X, with the numerical value of A;(2, j)
given in table 1, for figs. 3, 4 and 5. As function of the invariants

a=§+n2, B = n(n?-3t2

the curves (pj(g, 1) = 0 are

@y(E, 1) = B+Hua -%u3 = (-5 (+V3E+ 1) (- VBE+ 1)

®alt, ) =0!—~—LL

@5t M) = 250(0 - %) + 450 Ve - 4651 2a® - 442153 + 84 pa - 4

- @og2+evapun - p? (-5(nV3+ HZr2Vaun -2 et

v2p?) (-5 V3-p2+2Vaun+2vept r2u? <o,

oa(t. 1) = B- BV na+ gV ud -

04E.m) ;,uz :

05E, 1) = B-3(Ip)’ Fiasdch? il -

qozl(z,m =35a2+7—§u8—42u2a+3u4 =0.

(o) The figs. 1 (b), 2 (b)...5 (b) are obtained from figs. 1 (a),
2 (a)...5 (a) by means of a polar transformation with respect to the
circle

£2+n2+iju2=0.

We recall that the coordinates of the points of x,b (¢',n'; 1) =0, the
polar tranform curve of qD](g n; M) =0, are gwen by

Ev_anD/ v _ M 30 84)
T 2jdE‘Tu =25 9 /30

(c) The triangles in fig. 6 are common to figs. 3, 4 and 5. They are
given by ©1(§, 7; 4) = 0 with U respectively

\/Eu - L ‘/_ for the solid-line triangles ,

\/Ehi 2)‘1
\/Eu = - 2 y --ﬁ-for the dashed-line triangles .
V5
5>ti )\i

The former triangles are polar tranformed of each other with respect
to the circle

(A; &)2+ (Ai'r])2+—1?: 0

(which is that defined in (b) for the limit j — %), and the latter trian-
gles, with respect to the circle

s HZrymPege=0.
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4. POLAR ANGLE DISTRIBUTION FOR TWO-BODY DECAYS

(L)

When non vanishing multipoles y are observed for L up to L and
M 0

L > 2. a complete study of the polarization domains, like that of sect. 3
for L, = 2, turns out to be very cumbersome. Indeed, the number of in-
variants under the "rotation" group for

L L
Yy, - ot yB . g g (79)
Lo L-=1 , Lo even L=2 ,

the angular distribution spaces for general and parity conserving two body
decays. are respectively:

2 E 2 3
=L - =143 _3.
I/LO O+2L0 3. VLO : otiLy 3 (80)
Thus for the simplest case the orbit space has dimension VEIE) =11, to be
compared with V(ZE) = 2 as computed in eq. (53).

Let us therefore study in this section the simpler projections of il/L
and y on fy . the LO plane. spanned by the axes

1
E)L)(H. o) =[(2L +1) 47]? PL (cos 9) . (81)

This plane depends on the choice of polar axis. Indeed it corresponds to the
experimental measurement of the two-body decay distribution in the polar
angle 6, with respect to an arbitrary polar axis. This measurement sup-
plies information only on the diagonal elements of the density matrix, and
for the strong interaction decays (1), (1'), (2) only on its even part. This
partial information can be however powerful as spin test.

Y

4.1. Geomelry of diagonal matrix domains

4.1.1. Let us consider the 2j-dimensional Euclidean space ¢ (D) < Eyofall
diagonal, Hermitean (i.e. real), trace-one matrices. It is an equatorial
2j-plane for the polarization domain D ; (cf. subsect. 2.1.7), whose intersec-
tion as well as projection can be called

D) _ (D) _
Dj = Djm(f -PD(D].. (82)

(D

The geometrical shape of D ) is a "regular simplex"”, with n = 2j+1

vertices and
ny, = (%) = n!
B=% " Biln- k)
equal. k-dimensional faces. The n vertices, Py, (with - j < m < j), repre-

sent pure states with Oy 4, = 1 as only non vanishing density matrix ele-
ment. According to the metric in eq. (9). the vertices P,, are at a distance

(83)
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1
d = 1 from the unpolarized state po and at a distance I = [(2j+1)/5 ]2 from
each other.

D .
4.1.2. Among the many symmetries of @1( ), we are interested in its symme@ry

through € (E), the even-L polarization plane (cf. subsect. 2.1.6). Since this
symmetry permutes the vertices Py, and P_y,, € (E) is a "mediatrix" plane
for all the edges P, P_,,, and contains the vertex P, when it exists, i.e.
when j is integer. For this symmetry plane projection and intersection
coincide too:

(D(.D’E) = (D(.D) i C(E) =P (Z)(.D) } (84)
J J E 7j

(D,E)

In the case of half-integer j, the domain (D] is another regular

simplex, whose vertices, P',n(% < m < j), are placed at the middle of the
edges PmP-m of CZ);D). Its dimension if j- 3, and each of its ' = j+3

1
vertices lies at a distance d' = [(2j-1)/4j]2 from p,, and at a distance
I' =[(2j +1)/2j]2 from each other.

(D, E)

In the case of integer j, the simplex (D] has #" = j+1 vertices, and

its dimension is j, but it is no longer regular. Each of the j vertices P,

(1 < m < j) lies also at a distance d" = d' from p, and at a distance [" = I
from each other. But the singular vertex P, is at a distance d§ = 1 from p,
and at a distance [3(2j+1)/4j]2 from the others. These metrical properties

E
of @;D) and (D(.D’ ) are summarized in table 4.

Since C(D) and C(D’ E) are equatorial planes of (Dj, the simplices
(DgD) and (DgD’ E)
J J
respect to the sphere of radius R = [- 1/2j]% centered at g, (cf. subsect.
2.1.8). .

are self transformed by a polar transformation with

D ETable 4
Polarization domains (Dj(D) and (Dj( +E) for diagonal and diagonal even density ma-

trices of spin j. Their geometrical shape is a (- 1)-dimensional simplex with n ver-

tices. Each one of these vertices lies at a distance d from the unpolarized state, and

at a distance ! from each other, The simplices are regular, except for integer spin

and even polarization, for which a singular vertex of the simplex lies at a distance
dy = 1 from the unpolarized state and at a distance /; from the other vertices.

(a) j = half-integer (b) j = integer
n d ! n d 1 do lo
. 1 . 1
2j+1 1 [27—”—:'2 DD 9541 1 [2_1_*“1_]2
J J J
.1 |2i-1]3 |25+1{3| pD,B)| ; 2j-113 |2j+1|3 32i +1) |3
il [TJ gl | i | T 7] LT
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Fig. 7. The tetrahedron PyP) PPy is an example of a diagonal even polarization
domain @ (D E) for j = 3. The shaded polygones Q3@ %9%3 and Q1 Q1 Qa3 Qo3 are
respectlvely the intersection with, and the projection on the two-plane {17 n4}

4.1.3. As an illustration, fig. 7 shows the domain@(jD’E) forj=3.Itis are

gular pyramid with base P]P,P5 and apex Pj. According to table 4, the
point 0, representative of the unpolarized state, lies on the ternary sym-
metry axis at distances + and 1 from base and apex respectively. Point 0
lies also on the perpenghcular from each vertex P to the opposite face at
distances [ ]2 and [ ]z from face and vertex respectlvely This means
that the pyramid is self transformed by a polar transformation with re-
spect to the sphere of radius R = [- %]E centered at 0.

In fig. 7 are also shown the polygones @(Q1Q2Q3 and €01Q12923%03
wh1ch constitute the projection on, and the intersection by the oblique plane
{TI n4}. They are consequently transformed from each other by the polar
transformatlon induced in the plane {17 174} with respect to the circle of
radius R.

Such intersections and projections are respectively drawn in parts (a)
and (b) of fig. 8, 9. The polygons labelled A, bB, ¢C, dD in fig. 8 correspond
to j=1, 2, 3, 4, and those labelled A, bB, cC in fig. 9, to j= 4, 2, I. The
point labelled X, in part (b) of figs. 8 (or 9) is the projection of the simplex
vertex representing the density matrix whose only non null elements are
Pm, m P-m, -m (or Pim,tm> P-Lm, -+m).- The polygons in parts (a) and (b)
of these figures are polar transforms of each other, and the transform of
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vertex X, in (b) is the side labelled x,, in (a).
4.1.4. Conditions in the production process, like B-symmetry, collinearity

and rank conditions (cf. subsect. 2.1.5), can reduce the domams(D( and
CD(D E) to different subdomains according to the choosen quantlzatlon. For
1nstance the planes 6( )and C(B E) of B-symmetric, even matrices
depend o EX on the orientation of the reaction plane, while the planes ¢
and cD of diagonal and even, diagonal matrices depend on the direction
of the polar axis. For transversity one has

Té (D) zé (B) , (85)

and the domains T(D](.D) and T(D§D’E) are not reduced in the case of B-

symmetry
C(B) N TFD(.D) = TCD (.D) , C(B) N TCD (.D’E) = TCZ) (.D’E) . (85")
J J J J
But for helicity quantizations one has (cf. ref. [2])
and the domain HfZ)_gD) reduces to H@ﬁD’ E) in the case of B-symmetry:
B HyD) _ ¢(B)  Hoy(D,B) _Hey(D,E) (86")
J J J
Finally for a quantization axis oblique to the production plane, one has
Oc@rne®_y (87)
and the B-condition reduces the domain (D(.D) to the unpolarized state
B, ](D) B (D(D E) =p,_ . (87")

In the case of collinear production, and helicity quantization, the density
matrices are diagonal and both polarization domains coincide:
For transversity quantization (or for any quantization axis oblique to the
collinearity direction) these spaces and domains have only one common
point:

Te D)y (€ _Tq (D) 5(C) _ b, - (89)

The rank of the matrices represented by points inside. the simplices
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D D, E)
J J

is strictly smaller, and simply related to the dimension % of the minimal

k-face containing p:

is maximal, rank p = 2j+1. For points on the boundary it

[ k+1forfD§.D); (90a)
2k +2 for ;.D’ E) with half-integer j, or
rank p = with integer j and k-faces
non containing Py ; (90b)
2k +1 for (D;D’ B with integer j and k-faces
containing P . (90c)

Rank conditions are not useful when one integrates over the azimuthal
angular distribution, because this projects the polarization point on the
equatorial plane ¢D). But these conditions can be powerful for instance in
the case of collinear production and helicity quantization, when one knows
that, according to eq. (88), the physical domain is the diagonal one. Then
for reactions of type (14),

0" +3  —j+3, (91)

the density matrix p(j) of the final meson has rank ¥ < 3, and one knows
that only its elements p11, Pgg, P_1-1 can be non null. Analogously, for
reactions of type (15)

0" +3t—0"+7, (92)
the p(j) of the final baryon has rank » < 2, and only pLL and p_i_1can be
non null (cf. Adair test in ref. [10]).

4.1.5. The linear mapping of the space € p into the space <Y allows to trang-
late the considerations above to the space of polar angle distributions Y D),

D
In particular the regular simplices Q)J( ) are mapped into simplies
AAL, 3 @§D) =2 (L, j) (Z);D’E) (93)

which depend on the decay mode (i) = (1), (1'), (2). The different dilations

AZ.(L), along the axes YE)L)
4.2. Spin tests from polar angle distribution

Let us apply the considerations of the preceding subsection to the spin
determination of a particle whose decay mode is (i) = (1), (1') or (2). The
analysis of the angular distribution in 6, the polar angle with respect to
f)L) (cf. table
2), i.e. the projection, y(D), of the angular distribution representative

destroy their regularity.

any well defined direction, supplies the diagonal multipoles y
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point, v e Q , on the polar angle distribution space Cy(D). We assume that
one has measured in this way some y(()L) # Oupto L= Lo > 2, and that one
has checked the parity consecvation in the decay and eventually in the pro-
duction processes (cf. subsect. 3.2.1 (i) and (ii)). Then the procedure for
spin determination is the following:

(i) the only consequence of angular momentum conservation, for any
assumed spin j, is that the point y(D) must belong to the corresponding
diagonal polarization simplex

yO ez o, (94)

whose vertices can be obtained from table 5 (a), and from the dilation
coefficients A;(L, j) given in table 1. Condition (94) is equivalent to the
positivity of the diagonal density matrix elements, p = 0, which can
(L)
0
(37) and (39). Condition (94) can therefore be used as spin tests in an

be computed from the measured vy, ° by means of tables 1 and 2, and egs.

Table 5
Coordinates and equations for the figures of sect. 4.

(a) The coordinates of any vertex P,, of the diagonal polarization simplices, like that
shown in fig. 7, are:

L j-m 177 L
= (/™ 1L+ @i+ n/2i*( ).
m-m 0
In particular the two coordinates for the vertex X,,, of the polygons (D(jz’ 4 obtained

by projection of these simplices in figs. 8 (b), 9 (b)...12 (b) are:
n? = - 1258571 [j(j+1)-3m2][(25 +3) @5 +2) @i -1)]F
4= ut3i7L(3(+2) (+ 1) (7~ 1) - 5(67 2 + 65 - 5) m2 + 35m*y
X [(27+5) (24 + 4) (25+ 3) (2+2) (27 - 1) (25 - 2) (2 -3)]F .

For figs. 8 and 9, the parameters LlL represent p.z =u4 =1, and for figs. 10, 11 and

12 u.L =A (L, j)/)tll-’ with the numerical values of A (L, j) given in table 1.

() The polygons of the intersections @}2’ 4 shown in figs. 8 (a), 9 (@)...12 (a) are

obtained from those in figs. 8 (b), 9 (b)...12 (b), by a polar tranformation with re-
spect to the ellipse

2/ B2+ (/42 a5 = 0.

We recall that the equatmn of the straight line x,, polar transform of the point
= (202, xnd) is:

-2 2 -2 4 4
WA 2+ uhE min e =0
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Table 5 (continued)

(c)' The "parachute-shaped" domains @53,4) s A(2’4), and "bullet-shaped" domains

fo,%"*), 1(2’4) in fig. 13 are common to figs, 10, 11, 12 (a) and (b) respectively.
The "parachute-shaped" domains are bounded by the ellipse

18 */uhZes B2 -2Vs atuh mP/uh -1am?/ut <o,
and the two segments ﬁl, PTy tangent at T1 and Tg with

P=m?Vs, -pta/ny, 1= pPro/nVE /Ty, To = (uP20/7 5, pts/et)
The "bullet-shaped" domains are bounded by the parabole

10 2/n3%-smi/uh -2 Vsm/u? -1 =0,
between the points

Py =w2Vs, 13, Py=(-p®Vs/2, utess)

and by the segment P; Po.
The values of u.z, p.4 are

\/Eu.z = —1/27& , Var u4 = 3/8)\:-1 for (Dg’4) , @{3,4} (solid line diagrams) ,
\[Euz = 1/)\? ,  V4m u4 = 1/)x:.1 for NG , A9 (dashed line diagrams) .

Pay
These domains D and D and these domains A and A are polar transform from each
other with respect to the ellipse or circle

%/ (mt/uh?=1.

algebraic, blind way. We will propose a partial application of condition
(94), which visualizes the potential power of experimental data for spin
determination.

(ii) Let us distinguish two cases:

(a) one has observed allyg') =0, forL # 2, 4;

(2) (4)

(b) one knows only or takes only into account the measured yo and yO

@2 4

Let us call in both cases § = (yo Yo ) the measured point (a) lying in or
(2) and Y(4)

0 0’ which we label

(b) projected on the plane spanned by Y
n2n2 afnt

(iii) Check first of all the positivity of the polar angle distribution, i.e.
that ¥ belongs to

(a) the intersection of AP) by {)\iznz, )\?n‘l};

(b) the projection of a®) on {Agnz,xgn‘l}.
This intersection and this projection are the "parachute-shaped" and

“bullet-shaped" dotted diagrams, which are shown in fig. 13, and suggested
respectively in parts (a) and (b) of figs. 10, 11 and 12.
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Fig. 13. The four diagrams in this figure are common to figs. 10,11,12. The dashed
line diagrams show the "parachute-shaped" intersection and the "bullet—shaped"
projection for the two plane A2n2, A4n4of the positivity domain AD) of the polar
angle distribution, The solid line dlagrams are the intersection and projection of the
diagonal polarization domain A9 ‘SOD). Note that the polar transform of the points Pl,
Py are the tangents PT{, PT,,

(iv) Study the relative position of § with respect to
. . (D) 2 2 4 4
(a) the intersection of ); @- by X%, A n),

{b) the projection of A @;D on{)\2 2, A4 4}

(D) .

where A, (D] is the j-dependent, dlagonal polarization domain, mapped

into the space of angular distribution, for the decay mode (i). These inter-
sections and projections are shown in figs. 10, 11 and 12, for decay modes
(i) = (1), (1') and (2) respectively. We shall consider them separately below.

(v) Note that the procedure (i) to (iv) can be used for any choice of polar
axis. It will for instance supply three independent tests if one chooses
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transversity, s-helicity, or ¢-helicity quantization axes. Furthermore, if
L S
one measures all the multipoles yﬁw) for any system of quantization axes,

one can transform these measurements by convenient rotations and apply
the procedure (i) - (iv) to all possible choices of polar axis.

4.2.1. Decay mode (1): j— 0+0.

Case (a) The intersection of the simplices N 7)(D’ E)

by the two-plane
{Aln , MTT }are shown in fig. 10 (a) for j =1, 2 3 4,  and are respec-
tively labelled by the letters A, 0B, ¢, d and z. Note that the segmentA()A1

and the isosceles triangle B.B. B, represent the whole domains )\ (D(D E)

)\’D(DE) 07172

and respectively.

If the experlmental point  falls near Ag the spin must be j =1, and if
it falls near Bg or By, it must be j= 2. There are also small regions
which establish j< 3, j< .. On the other hand it is difficult to give a
lower limit for the spin. And if 9 falls near Ay, the tests is completely
powerless. Indeed the polygon sides by, Cg, dg, . .. Zp lie all in the same
straight line, the common boundary imposed by the positivity of the central
density matrix element pgg = 0. Note that a violation of this boundary
comes from an angular distribution which is negative for some value of 9,
since Bj Bg is also boundary of the dotted "parachute-shaped" domain.

Case (b) Part (b) of the fig. 10 shows the corresponding projections of

E
the same simplices AI(D;D, ). Note that there are still regions which can

establish j = 1 (near Ag), j = 2 (near Bg or By) and evenj = 3 (near Cg). It
is interesting that if y falls in the neighborhood of B9, C3,D4...Zx a
lower limit for j can be established.

In the case of collinear production in a reaction of the type (91), and for
helicity quantization, the allowed regions for 9 are the segments Ag4;
BoB1, CpCy, DDy, ... Zp. This could fix an upper limit to the spin.

4.2.2. Decay mode (1'): j77 —»jnl +070 with ming = (- 1)J.
Case (a) The intersections of the simplices Al' (D].(D’E) shown in fig.

11 (a) are smaller than those in fig. 10 (a), and therefore they supply in
general weaker spin tests. Nevertheless it is interesting that some
negative value of )\l.n establishes j = 2, and that some big absolute value
of the same 2%, 174 excludes j = 3. Note that now it is the boundary given by
P11 = 0 which lies in the same straight line for the different spin values.
But the corresponding domains do not superpose each other on this line.

D, E)

Case (b) The projection of the simplices X (D; are shown in fig.

1!
1t (b). There is still near Bg a region which could establish j = 2, and
large regions which could give lower limits for j.

In the case of collinear reaction of type (91) the allowed regions Ag4; ,
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BgB1, CoCy, DgDy,...Z( are more clearly distinguished than in fig.
10 (b).

4.2.3. Decay mode (2): j— 3 +0.
Case (a) The intersections of the simplices )\2 CD](,D’E) shown in fig.

12 (a) are in some way similar to those shown in fig. 10 (a) for spin half-a-
unit greater. They present the same common boundary and no test is
possible near As.

Case (b) The projections of A, (D](.D’E)

shown in fig. 12 (b) can supply a
lower limit for j.

In the case of collinear reaction of type (92) and helicity quantization,
only the points A1, By.Cy...Z) are allowed. The historical test proposed
by Adair [10], has yielded spin j = £ for AC by a polarization point § near
the point O, clearly separated from Ay ...Z;. Note that for higher spin
this test is not so clear cut.

Table 5 gives the coocdinates and equations for all the figures of sect. 4.

The first expression in its part (a) can be used for studying higher

projections of the simplices )\l. (D;D), since it gives all the coordinates for

their vertices.

5. CONCLUSION

We have studied separately each of the three decay modes (i). However
one should never forget that a particle can have competing decay modes of
different types. Their simultaneous observation may lead to powerful spin
tests. Consider, for instance, a meson resonance with the two competing
(L)
M
tions of the decay products from the same decaying state are proportional
(see subsect. 2.2.2 and table 1). Indeed:

decay modes (1) and (1'). The y coefficients of the two angular distribu-

D . .
yo o) x (L, f) j j L
Fapisw A Rl AR % LT (95)
WPy ME ig

As far as we know this formula was first obtained by de Rafael [11], who
proposed this test for the Ag meson.

As a general rule, the more an angular distribution is isotropic, the
less it is expected to be useful for spin determination. However a quite
anisotropic angular distribution may also be disappointing, from the point
of view of spin test, as some of our figures show.

Since most of the new resonances are not very sharply defined, we are
aware of the difficulties which arise for the interpretation of experimental
results. It is however astonishing that all the consequences of angular
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momentum and parity conservation are not generally used in the exploita-
tion of the data. For example, if there are non vanishing yﬁ'l in the angular

distribution of a decay of type (i), only up to L = Ly i, every one knows that
the spin j of the decaying particle satisfies j = 2 Ly. But one can say more,
and our paper gives the relevant criteria for establishing the possible
value of j.

We have applied for ourselves the methods of this paper to analyze some
published data, but we feel that such an analysis cannot be keenly performed
without the collaboration of the experimental authors.

Each author is grateful to the other two's institutions, for making the
meetings possible. P.Minnaert thanks also the French "Commission des
Grands Accélérateurs”. M. G.Doncel benefited by an invitation to the IHES,
and acknowledges the partial support of the Spanish "Grupo Interuniversi-
tario de Fisica Tebdrica". The authors also thank Hewlett-Packard, France,
and its director P. Ardichvili, for their help with the desk calculator and
plotter used for the figures.

APPENDIX

A.l. Invariance of B(Dj by polar transformation

In the space CN+1’ with origin O and scalar product (5), consider the
cone C of non negative matrices, with vertex at O. We remark that if
O #pj, pg € @, thentr pyjpg = 0. The equality appears if and only if both
p1 and po have ranks strictly smaller than 2j+1, i.e. py, pg belong to 2@,
the boundary of €, and furthermore p1p2 = p2p1 = 0. (Cf. e.g. ref. [1, 2].)
To summarize, the conditions

0+ p,pgeC, trp1p2 =0, A1)
imply

pP1,pg€3C , pipg=p3p1 =0, rank p; +rank pg < 2j+1. A(2)

We shall use a more geometrical approach. Let us denote by Tp the
hyperplane through O perpendicular to the straight line pO. If p1 € 3C,
then it has one or several zero eigenvalues and the Hermitean projectors
on the corresponding eigenstates belong to Tpl N C. Moreover all vectors

of this intersection, like py, satisfy eq. A(1) and therefore eq. A(2). In the
language of complex projective geometry, 3€ is self conjugated with
respect to S, the null radius sphere centered at O; moreover conjugated

I_As a matter of fact, the ij(‘fl‘)‘ often decrease with L while the errors on |y1(§1‘)§
increase with L, So for L > L, it would be more rigorous to say that the values

of the y}é’) are compatible with zero.
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points of € have the property A(2). Therfore, if H is any hyperplane of
€pny41, cutting €, the intersection H N 3C is self transformed by the polar
transformation W1th respect to the imaginary sphere Sy = H 1 S. In partic-
ular, for the hyperplane ‘SN whose distance from O is
1

|06, | = [trp?F = [2j+1] 2, A(3)
the corresponding sphere, SN n éN is the imaginary sphere of center p,
and radius [-1/(2j+1)]z. With the renormalization of the metric defined by
equation (9) this radius becomes |- ]/2]] . Since we have B(D =2C n CN,
we have proven:

Theovem 1. The boundary 80, is invariant by the polar tranformatiorll
with respect to the imaginary sphere Sy of center p, and radius [- ]/2]] .
Moreover if p1, pg e @ @ are conjugated with respect to Sy, they satisfy:
rank py +rank pg < 2j+1.

‘We remind the reader that this polar transform.ation is also the product
of the polar transformatmn with respect to the real sphere of center pg
and radius []/2]] , and the reflection through the point pg,.

Let P; the orthogonal projector in € on the k-plane P; € which
contains pg. From theorem 1, by elementary geometrical arguments, we
deduce:

Corollary 1. The intersection 3D; (1 P; Cpy = 8(®] " P; €p) and the
projection P; 3D; = aP; @ are polar transform of each other with respect
to the spheres Sy N P; CN

We will give a second proof of this theorem and its corollary, in order
that they become more intuitive to readers untrained in complex projective
geometry.

As we have seen the (2j+1) by (2j +1), trace one, Hermitean matrices
R form a Euclidean space (N = (2j+ l) - 1) and this space can be
spanned by an orthogonal basis formed by the matrices Q(]) L , 1 s L s 2§,

i

-L < M< L, introduced in the egqs. (43). These matrices satisfy:

e —en®”,  we® -0, AM)
e~ en® - @B tor m= o, A(5a)
QP <@ - - @)D tor  m<o, A(sb)
TTO RCTONLEEEAS SR N A(®)
The expansion of R ¢ €y on this basis is:
2] — (142 Z) Z) r(L)Q(y)gw), A7)

L=1 M=-L
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and its coordinates are the scalar products

(L) _ ( N (L)
Since the matrices Q(j)gé) are Hermitean, their eigenvalues are real. We

note u(j, L, M) the largest eigenvalue of Q(j)gé')

and - v(j, L, M) its smallest
one. From eqs. A(4) and A(6) we deduce the relations
-l<-v(j, L, M) <0< u(j, L, M)<1, A(9)

where the equalities hold for j = 3 only.

Let u be a unit vector of CN and ug‘fl‘) its real coordinates:
2j +L 92
=2 2 uﬁ? =1. A(10)
L=1 M=-L
With this vector one can build the matrix
2§ +L
o -2 = el A(LY)
L=1 M=-L
Using eqs. A(4) and A(6) one shows that @(j, u) has the properties:
QRG, w)* =@, w, tr Qj, u) =0, A(12)
tr QU, ) QU, w) = 2L 5 D (D) A3)
2j I M M ™M

and one deduces that the largest and smallest eigenvalues of @(j, u), noted
w(j, u) and - v(j, u) satisfy the inequalities

-1s-u(f,u)<0<p(f,u) <1, A(14)

Note that
Qj, -u)=-Q(j,u), A(15)

and thus
v(j, -u) = u(j, u) . A(16)

Let us consider the trace one, Hermitean matrices R(u, A) defined by
1
R(u, \) = a1 (11 +2jAQ(j, u)) , X real . A(17)
(i) The one dimensional subspace of € generated by u is the set

{R(t)} = {R(u, M) |-= <r< o}, A(18)

(ii) The intersection {p(u)} = Dj N {R(u)} of the positivity domain D
with this one dimensional subspace is the subset of non negative matrices:
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{p()} = {R(u, V|- b(u) < r< a(u)} | A(19)

where the extremal values, deduced from the positivity of the eigenvalues
of R(u, )) are

-1 1

- b(u B YL alld) =—F—F—. A(20
(w0 2julj, u) (#) 2j u(j, -u) (20)
(iii) The projection {Py (D]} of the positivity domain (D on the one
dimensional subspace {R(u)} is the subset
{B, fZ)j}:{R u, )| -ba) < x < @u)} A(21)
where the extremal values are, according to eq. A(8),
-B(u) = Min trpQ(j,u),  Ww)= Max trpQ(j, u). A(22)
p e (D] P e (D]

These extremal values are reached when p is chosen as the rank one pro-
jector of the eigenvector of @(j, u), for its smallest and largest eigen-
values, so

“B(w) = - u(j, -u), a(u) = u(j, u) . A(23)
We remark that
)~ 2, w i, - >0, A4

- b(u)d(u) = - B(u)a(u) = 2;

The boundary 3 D; of D; is the set of points {za(u)} for all unit vectors
u. The convexity of @; implies that for each unit vector u, there are at’
most two hyperplanes perpendlcular to u and tangent to (Z) The points
ud(u) and - ud(u) = -ud(- u) are the feet of the perpendlculars from pg to
thege two tangent planes. The set of points {ua } is called the pedal
surface ¥ of 39D;. Eq. A(25) shows that 8@ and its pedal surface are trans-
formed of each other by the inversion in the sphere Sy of center py and
imaginary radius [- 1/2_1] Since the inverse in Sy of the pedal surface of
any surface Z is the polar transform of 2~ with respect to Sy, this proves
the first property of theorem 1.

Let u'a(u') be a point of B(Dj conjugated of va(u) i.e. u- uw'a(u)a(u)
= -1/2j. This imposes that the matrices p' and p represented by these
points (cf. eq. (9)) satisfy

2]+1 _ 1
BT tr(p-pg) (p'- po)“zj’

A(25)

which is equivalent to tr pp' = 0. This ends the second proof of theorem 1.
Let P; be the orthogonal projector in Eyon &; = P; £y, a k-plane which

i In French, "la podaire",
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contains pgy. Our second proof shows explicitly that the intersection
&; 8(Dj is the inverse in S; = Sy & of the pedal curve of the projection
P;3D; = 8P;D;, so for any k-plane Z;, intersection and projection of E(D
J i v

are polar transforms of each other with respect to S;.

We now study some special properties of the directions of the orthonor-
mal basis of the Q(L). When u has only one non vanishing component,
u(L) =1, wed nott]ewthe a(u), a(u), b(u) 3(u) b a(L “(L) (L) b(L
7 » D DD YOy Sy P Par

Eq. (38) shows that a rotation around the quantization axis, by an angle
en/4 M, €2 = 1, multiplies 7(j) ( )by €%, and eq. (43) shows that the Q( j)gl?
are transformed according to the law:

(L)
-M -

O A O

D(J) n3, 7/4M); hence they have same eigenvalues and their set of eigen-
values is invariant by multiplication by -1. In particular for

M¢07 V(j) LyM)zy(j,L,"M)=“(j,LyM)‘_‘IJ'(jy L; _M) A(27)
and from eqs. A(20) and A(23)I for

me o, oy D)) g ) ) G0 e

M+ 0, QU - - e(sign of M) Q) A(26)

(L)

This shows, for M # 0, that Q(j) are conjugated by

The rotation of -7 around the second axis is represented by
j M M
D _m it

9 =T pp F(J)M. Sp _ap A(29)
It transforms Q(j)gé) into (- l)L Q(j)g;). So the equalities A(27) and A(28)

can be extended to the case M = 0 for odd L.

A.2. Invariance of A by polar transformation
We consider the real measures on the unit sphere  of the three-dimen-
sional space. The measures which satisfy

fraa=1 A(30)

form a vector space WM DY | with the same origin 9o as Y (cf. eq. (27)).
The non-negative measures of ‘f{ form a convex domam A~ the closure of
A. The extremal points of A~ are the Dirac measures By w € Q.

Let v be a real, norm one, bounded function of the Hilbert space YY"
(cf. eq. (26)):

(v,v) = [v2dQ =1, A(31)

1 1In ref. [12] the second part of eq. A(28) is proven and numerical values of @ "'( L are
given for j < 2.
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-v(v) = Min v(w) = v(w,,) finite , A(32a)
we
p(v) = Max o(w) = v(wyy) finite , A(32b)
we
such that
—417;+2)ecy , ie [vd2=0. A(33)
From eqgs. A(32) and A(33) one deduces:
-vlv) = 0= ulw), A(34)
vi-v) = uv) . A(35)
Let us consider the functions F(v, ) e Y N defined by
F(v, x) :%T-Jr w o, A real . A(36)
(i) The one dimensional subspace of Qf generated by v is the set
{F()} = {F(v,\)] - < < o}, A(37)

(ii) The intersection {I(2)} = A N {F(v)} of the angular distribution
domain A with this one dimensional subspace is

{9} = {Fv, \)] - b(o) < x < a(v)} A(38)
where the extremal values, deduced from the positivity of 9(v) are
1
b(’U) = 47”1(2)) s G(U) :W. A(39)

(iii) Let P, be the projector on the one dimensional subspace {F(v)} of

R/
B f=v@, f)=v [ofdQ. A(40)

The projection {P,,A”} of the closure of the angular distribution domain on
the one dimensional subspace { F(v)} is

{P, a7} = {F(v, V|- B(v) <x < @)}, A(41)
with .
- 71'(1)) = Min (v, f) :f véwm dQ = vwy) = -v (), A(42a)
feA”
d(v) = Max (v, f) = [ v8y,, A9 = v(wyp) = p@) . A(42b)
feA™ -

Note that Py A~ is the closure of PyA,
From egs. A(35) and A(42) one deduces:
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d-v) =3 (), A(43)
a(v) B _
FOREION 4ru()v(v) >0, A(44)
- B)E) = - Bv)alw) = - A(45)

So, for any finite dimensional space Y ; = P; YT Y , we conclude that
AN Y, and P;A are polar transforms of each other with respect to the
sphere of radius R =+ - 1/4nm, centered at the origin I = 1/47 of .
A.3. Dipole intersection (D§.1)
For L =1, the Q(j)g‘}) are three orthogonal components of the dipole and

they can be transformed into each other by "rotations" (cf. eqs. (38) and
(43)). From this remark and from the general expression of the matrix

elements of Q(j)glll) (cf. eqs. (37) and (43)) we deduce that

. 3
v L M) = 105 1, M0 = sy A(46)

and projection CND;.I)

which is independent of M. So (D_gl) and (7);1) are two spheres in the three-
dimensional space C(l) of radius respectively equal to (cf. eqs. A(20) and
A(23))
(v _1y/j+1

v = ] 3 , A(47a)

#1) _ ]/ 3

7 5543 A(47p)
Note that

AV =35/ 1), #HUpL) =—21-]_—, A(47c)

which are eqs. A(24), A(25) for the dipole.

Consider the decay j— + +0. The coefficient A(1, j) of this decay is
different from zero only if parity is violated; then it is dynamic dependent,
but it is still given, for L = 1, by table 1 (c), up to a factor x, -1 < x < 1,
instead of 3 (1 +(- 1)L). The coefficient x contains the dependence on the
parity violating dynamics; it is the asymmetry parameter. Hence the

(1) (1)

observed yM are related to the normalized Yo by:

. 1

(1) j-% e 77 () 1 (b
=x(-1)72V2j25+1 = , A(48

yo =x(-1) J2j+1) o 1 3 T =X ) 08 (48a)

o=
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-fRey(l) 1 (1 , -\/ZImy(l)= 1 (1

1 Mg T

From eq. A(47b), conservation of angular momentum implies, for the
invariant

A(48b)

1),2
> b
M=-1
that one can extract from the data, the condition
1
> "< x) 7 e
V372 2 +2  2(j+1)

(L)

Moreover, if the only non vanishing Yy are those for L =1, we have the

[ !y } A(49a)
M=-1

stronger {when j < %) condition

1

[ > \(1\_) < |x] r S - A(49D)
M=-1 M Vaj+2 23 23

This is the test proposed by Lee and Yang [13] for the A® decay. One can
always choose the quantization axis such that y(ll) = 0; instead of the ex-
pectation value of \/ZF(Y(1 )= (/8 cos 0), Lee and Yang studied {(cos 6) sg

their limits are 1/ /_those of the eqs. A(49).
We have studied the well-known case L =1 in order to help the under-
standing of the case L = 2.

A.4. The quadrupole space

We have to study the action of the "rotation" group S0(3) on 6(2 the
five dimensional real space of the irreducible representation D 2), In order
to study this action we can use any one of the equivalent realizations of
this representation. An elegant realization of ¢(2) (used in the theory of
quadrics) is to consider it as the space of the 3 X 3, traceless, real,
symmetrical matrices:

trx =0, xX=x, xT = x . A(50)
The group S0(3), i.e. the group of 3 X 3 matrices which satisfy
a=a, aT =q-1 , deta = 1, A(50")

acts on this realization &(2) according to
D@)x =axaT =axa-1 . A(51)

This action is orthogonal, and leaves invariant on c(@ the Euclidian scalar
product
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(x, v) =trxy . A(52)

As is well known, by the transformation A(51) of an orthogonal matrix
a, any x can be diagonalized and its eigenvalues put in a decreasing order
gl = gz z 53, gl + 52 +£3 = 0. We can also say equivalently that the coeffi-
cients of the characteristic equation of x

B_}a@x+ip)I=0, A(53)

with
a(x) = 3(x, x) =2 tra2, A(54a)
Bx) = -4 detx | A(54b)

characterize completely the orbits of S0(3) on (5(2), i.e., x and x' can be
transformed into each other by S0(3) transformation if and only if

a(x) = a{x') and B(x) = B(x'). Since X is Hermitean, it must have three real
eigenvalues so

4(3a(x)3 = 27 p(x)2 , A(55)
i.e.

a0 < ) < a(n)? . A(55')

We are interested by the realization of ¢(2) as the five dimensional
real vector space of Hermitean traceless matrices

. 2 - 2 v
o) =2 L o()® - 25 A2y Q) - B .2 {2752 ae)
M=- !

This realization is j dependent, but eq. (38) shows that the action of S0(3)
on these quadrupole spaces is j-independent. Indeed for the "rotation" R

1 (2) 1\ (2) (2) M
TGy TG DRy - A(57)
We therefore consider the quadrupole space j= 1. The p'(1) are 3 X 3
traceless matrices and one passes from the x to the p'(1) by a change of
basis in the three dimensional space; i.e. the sets of x'(1) and of x = x* are
conjugated by a fixed matrix. This conjugation does not change the trace
(= 0), the trace of the square, or the determinant. Hence ofp'(1)] and
Blp'(1)] characterize the orbits of S0(3) for this realization of 6(2). The

(L)

expressions (54) of @ and B as function of 7y Can therefore be computed
from eqs. A(54) with

2
(2) (2)
x= 2 r2’ane . A(58)
Moo M M

The Q(l)I(;) are defined by eqs. (43) and (37). They are explicitly given in

ref. [1], IA2 table 1, ref. [2], I2 table 1.
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Remark that the four Q(j)j(vzl), M # 0 are on the same orbit ¢ =1, g =0,

but Q(]')(z)

0 is in a different orbit o =1, 8 =1.
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