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Summary.-- The models of the  axial  vector  current  discussed by GELL- 
3[ANX and L£VY are examined  fur ther .  General ized W a r d  ident i t ies  are 
der ived for the  axial  vector  weak ver tex.  I t  is then  shown tha t  in the  

model  and the  non-l inear  model  the  renormal iza t ion  factor  (~/(-~ m a y  
be expressed as a ma t r ix  e lement  in the  theory  of s t rong interact ions.  
Thus in t he  ~ model,  which is renormalizable,  - GA/G is finite in every  
order. Since --(1.~/G exhibi ts  divergences in the  non-l inear  model,  t h a t  
model  is not  renormal izable  in the  usual  sense. 

1. - Introduction. 

A conserved vector current (*,~) has been suggested in order to make the 
renormalization factor Gv/G of the weak vector current V in ~ decay equal 
to unity. The quantity V is taken to be a component of an isotopic vector V 
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t ha t  is propor t ional  to the isotopic spin current~ so tha t  its divergence vanishes. 

In  an accompanying  article (a), a dis(:ussion is given of possible theories 

in which tile analogous a.vial vector  current  P would have its divergence pro- 

port ional  to the pion field: 

(1) ? P = ian ,  

where a ta rns  out to be equal  to ---tl20/]o in each case. Here,  the theoretical  
renormal izat ion factor  - - G a / G  is not unity,  and the exper imenta l  one is not 

eithe 5 having  a value of about  1.25. We should like~ of cours% to be able to 

calculate this factor, and it is interesting to see how much  we can learn abottt  

it b y  methods  analogous to those tha t  give the result  Gv/G = 1  irt the vector  

case. i n  particular~ we shall be able to prove tha t  in the second and third 

models considered in A, the quan t i ty  - - G a / ( I  is expressible as a mat r ix  ele- 

m e n t  of tile pion field in the  strong interact ion theory.  Thus in the second 

model  (the a model), which is renormalizabl% the axial vector  renormalizat ion 

fac tor  is finite in all orders. The. third n-todd (tile Iron-linear one )g ives  a 

logari thmical ly  divergeItt contr ibut ion in second order to - - G a / G  and there- 
fore the corresponding theory  of the pion strong intera(:tion cannot  be re- 
normalizable in the usual sense. 

I n  our work we shall make  use of a ~ generalized Ward  ident i ty  5 which 
in the case of the conserved vector  cttrrent gives immedia te ly  (4) the result  

t ha t  Gv/G = 1. The ident i ty  m a y  be derived b y  a gauge t ransformat ion  (s) 

and  we shall use the same method to derive the analogous ident i ty  for the 

axial  vector  current  in tile models of article A. (Generalization to other theo- 

ries of the axial vector  current  is not difficult). [n the Appendix,  the sam(; 
~( generalized "Ward identit ies ,~ for axial vector  currents  are derived b y  another  
method.  

2 .  - T h e  i d e n t i t i e s .  

l n  the vector  case, we have  generated the current  V by  means of the 
intinitesimal gauge t ransformat ions  of eq. (A.22), su('h tha t :  

(,.,) 

(a) M'. (;ELL-MANN altd M. IA~VY: to be referred to as A. We shall emph)y tile nora. 
lion of thal article and we shall quote equations from it as (A.1) (A.2), etc. 
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and 

(3) ~ - ~  Lf- -  iY~- ~ u .  

y! 
:Now the unrenormalized nucleon propaga tor  ,S,,(p) is propor t ional  to the 

l~ourier t ransform of: 

(~) 

where we have  t aken  the  expecta t ion value in the physical  v a c u u m  of the 

T-prodac t  of two IIeisenberg operators.  We m a y  now alter  the nucleon fields 

as in eq. (2) and we can calculate the  corresponding change in the propa- 

ga tor  (4) by  adding a first order per tu rba t ion  to the Lagrangian,  as given 

in (3). Thus we have:  

(5) iT" u(x) ,S,,(x --  y) - -  i 2p(x - -  y) T" u(y) AS'~(x - -  y ) ,  

where AS',,.(x--y) is the change induced by  the per tu rba t ion  in (3)• I~ we 

now go over to m o m e n t u m  space and if we define r ( p  ~, p) to be the unrenor-  

malized ver tex  function corresponding to the current  Y ,  we have :  

( 6  ¸ ) ~ T ~ v ~ ( p )  i ~ ' ~ ( p ~ ) T  " ~ • r ~ ' , • ' - = - -  ~ ( p  ) k~  ~ ( p ,  p ) , ~ ( p )  

where k = t " - -  P. 
we obtain:  

(7) 

-t t Dividing on the left b y  S's(p r) and on the r ight  by  ,S,~(p), 

[8~(p~)]-~ - -  iT [S,.(p)] -~ = - -  k I ' , ( p ' p ) .  

w e  m a y  now t ransform to renormalized quantities, by  mult iplying bo th  sides 

by  - -  iZ2 : 

]:[ere r.~ 

( 9 )  

= z2r~ is the effective value of the vertex,  often wri t ten as: 

Z 2  • ? 

where r~(p, p) between free spinors of equal m o m e n t u m  acts like Ty~, with 
coefficient unity,  and Z2/Z1 is the renormalizat ion factor  ~r/G. In  other  words, 

we have, for free nucleons: 

(10) ~,(p)r~(t , ,  p)u,(p)  .~7.~u ~ (;v G "  
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F r o m  the ~( generalized War([ ident i ty  ~> (8) it is tr ivial  to see t ha t  Gv/G =: 1. 

We let  p~--+p or k - +  0 on each side and to first order in k we have, since 

commutes  wit.h ,St, the result  of Ward :  

(11) x ~ - -  ~ ' -~  i lS (p, p) c/)~ tNFc(P) = 

But  neax the mass shell ~;$(p)= i 7 . p + m + O ( i y . p + m )  2, so tha t :  

(12) ~, (p) ~ ( p ,  p)uJp) = u, x7 u~, 

and hence hy  (10) the renormMizat ion factor  is unity.  ( i t  should be noticed 

t ha t  if we simply take  eq. (8) between free states directly we learn only 
t h a t  0 = 0). 

~ o w  let us ot)tMn the analogous results for the axiM vector  current  in the 

second and third models of A. The gauge t ransformat ions  are those of 
eq. (A.39) ~nd have  the propert ies:  

(13) 
5r _~ (1 ÷ i x ' v  7~)~ r , 

$ f  --~ ~ f  - -  i P " ~ ¢ v @ a n " v . 

Ins t ead  of (8) we get the generalized W:rrd ident i ty  ("): 

(14) 4 i , ^ - ~( I / ,  Y)  

where ~'5 is the effectiw~ pion ver tex  and tile other  quanti t ies :,re defined as 
in (A.10). The plus siva on the left hand  side of eq. (14) results f rom the 
an t icommuta t ion  of "¢7~ wit, h the ma t r ix  fi in N,  

I n  the gr~Mient coupling model, the gauge t ransformat ions  are those of 
(A.30) and give: 

(15) 
~ f  -~- ~ - -  i P ,  . ~ v + a n . v ,  

so tha t  inste;~d of (H)  we have:  

(16} 
A /~-- A ¢ 0 = ik~,r~:,(p r, p) _ a \  Z3gxF~(l, ,1') d~(k2) 

k ~- ~_ ~ " 

(") Identities of this type have been studied in the limit of a ('on,~erved axial 
vector current by S. ~VJ~INBXnG (private communication lo J. BERNSTEIN). 
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In  contrast  to the vector  case, we get a non-trivial result if we just take 
the matri~ element of (14) or (16) between free nucleons, namely:  

^ _ d~(k 2)F~(k 2) 
(17) 0 = ik~ ~,(pr)I'~dp' , p) ~ ( p )  --  av'Zag~ k2 + m~ u,(p ') 'W,~u/p).  

But  this is an equation that  we could have derived directly from (1). In  fact, 

it is obvious from eq. (A.10) and the discussion preceding tha t  equation. 

Our weak current being invariant  under G P - :  CP exp [ i z [ ] ,  we may 

write (~): 

G a -  
(18) uflP') r~dP' ,  p)udp)  -- G u/tY~Ysu~(k'~) q- i~t/r~su~k~fl(k2) ' 

where ~ ( 0 ) =  1. We then have, from (17) and (18), the impor tan t  formula:  

/ G~\ (lO) 2m [--  ~ - )  ~(k 2) ÷ ldfi(k 2) = - -  a~/Z~g~ d,~(k2) F'~(k2) 
k "~ + 'm~ ' 

which contains some familiar results. When k =-0 we just get eq. (A.11): 

(2o) 
G ?Yt n 

Near the pole, which can occur only in fl and not  in ~, since it comes from a 
vir tual  pion, we have:  

a~/Z~ l 
2 '  

and since av/Z3 is related to the pion decay amplitude by  eq. (A.7), this is 
just  the result of GOLDBEgaEg and TgF, IMAN (8) on the induced pseudoscalar 
interaction. They assume tha t  the pole te rm dominates even at  the value 
k ~ = m~ relevant  to muon capture;  such a result is made plausible by  disper- 

sion calculations. 
So far we have not really used our generalized Ward  identities (14) and (16). 

3 . . -  Use of the identities and results. 

Let  us now consider the ident i ty  (14) characteristic of the second and third 
models and extract  new information from it. We put  p ~ =  pr2 _ : _ m s ,  but  
we do trot take matr ix  elements between free spinors. The (~P invariance then 

(7) S. WEINB~aR(~: Phys. Rev., 112, 1375 0958).  
(~) M. L. GOLDB~'RGER and S. B. TREIMA?¢: Phys. Rer., l i i ,  354 (1958). 
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allows us to write the two vertex functions in the following way: 

(22) 

(23) 

565 

-7 [y~, iy .  lj 75F4(k ~) + [),. k, iy .  l~ k~,ysFs(k 2) -7 y./y~ l~Fs(k~)}, 

r~ = • / ~ r  • - ~ -  + ~ ( ~ )  -7 [ir~, ~'~]ro ~ ~ - ~ 1  ' 

where 1 = (p +p')/2.  

(24) 

where 

(25) 

With p2 = _ m 2 ,  We may  write: 

s ;~ f f r .p )  = ( i r . p  + r e ) C ,  

= (2m)- ,  s i ~ ( i r . p  = -7 m ) .  

We may now compute i k ~ 5  as follows: 

(26) iko, r~5-~ ,v{i~.kr5(E~-7k2F2) 4-r~(--k~F3) -7 [i~.k, iy.1]y~(F4-7k2.Fs)}. 

The identi ty (14) then yields three equations: 

(27a) 

(27b) 

(27c) 

where 

(28) 

v = F~(k,)  + k ~ ( k  ~) - -  X(k~)  ~(k~), 

2mC = ~ k2Fs(k ~) + 2 m X ( k  2) ~(k ~) , 

o = F.(k~) + k ~ ' ~ ( k  ~) 

aV-Z-agl d,,(k ~) 
X ( k  ~) = 

2m k 2 -7 m~ 

we have used the fact tha t  a =:- - /~/ /o  • 
In particular, for k ~ =  0, we have:  

(29a) 

(29b) 

(29v) 

2 m  
4m~ + k~ X(lc~)((k~) ' 

k s + m ~ / o  

c = F l (o )  - -  X ( o )  2 ( o ) ,  

- -  C = - - . x ( o )  v (o)  , 

0 ---- 2m F~(O) - -  X(O) ~(0). 
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In order to apply these results, we note tha t  by  taking nmtrix elements 
of (22) and (23) between free spinors we obtain: 

(30) 

(31) 

G~ 
G 

- F~(0) ÷ 2mF~(0), 

F(k~) = ~(k~) + v(k~) + ~(k~). 

By considering the vertex r5 in the general form (23), we have split the 
pion form factor F into three parts;  between free spinors only the sum is 
important,  since all three m~trices in (23) look like Y5 when taken between 
free nucleons. 

If  we sum the three relations (29), we simply get back eq. (20). But  if we 
use them separately, we can evaluute the axial vector renorm~flization factor 
in terms of the nucleon propagator and the pion vertex: 

( ~  __ c11}~(!!! (, F.(O) 
(32) --  G ~](0) F~(0) ~ $(0) ~-~(0) " 

Thus if our strong interaction theory is renormalizable, as in the (~ model, 
the quanti ty --GJCr is ]inite in every order. For example, up to second order, 
we may  put :  C,=I÷C.,, F ~ ( 0 ) = I ~ - F  , ~(0)=$2(0), ~'(0)--~2. We find 
~., -- 0' ~nd: 

• 2 

(33) (*~A C., , 1 gl 
- -  (; - - ] +  . ~ - ~ ' , = l - r - , n - - : L n  + ' ' ' '  

with ,m~ and m~ put  equal to zero for simplicity. (As m~-~ 0, both Co and 
~ have infrared divergences, bu t  they  cancel in the sum). I t  is easy to see 
tha t  the power series (33) is not much use for calculation, even though the 
coefficients are finite. 

r t  is also true tha t  if --GA/G exhibits ~ divergence in second order, as in 
the non-linear model, then the corresponding strong illter~ction theory cannot 
be renormalizable in the usual sense. In  tha t  model, the culprit in second 
order is $2, which is logarithmically divergent and comes from corrections to 
the pion vertex due to the term 2f2mo:~2NN in the expansion of the Lagran- 
gian ~¢.3 of eq. (A.46). 

In the gradient coupling model, the W~rd ident i ty (16) leads to equations 
just like (29) with C replaced by zero, but  they  tell us nothing new. 
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A P P E N D I X  

An a l te rna te  m e t hod  of deriving (.14) and  (16) m a y  be sketched as fol- 
lows (6,9). I f  J~(y) is any  current  then  we m a y  define the ve r t ex  /'~(u, u' ,  y ) =  
= F~(u - -  y, y - -  u ')  b y  the equat ion:  

(A.1) <T(N(x) N(x')  J~(Y)) )o -=: - - f  ddud 'u '  S'~(x - -  u) F~,(u - -  y, y - -  u')  S'F(u'-- x ~) • 

The nota t ion  is as ia  (4) of the  text .  
Now it  follows f rom well-known propert ies  of the T symbol  tha t :  

(A.2) (T(~V(x) ~ ( x  ~) J~(y))>o = T ~ J~(y) ~V(x) ~ ( x  ~) -- 

- -  ~(Xo - -  Yo) ( T ( N ( x  ~) [iV(x), J0(x)])>o - -  ~(x~ - -  Y0) <T(iV(x)[N(x'),  Jo(Y)]))o • 

I n  the famil iar  case of electrodyaamics~ and hence also in the  case of the 
vec tor  fl-decay current  F~, one m a y  write:  

(A.3) 

where G~ is a function of fields other than  the nucleon field, which commutes  
wi th  the  nucleon field a t  equal  t imes. Hence  the equal  t ime commuta to r s  
in (A.2) m a y  be evaluated explicitly. 

Using the  definition of S ' ~ ( x -  x ')  and the relation ~ V~ ~ 0 we are led a t  
once to  (6) when we t rans form (A.1) and (A.2) into m o m e n t u m  space. 

For  the second and thi rd  models of A we m a y  also write:  

(A.4) P~, = -N'~Y~, 75 iv + G~,s, 

where G~5 commutes ,  as above,  with iv. In  this case the  equal  t ime com- 
muta t ions  give the  plus sign noted  in (14) and  ~,P~ ~-ia7¢ gives the last  t e r m  
on the  r ight  hand  side of (14). 

~n the  pseudovector  model  we have:  

[Gos, N] # 0,  

at  equal  t imes. This is a famil iar  p rope r ty  of the gradient  coupling, t tow-  
ever, in the model  under  consideration we have :  

(A.5) i 

Io 

(s) Y. TAKAttASHI: IVUOVO Cimento, 6, 371 (1957). 
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and  i t  is easy to see f rom the  pseudovec to r  L a g r a n g i a n  t h a t  the  c o m p o n e n t  P4 
is p ropor t iona l  to the  field m o m e t u m  canonic~fl to ~. Thus  t he  equa l  t i m e  
c o m m u t a t o r s  in  (A.2) s imply  van i sh  in v i r t u e  of the  canonica l  c o m m u t a t i o n  
reb~tions a n d  one is led to (16). 

R I A S S i I N T 0  (') 

Si esamin~no ulteriormente i modelti della eorrente vettorJ~le assiale di~cussi da 
F~YN~AN, G~LI~-MA~'N e L~.vY. Si derivano identit£ generalizzate di Ward I)er il ver- 
tice 0ebole del vettore assiale. Si mostra poi che nel mode]lo a e nel modello non lineare 
il fattore di rinormalizzazione - - ( ~ / G  pub essere espresso come un elemento di matriee 
nell~ teoria delle interazioni forti. Cosi nel modello ~, che b rinormalizzabile, --GA/G 
finite in ogni ordine. Poichb --  G j G  present~ divergenze nel modello non lineare, que,~4o 
modello non b rinorm~lizzabile nel sense usu~le. 

(*) Traduzione a cura della Rcdazione. 


