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Summary. — The models of the axial vector current discussed by GELL-
ManN and LEvy are examined further. Generalized Ward identities are
derived for the axial vector weak vertex. It is then shown that in the
¢ model and the non-linear model the renormalization factor -- (7, /(7 may
he expressed as a matrix element in the theory of strong interactions.
Thus in the ¢ meodel, which is renormalizable, - (7,/(f is finite in every
order. Sinee — (/,/(7 exhibits divergences in the non-linear model, that
model is not renormalizable in the usual sense.

1. — Introduetion,

A conserved vector current (12) has been suggested in order to make the
renormalization factor @,/G of the weak vector current V, in $ decay equal
to unity. The quantity V. is taken to be a component of an isotopie vector V
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that is proportional to the isotopic spin current, so that its divergence vanishes.

In an accompanying article (), a discussion is given of possible theories
in which the analogous axial vector current P would have its divergence pro-
portional to the pion field:

(1) &P =idew,

where @ turns out to be equal to — glff, in each case. Tlere, the theoretical
renormalization factor — /G is not unity, and the experimental one is not
either, having a value of about 1.25. We should like, of course, to be able to
caleulate this factor, and it is interesting to see how much we can learn about
it by methods analogous to those that give the result ¢ /¢ =1 in the vector
case. In particular, we shall be able to prove that in the second and third
models considered in A, the quantity — G /¢ is expressible as a matrix ele-
ment of the pion field in the strong interaction theory. Thus in the second
model (the ¢ model), which is renormalizable, the axial vector renormalization
factor is finite in all orders. The third model (the non-linear cone) gives a
logarithmically divergent contribution in second order to — ¢, /G and there-
fore the corresponding theory of the pion strong interaction cannot he rve-
normalizable in the usual sense.

In our work we shall make use of a «generalized Ward identity », which
in the case of the conserved vector current gives immediately (4) the result
that @./G =1. The identity may be derived by a gauge transformation (°)
and we shall use the same method to derive the analogous identity for the
axial vector current in the models of article A. (Generalization to other theo-
ries of the axial vector current is not difficult). Tn the Appendix, the same
« generalized Ward identities » for axial vector currents are derived by another
method.

2. - The identities.

In the vector case, we have generated the current ¥V, by means of the
infinitesimal gauge transformations of eq. (A.22), such that:

(2) N() — (1 + v u(x)) N(z)

(%) M. Gere-Many and M. LEvy: to be referred to as A. \We shall employ the nota
tion of that article and we shall quote equations from it as (A.1) (A.2). ete.
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and
(3) PP —iV, 0 u.

Now the unrenormalized nucleon propagator N;,(p) is proportional to the
Fourier transform of:

(4) Si(z—y) = (P(N@)N@)>,,

where we have taken the expectation value in the physical vacuum of the
T-product of two Heisenberg operators. We may now alter the nucleon fields
as in eq. (2) and we can calculate the corresponding change in the propa-
gator (4) by adding a first order perturbation to the Lagrangian, as given
in (3). Thus we have:

(5) it u(@) S, (e —y) — i Sue — y) T uly) = ASL(x— ),

where AS,(z —y) is the change induced by the perturbation in (3). If we
now go over to momentum space and if we define T (p', p) to be the unrenor-
malized vertex function corresponding to the current ¥V, we have:

(6) xS (p) — i Su(p’yr = — Sp(p") kT, p) 8,(p)

where &k = p'— p. Dividing on the left by S;,(p’ ) and on the right by S;(p),
we obtain:

(7) i[8(p" T — e[S, () = —k T (p'p) .

We may now transform to renormalized quantities, by multiplying both sides
by —iZ,:

(®) S, T — T8 ip) =ik T, p) .
Here I' = Z,T, is the effective value of the vertex, often written as:

~ Z
(9) rot = Zi’ I‘L\c 4
where I'_(p, p) between free spinors of equal momentum acts like Ty, with
coefficient unity, and Z,/Z, is the renormalization factor & /G. In other words,

we have, for free nucleons:

A _ “,
(10) () Dol i (p) = Ueyaus )
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From the « generalized Ward identity » (8) it is trivial to see that &, /¢f = 1.
We let p"—p or b —0 on each side and to first order in & we have, since
v commutes with S, the result of Ward:

— N;;(p) = if\ (v, p) -

(11) o

But near the mass shell S, (p) =iy -p+m-+0(iy-p+m)? so that:
(12) s () B.(p, ) wi(p) = w,vp

and hence by (10) the renormalization factor is unity. (It should be noticed
that if we simply take eq. (8) between free states directly we learn only
that 0 = 0).

Now let us obtain the analogous results for the axial vector current in the
second and third models of A. The gauge transformations are those of
eq. (A.39) and have the properties:

N - ({1 +itvy)N,
(13)
L —>L—iP -0 rv+anv.

Instead of (8) we get the generalized Ward identity (%):

: r,
(14) N;g(p’)'ry,, - ’ryjh,o(p = ik, \5(p Pp) —av 3(/1 —(jr glln\k %),

where T' is the effective pion vertex and the other quantities are defined as
in (A.10). The plus sign on the left hand side of eq. (14) results from the
anticommutation of Ty, with the matrix  in N.

In the gradient coupling model, the gauge transformations are those of
(A.30) and give:

N =N,
(15)
L L —iP -0 v+anv,

so that instead of (14) we have:

(Inﬂc?)

(16) 0=tk Tu(p', ») — v Zyg T, p) B ome

(*) Tdentities of this type have been studied in the limit of a conserved axial
vector current by N. WERINBERG (private communication to J. BERN=TEIN).
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In contrast to the vector case, we get a non-trivial result if we just take
the matrix element of (14) or (16) between free nucleons, namely:

(A7) 0 — ik () Tl ) ) — N By " mt D).

But this is an equation that we could have derived directly from (1). In fact,
it is obvious from eq. (A.10) and the discussion preceding that equation.

Our weak current being invariant under GP = (P exp [inl ], we may
write (7):

- = n li GA by Y,
(18) up") Los(p'y pludp) = — G Uty ysw(k?) 4- iueysuk, f(k2)

where «(0) =1. We then have, from (17) and (18), the important formula:

_ G\ vor | 7 B — dn(k?) Fro(k?)
(19) Zm(~€)oc(k)—f—kﬂ(lﬂ)_—a\/ngl Bome

which contains some familiar results. When %k =0 we just get eq. (A.11):

G —
(20) — @‘ = —aV'Z, - d{0) FL(0) .

Near the pole, which can occur only in § and not in x, since it comes from a
virtual pion, we have:
aV'Zy 1

) Bk ~ —- 2 gy —,
(21) B(E*) i ket
and since av/Z, is related to the pion decay amplitude by eq. (A.7), this is
just the result of GOLDBERGER and TREIMAN (°) on the induced pseudoscalar
interaction. They assume that the pole term dominates even at the value
k* = mz relevant to muon capture; such a result is made plausible by disper-
sion calculations.

So far we have not really used our generalized Ward identities (14) and (16).

3..— Use of the identities and results.

Let us now consider the identity (14) characteristic of the second and third
models and extract new information from it. We put p2=p” = —m? but
we do not take matrix elements between free spinors. The (‘P invariance then

(7) 8. WrINBERG: Phys. Rev., 112, 1375 (1958).
(") M. L. GorpBERGER and 8. B. TrREIMAN: Phys. Rev., 111, 354 (1958).
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allows us to write the two vertex functions in the following way:
(22) D=7 Gy Fulk®) + p ky b Fo(R) + ipsk, Fy(B2) +

+ [V by Uys Fa(R2) + [y Ky by Lkys Fo(k2) + p lys L Fo(k2)],

£(k*)

2m

+ yan(k?) - [y -1, 1A k]y;

£(k*)
ke + dme|’

(23) r—= {yaiy-k

where | = (p+p')/2. With p? =—m?, we may write:

(24) 84y p) = (iy-p +m)C,
where
(25) 0 = (2m)= S;3liy'p = +m) .

We may now compute ik, £ as follows:
26) ik, T, = v {iy - Tys(Fi+ B2Fy) + ys(— B2Fy) + [iy -k, iy-Upy(Fo--B2Fy) )

The identity (14) then yields three equations:

(27a) O = Fu(k?) + k2 Fy(et) — X(?) (kY
(27b) om0 = — k2 Fy(k?) -+ 2m X (k*) n(k*)
(270) 0 = Fykt) + I Fykt) — " X C(ke) ,
imE + B
where
Vg a0

2N Zd (k)

'28 szz o
(28) (%) 2m k4 md kB4 mif,

we have used the fact that a = —pudff, .

In partieular, for k? = 0, we have:
(29a) 0 = Fy(0) — X(0)£(0)
(299) — 0 = — X(0)9(0),

(29¢) 0 = 2m F,(0) — X(0)(0) .
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In order to apply these results, we note that by taking matrix elements
of (22) and (23) between free spinors we obtain:

(30) - Gq::‘Fﬁ0)4v2wﬂﬁ«n,

G

(31) F(k?) = &%) + n(k*) + C(A*) .

By considering the vertex T, in the general form (23), we have split the
pion form factor F_ into three parts; between free spinors only the sum is
important, since all three matrices in (23) look like y; when taken between
free nucleons.

If we sum the three relations (29), we simply get back eq. (20). But if we
use them separately, we can evaluate the axial vector renormalization factor
in terms of the nucleon propagator and the pion vertex:

G, F0) F,(0)
32 e L
(32) G 7(0) Fo(0) — £(0) — (o)

Thus if our strong interaction theory is renormalizable, as in the o model,
the quantity —- @, /G is finite in every order. For example, up to second order,
we may put: (=140, F (0)=1-+F , £0)=4£&(0), {(0)=1{,. We find
& = 0 and:

('1 l 2
(33) S RN A [T
« 7 dn

with m_ and m, put equal to zero for simplicity. (As m, — 0, both €, and
¢, have infrared divergences, but they cancel in the sum). It is easy to see
that the power series (33) is not much use for calculation, even though the
coefficients are finite.

Tt is also true that if — ¢,/ exhibits a divergence in second order, as in
the non-linear model, then the corresponding strong interaction theory cannot
be renormalizable in the usual sense. In that model, the culprit in seeond
order is &,, which is logarithmically divergent and comes from corrections to
the pion vertex due to the term 2f*m,*NN in the expansion of the Lagran-
glan Z; of eq. (A.46).

Tn the gradient coupling model, the Ward identity (16) leads to equations
just like (29) with ¢ replaced by zero, but they tell us nothing new.
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APPENDIX

An alternate method of deriving (14) and {16) may be sketched as fol-
lows (¢*). If J,(¥) i3 any current then we may define the vertex I (u, o', y)=
=I"y(w —y, y—u’) by the equation:

(A1) (T(N(@) (@) T.@))>e = — f Qudiu’ Bp(w —u) Lol — g,y — ') Splu'— ") -

The notation is as in (4) of the text.
Now it follows from well-known properties of the T symbol that:

_ 0 _
(A.2) % (TN @) F@) T o)) o = <T (@— J.(v) N@) N(.:v’))> .

— 8(y — o) T (N (@) [N (), Jo(@)]) 3o — (0 — ¥o) {T(N (@) [N ("), To(#)]) o -

In the familiar case of electrodynamies, and hence also in the case of the
veetor f-decay current ¥,, one may write:

(A.3) Vo= N"'%N + G, 1

where G, is a function of fields other than the nucleon field, which commutes
with the nucleon field at equal times. Hence the equal time commutators
in (A.2) may be evaluated explicitly.

Using the definition of Sy(# — ') and the relation 2,V, = 0 we are led at
once to (6) when we transform (A.1) and (A.2) info momentum space.

For the second and third models of A we may also write:

(A.4) P,— Nty,y; N+ G,

where G,; commutes, as above, with N. In this case the equal time com-
mutations give the plus sign noted in (14) and ¢,P, = iar gives the last term
on the right hand side of (14).
In the pseudovector model we have:
[Gos, NT #0,

at equal times. This is a familiar property of the gradient coupling. How-
ever, in the model under consideration we have:

{A.5) P, — Nxy,p,N— fi 0,7
[}

(®) Y. Takauasai: Nuovo Cimento, 6, 371 (1957).
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and it is easy to see from the pseudovector Lagrangian that the component P,
is proportional to the field mometum canonical to w. Thus the equal time
commutators in (A.2) simply vanish in virtue of the canonical commutation
relations and one is led to (186).

RIASSUNTO ()

Si esaminano ulteriormente 1 modelli della corrente vettoriale assiale discussi da
FEYNMAN, GELL-MANN e LEvy. Si derivano identita generalizzate di Ward per il ver.
tice debole del vettore assiale. Si mostra poi che nel modello o e nel modello non lineare
il fattore di rinormalizzazione — (/G pud essere espresso come un elemento di matrice
nella teoria delle interazioni forti. Cosi nel modello o, che & rinormalizzabile, — G,/G &
finito in ogni ordine. Poiché — & /@ presenta divergenze nel modello non lineare, questo
modello non ¢ rinormalizzabile nel senso usuale.

(*) Traduzione o cura delle Redazione.



