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Covariant Description of Polarization.

L. MIcHEL

University of Paris

1. - Description of one particle states.

We want to deseribe o particle of mass m, spin j. For this we use the
irreducible representation [m, j] deseribed by WignTyax., The wave funetion
2(p) has 2j+1 components. The Q(p, A) are 251 by 2j-+1 unitary matrices,
such that

(T, ) (p) = explipal Q(p, D) z(A1p)

x(p) restricted to p®= m?* span the representation space of [m, j] which is

called the Hilbert space of the particle states. or a fixed p, 4(p) span the
Hilbert space of the polarization states for the particle of energy momentum p.

2. - Mixtures of states.

[f ¢ is any vector € & one can construct the projection operator on the

normalized state [¢o (Ygplg = 1)
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Now consider an incoherent mixture of orthogonal states ¢, each with
probability ¢, (0<"e¢, < 1; e, —=1).
The average value of an observable A over this mixture is:

(A =Se g Alp> = e, Tv AP, —=Trd Y e, P =Trdg = Trod,

where we define
0 'E) . Vl' P o = CR— * .
(SO Z P" Tn’ 1 O Z ('" o 1 Q o ’

s}

o is called the density matrix of the mixture.
Note that for a true mixture Tro"< 1 for each integer »n > 0; p"=0
for a pure state. V

3. — Pure states and mixtures of polarization states.

We consider particles of non-vanishing mass. In the rest system:
p = (m, 0,0, 0) there are 2j-+1 independent states. Therefore, under a ro-
tation
r 1 iy
9 —> 9 — D(])Q_D(J) ’

where D@ is the proper rotation matrix:
r @) o
Qwﬂ - Danl)ﬁr Q619

which means that the elements of p transform like the components of tensors
under DY @ D9. Since DD~ D®; DV @ DY~ De £ De-v 4+ DO, which
means that o can be written as a sum of irreducible tensors of ranks 0, ...
up to 2j.

Since space inversion is known to commute with all rotations, by Schur’s
lemma, it is represented by a multiple of the unit matrix (exp [ix]); thus DD
is invariant under space reflection, therefore the irreducible tensors are even
under space reflection (e.g. one has a scalar Tr g, a pseudovector...).

In order to describe a beam of particles one can normalize ¢ to Trg=
the intensity of the beam instead of unity: the beam is composed of particles
which have all been prepared in the same way, so that one may consider that
all particles in the beam are described by the same density matrix, the ¢,’s
being now the probabilities for finding particles in a given pure state. The
use of a density matrix allows for the deseription of a system, the knowledge
of which is incomplete.

Spin §:

DB ph DO L D
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The polavization state is deseribed in terms of a sealar and a pseudo-
vector S:

4. - Relativistic description of polarization.

As we know how to transform y by any Lorentz transformation (see WiGHT-
MAN's lecture). (When /1 is in the little group A, isomorphic to the rotation
group, for mass 5 zero, one has exactly the ordinary published accounts of
« non relativistic theory ».) The transformation law for the density matrix is:

o' (p) = Qp, D) oA p)Q*(p, A) .

Brample.  Scattering of two particles: let o (p,) @ 03" (p,) be the density
matrix for uncorrelated initial particles: after the interaction the density
matrix cannot in general be written as a tensor product of two density ma-
trices, that is to say that, although the outgoing particles may not be indivi-
dually polarized, there may be some correlation between their polarizations:

t.e. may be Prob (D = Prob (%), Prob @) = Prob (J)’) but Prob (I g) E
(3 ‘ ) ’
# Prob (1, o)

5. — Particles of vanishing mass and finite spin.

The little group is isomorphic to the 2-dimensional Euclidean group. First
of all one shall not consider the translations of this group since we want a
finite spin; the remaining of the little group is then isomorphic with the group
of rotations about p and reflections through planes containing p, that is to
say the space group of diatomic molecules:

D> Dy~ Dy + Dy + Dy

which correspond, to the well known classification %, 7, A, @, ...

D, (scalar) corresponds to Tr o and describes the degree of polarization,

D, (pseudoscalar) describes the circular polarization (helicity),

D,; (two dimensional vector i.c. an azimuth angle) describes the direction
of the transverse polarization n (n-p— 0, n2=1). Tt can be written co-
variantly p*= 0--p-n, n? = — 1; this n is defined modulo a component along
p, i.e. nfoap~n.
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6. - Representation by means of the Poincaré sphere.

Poles P represent pure circular polarization: &= 4 1.

Equator F = transverse polarization. Any point of the sphere is of cl-
liptical polarvization — 1 < OG — &< 1, OM? — —n2. Pure state i.c. totally
polarized & —m? = 1. Partially polarized state with degree of polarization #:

0 <29 == '\/§2~—n* < 1. Center of the sphere — unpolarized

A, light.

¢ Exercise. By Aed, (little group of p) the Poincaré
sphere rotates around the axis of poles.

£ ° This is quite different of the case m =0 spin 4 where

there is also only 2 linearly independent polarization states,

~ but where by AeA,, S can be transformed in any S" of
Fig. 1. same length.

7. — Infinitesimal approach.

We shall now revert to the study of infinitesimal generators of the Lie
algebra:
[Pp P,,] =0,

[]l/[/u!’ ]‘[g_m] - i[l(]/lQM;’rI—gl‘Q]‘[/ld——-(//lQ M9v+ yvaZl[,ug] ’
[Pm ]”,w] = i[.‘/zﬂpu—”g;_.rpﬂ] .

The P’s and M’s are hermitian operators: as we saw they generate the
envelopping associative algebra. The mathematician looks for a maximal abe-
lian subalgebra.

The physicist has the same reflexes, but will call it a complete set of com-
muting observables.

We know already that P*= P P* and W? = W W*# belong to this set
(W, ==4&""P M, ) since they belong to the center. One has

LBy W] =0, but [W,W]——i#ePW .

Hence one can choose the four P, and W2 and one W,. How to choose the
last one « covariantly »? We shall now study a basis adapted to particle states
of given energy momentum: i.e. (P"-- p*e R, p*=-m?). To every such point
p* of the spectrum of the Ps there corresponds a Hilbert space of polari-
zation states. Consider now the restriction of the preceeding operators to this
Hilbert space:

W pH
Pt — pt,

[V 14 Mo 1 o pvoo
WH — k= Leiroo P M, .
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[99] COVARIANT DESCRIPTION OF POLARIZATION 5

Consider an ortoghonal set of four-vectors: u'®-u'” . g*%:
(If m #0 choose p/m, n;, n,, ng; then n, are space like p)

Then let 8= W*n("; then W, g N8Vnf = 8@y .

3
When m 0, W23 S0l because Wp, =0
i=1

1=

3
W2 WAW, = — 3 o

i1
write now (89 =S. The commutator of W.’s vields
L A

St N
m’ m

. Nk
8’]70 .

m

which is to say that the little group is isomorphic to the three dimensional
rotation group: hence

W2eo — 82 = —j(j 4+ 1)ym2 .

Take furthermore any nen-p= 0, then W-n has eigenvalues — j << m < - j
Thus we can choose for the center:

P,(P,P" = m2), w2, W-n.

8. — Mass 0 case; p*= 0.

The only difference from the previous case is that one cannot choose an
orthogonal basis which includes p. We choose a time-like vector t and com-
plete it with mn,, m,, ap—t to form an orthogonal basis U¥. Writing
8@ = WU, the condition P,W’=0 yields

NO L S® = (write W, = S™UY) .

Furthermore
W2 — N2 __ z (AS'i)z e N2 S@e |

i

The commutation rules for the N's are found to be
NOH N | L g'(m
IA.‘ y 4 } - ;‘ ’

) i
[b’“", N(:n] = —Sm
“ o

[S(‘.‘), S(l)J - (’)’
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which characterizes the Lie algebra of £,. This Lie algebra is isomorphic to
that of the Euclidean two dimensional group: S®, S® stand for the trans-
lation generators whereas N stands for the rotation generator (rotations
around p).

Two cases must be distinguished:

W2 5420  which corresponds to the infinite spin case.
W2 00 (SD)2 == (S@)2 == 0, q.e. since (SM)* = §O; S© - S0 (),

The only generator left is S - — SO it defines an abelian group.

9. — Conclusion.

We have characterized the state of a particle of momentum p, mass m
(7%= m?), spin j (W"‘m‘::—mzj(j—kl)) by means of a polarization operator
Wen, where »n is a unit vector orthogonal to p. The cigenvalues of W-n are
« magnetic » quantum numbers: —j <<m <+ j. ’

In the zero mass case, only two polarization states are available: m == 4§
these states have opposite helicities.

FEramples. Spin .

Consider n*=—1, n-p=0.

The projection operators on states for ¥ njm = -+ | are 14 ((2W-n/m)/2).
This is the density matrix of the pure state. More generally, we have seen
for the density matrix

1—{—2(;9%’5 1+23 ¢icf

P == .; where [O'i, Uj]:: ?:{':ijko-ko
Z e
Here
. WraY  Weno
g° = f—

m m
as we have seen.
Hence the most general density matrix, if we call 3 ¢n®s, is (14 (2W -s/m))/2
where the four-pseudovector s is such that 8- p=0, 0 < — 8= (¢’)? = (degree
of polarization)? < 1. ‘

10. - Spin j.

The projection on the state polarized along n with polarization (—j <\m <(j) is

i
('(m) H (W‘n - ;,) == l"‘_ﬁj (W‘ll) ,

AFEmM fm ]

where (') = (— L) —m)!(j+m)!
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[t is a polynomial of degree 2j in W-n.
More generally we have seen that the elements of the density matriz can
be linecarly combined into,

1
.‘,"" + z @ di+ z AN EES z @RS LTIk A L

-~ tik

with [J¢, Ji] = igvkJk and where the tensors ¢f, ¢¥, @¥* transform under the
little group (isomorphic to 3-dimensional rotation group) as Dy, Dy, ..., Dy;.
Hence the most general state of polavization will be covariantly described
by the density matrix,

1 2 A R : o o g

9 11 sy, Wb s, WIWE s JWEWEW sy, WA... W7, 2j indices.
where ¢, _ is a totally symmetric tensor such that prs, =0, ands; " =0
and other conditions on s, s fixing the polarization degree.

11. - Application to Dirac theory, mass -~ 0.

The Dirac amplitude u(p) satisfying the Dirac equation (p — m)u(p) =0
is transformed by inhomogencous Lorentz transtormations (a, AELT)

(U(a, A)(u(p) == exp [ipa]S( (A)U(A ),

where N is a four dimensional representation of the homogeneous Lorentz
group L. The U(a, A) is a unitary operator in the Hilbert space of the u (p)
with the metric,

1}
Jln}(p)u(p)[d!u)m .:-j]u p)u I(l"’l ..... ﬁu ) Ay u(y j ‘ )0

m

(The integration is over the hyperboloid p*= m?*> 0. The adjoint spinor
wt — A where the matrix A is defined by A* = A, det A==1. Aprd-t- — y*
then Aiy® is definite positive and is generally taken to be one.)

The infinitesimal operator i}  is obtained by derivation of (U(0, A)u)(p)
at the identity, as shown in Section 4. We obtain

1 1 G G
.J[/“, - '::)'()'/“, F; (]'/z ’\E}t’ — Dy 0 /1) ’
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where o = (1/2i)[9", y"]. The two terms correspond to the spin part and
orbital momentum part, the last part does not give contribution to W

We shall compute the restriction of W on the (two dimensional) Hilbert
space of polarization for energy momentum n

u/l o %El,uvop“ ‘Mrg - ,igiux'eo-wp[‘ - éyso.)ﬂp#

(computation of WAW, yields w?=— $m?=—j(j+1) m* as expected). Now
Whn,—=W-n=}y*c"n,p,= yiy°np.

We check that (2W -m)/m = iy*n(p/m) has square 1 and }(1 +iy.s(p/m)) pro-
ject the solution u(p) of (p—m)u(p)=0 onto the u(p,s) Dirac amplitude
for the state of energy momentum p and total polarization along s. Taking
Aiy°, the projector

1/ . p y° 1 . i°
P( s):—(l—{—zf‘s—«)( + m) = — (L4+#pss)(p+m)
P8} =g\ gy P e S P
is hermitian, and projects any Dirac spinor onto the spinor u(p, s). Nince it
is a rank-one projector (Tr P=1), one has therefore

Paﬂ(p7 8) = U, (P, 8) U 5(Py 8) = u(p, $) U (p, s) = P(p,s) .

We have therefore explicitly constructed the density matrix of the pure
polarization state p, s. For the general mixture 0 < —s*< 1 is to be added
to s-p=0. _

We can choose for basis of states of polarization u(p, es) with &= 4 1.
Then any state vector is of the form > x.p)ulp, es). (Fo‘r a given p; more

&

generally, there can be an integration over p.)

The y,(p) are those already studied at the beginning of V. We can there-
fore describe covariantly to our convenience the polarization states of spin 1
either by a two by two density matrix

00, (P) = 1.(P) X, (P)

or by the four by four density matrix P (p, s).
The formula containing all the correspondence is (BoUcHIAT and MICHEL:
Nuclear Physics (Feb. 1958)), using the usual Pauli matrix representation

with 7, diagonal, ((r,),, = elements of Pauli matrices)

i

_ 1 . ‘ )
U, (py qn®) g (py en®) = ~ (‘1 + iy (2 n‘”(rl-)e,,))(p -+ m) )f" .
4 i |
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[103] COVARIANT DESCRIPTION OF POLARIZATION 9

Hence, any field theoretical computation of polarization effects can be made
covariantly and reduces to trace computation, although it is however possible
to describe the computation in terms of the 2 by 2, o, , density matrices.

12. - Case of m — 0.

We do not explain here the limiting process given by MicHeL and WIGHT-
MAN, but indicate only the result:

1 7a)0
P(py 5, &) = (L+iys(s + £)p ‘Izz);"ml ,

where & 8 have already been defined. We recall that

0<&—8<1, Pr=ps—

13. — Application to the Bargmann-Wigner theory of particles of arbitrary spin.
(BARGMANN-WIGNER: Proc. Nat. Ac. of Sei., 34, 211 (1948)).

We obtain, according to BARGMANN and WIGVFR, the theory of particles
of spin j=n/2 from the Dirac theory of spin § by the following « transport
of structure ».

Consider instead of the four dimensional Dirac spinor space &, the n-th
tensorial symmetric product V€4, that is the space of functions U, 4 (P)y, cOm-
pletely symmetrical in the «, (i.c. invariant by any permutation of the indices
% ... %,), and satisfying the equations:

2 (PR =) U (D) = (PP — m)u(p) = 0,

[ASTYe 773
where p® — iyPp# and

(k)
' =0 L e / v L e '
(//L )\,,,.an.\\'r..nn Y10 Xy ka—x(/ /:)aer;‘. C &n O

that is, in tensorial notation

y;t’” =1®10..0 Vu® o ® 1 (n terms in the produc 't),

k-th pluco
The u, . (p) are transformed by the inhomogeneous Lorentz group ac-
cording to
n
A\ — . 1 o J( -
(lT<a9 /1)”)\".,/?,‘(1') Z (}‘\p [“‘f\‘lp a][ ‘\(”)]m.‘x,,.{},.A./Enuﬁ‘...ﬁn(/l 1p) y
#i

yvh(xl-(} ,‘\;: ‘\1(11) e A\’(Al) v\‘\ ves 1 “'IIIGS N ‘\:3 Aq([l).

153
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(We leave to the reader the case of a, A€ £t as we did for the Dirac case.)
This is a unitary representation of 2% in the Hilbert space of scalar pro-
duct (here A =iy° and Aiy®=1)

o . . 13
(wmmmzﬁMM®wmm&ﬁ-fpmmmﬁ“:
H

xm

ds
=an%wWMmmwﬁf

*y

In a fashion analogous to the Dirac case, we find for the infinitesimal
operator
1 0 0
M » (kiz - ~
u zz 15 + ( apv 2 ap”) I
where

(ky ___ (k)

G/H' - i[?’ 125 y(k)v] *

Indeed the derivative of @S at the origin is

F1)©1..0l)+ (10 (1) ®..01) 4.+ (16..08(1) =38,

k
Hence

V" %8}”1917” za(k)ve — z %y(k)s (k)App'u

We leave to the reader to form the projector P,;(W-n) already defined.
Let us just conclude that the polarization states are covariantly described

by the set of 2j tensors

835 Saur oy Spgy o

which are the expectation values of the products of 1 to 2j, W, just computed.
For pure states deseribed by the amplitude u(p)

836 = W(P)W,... Wu(p) = Tru(p) @ u(p)W,... W,.

For the misture described by the density matrix P, . . (p)

s, = TrP(p)W,.. W, .

1536



