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We made a complete study of the relations between the three cross sections and the three sets of spin
rotation parameters P, A,R for three reactions related by internal symmetry via two channels,

1. The transition matrix 7 of a reaction in-
volving spin 0 and spin 3 particles:

0+3 -0 +3', (1)

can be written f + igg- n where f and g are respec-
tively the non-spin-flip and the spin-flip ampli-
tudes. The most usual reactions of this kind (e.g.
7N, KN) are going through two channels of iso-
spini; hence, for three reactions which differ
only by the isospin components of the particle
isomultiplets, the transition matrices satisfy a
linear relation:

3
az:l yaTa:O ’ (2)

where each y, is a homogeneous fourth degree
polynomial of Clebsch-Gordan coefficients.

In this letter we derive all relations imposed
by eq. (2) on the cross-sections and on the spin
rotation parameter A, P, R [1-3]. It is convenient
to consider y, fy and v, £, as the components of
an element |@) of a two dimensional Hilbert space.
Then, denoting by o, the cross-section, one has
(o is the set of the three Pauli matrices)

M, = el = 3s(1+8,0), (3)
where 9

S, = <a[a> = yaoa> 0, (4)
and

1 Those reactions commonly go also through two chan-
nels of U spin and V spin, and in some cases, such
as 77p*, through two channels of the full unitary spin.
The considerations of this letter can be extended to
these invariances and to the cases when the 0-spin
particles are replaced by unpolarized particles.

42

¢, - s%(ago[@ - (AP, R) (5)

i.e. the components of § are the spin rotation
parameters of the reacfion @. They satisfy
2 2 2 2
bad — —
g = 1A+ Py *R,- (6)
The vector { will be called the spin votation
vector.

2. From now on, the three indices «a, 3, v
represent any permutation of 1, 2, 3. The linear
relation on the vectors ]a), corresponding to
eq. (2), is

lay+ |B)y+lyv)=0. ()

Each |a) with spin rotation vector &, has an
orthogonal element ]al) with same s, and spin
rotation vector - é’a. The scalar product of eq.

(7) with {a*| gives
@) = ). ©
From
w2 L .
|<ai“3>] = tr%iMﬁ = EsasB(l-ga. 5,8) _
9 (9)
:trMaMﬁJ_: I(al‘B-L>l ,
and from eq. (8) we obtain
SQ,S,B(I'ga'g'B) =%H?O, (10)

where H is a conslant independent of a, 3, y.
Since the { have unit length, we can write:

* Work partially supported by the Spanish "Grupo
Interuniversitario de Fisica Tedrica",
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0 = X ¢ .- =1, 11

(5,%5,5.) (1)

with the use of eq. (10), eq. (11) is equivalent to:

S )ZH-Z

SasB ) +HJ‘<(12)

0 <HS=< -A(sa, SB’SV) < 4(

where

As,, Sg» sy) = si + si + S}Z/ -2s, S4° 2 838, Zsysa
(127)

When H = 0 and s, > 0, the last inequality in

eq. (12) is always satisfied; the equality holds

only when sg = sg = S, and 83 = 0, = Oy = 37,

where 6,5 is the angle between §, and §g. Note

that

= < =& -F .
0% 6, < w5 63 (13)
In the following we will say that § is described

equivalently by a unit vector or a point on the
unit sphere.

7, Ccosf

3. Egs. (10) and (12) are sufficient for the
study of any experimental situation. For in-
stance:

(i) Ome knows only sy, sg-

From 0 < H < 43085 andBfrom eq. (12) the
cross sections gy = sayaz must satisfy:

Alsg, SB’Sy) <0. (14)

This is the well-known condition that the three
Vs, must form a triangle. This condition gives

the bounds for s yt

’sy—sa-sﬁ( <2Vsasﬁ. (14"

(ii) One knows sg, g i:a’ QB.

Better bounds on s, are given by eq. (12):
-A = H; they are (15)
coss %s

- e - < 9L TRy
]sy S SBI< 2 zsoz?B(Hba SB) 2\/3015,8
This condition (15) is always stricter than condi~
tion (14'), except in the case § = §g then H=10
and §,, = § = §p; this happens when the transi-
tion matrix of one of the two isospin channels
vanishes.

Eq. (15) can also be written in the two equiv-
alent forms

1 '
lcos wozBI <cos 36, (15Y)
1 Y "
0= 30, wy<T-34,, (157)
where w,; is the angle between the sides Vs, w/s_B

of the triangle defined by eq. (14).
(iti) One knows sy Sg: Sy satisfying eq. (14) and
a
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The eqgs. (15) give the domain of § ,; it is, on
the unit sphere, a circular portion whose center
is § 45 its aperture is fqg such that
0 < eaﬁ SMin(zwaB, 2(”’“’06» ) (16)
Note tl}at there is no restriction on 901,'3 when
Wqp = 27

(iv) One knows sq, 31 Sy satisfying eq. (14)
S §B salisfying eq. (15).

The point on the unit sphere which defines §
must be, according to eq. (10), at the intersec-
tion of the two circles whose centers and aper-
tures are:

Sqs = €08 (L= (sy/s ML= 5 5,05 (17a)
= — -1 - - F .
55 , 9}3’}/ = cos” (1 (sa,/sy)(l Sa bB)) . (17p)

That these two circles intersect is a consequence
of egs. (14) and (15). In general, they have two
common points, representing two distinct values
of & . These two values become equal when the
equa)iities hold in eqs. (15) and (15").

There are two exceptional cases when the two
circles coincide; this happens when they have the
same axis i.e. § =+§, Eq. (10) shows that
when goz = QB the two circles reduce to one point
ie. Lag= gﬁ = §y. When Sa+53=0, eq. (15)
reads s, = sy + sg which, with eq. (17), yields

y
cos eaﬁ = (sa - sﬁ),"(sa + Sﬁ) = - cosh (18)

By
This completely defines the common circle.
Experimental situations are more varied than
these four typical cases. For example:
(v) One knows: sy > sy and Sa
The triangle relation requires 0 < wg, <
< Sin'lx/gg& and from eq. (15') this yields
for ;7:
(sa - Zsﬁ)/’sa < ;y';a . (19)
Eqgs. (10) and (12) are also sufficient to deal
with experimental data with partial information
on some of the spin-rotation vectors (i.e. not all
their components are known); see ref. [3].

4. For each one of the three reactions, the
measurement of the cross section and of the spin
rotation parameters determine the scattering
amplitudes f, and g,, up to an unobservable com-
mon phase factor exp(ig,):

vo f, = explio ) [ss 1+ RYVZ

1 s (20)
')’aga - exP(i(’pQ') [E sa(l - Ra)] exp(ixa) ’

with

X, - tan” Y- P/A) . (20")
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We consider the angles Pap defined by
(alB) .

exp(icpaB) = Tels (21)
They satisfy the relations
(/7_16 + ('DBOI =0, (223)
exp{ilg ., + 9y )} =

B (22b)

L) ';Bf gﬁ' Sy * 6y bat HEX 5y )
[2(1+5, ;B)u + gﬁ-gy)(l +gy- ) 1/2

and they are related to the relative phases
q)B- Py of the amplitudes by

(-R)(1-R)) (23)

Cap = 9 @ +Arg[1 +V(—lmexp{1 Xg™X )}}

Let us show that by using the isospin conservation
condition (3) one can determine the angled @gg
and hence that the phases between the amplitudes
of different reactions ave observable. Eq. (7) can
be written

-l = |ey+ [B).

Multiplying this equation by its Hermitian con-
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sygy = 5,6, " Ss gB + 2(30133)1/2 COS ¢ iaB
1/2 2 (27
+ H)/“sin (paﬁkaﬁ
where H is defined in eq. (10) and
i }- ' ;.B l; - ,gaix gfg_ (28)
lba S 15 55l

If the cross sections s,, sg, s,, and the spin
rotation vectors 54, §g are’known, eq. (26)
allows to determine cos @g3- U furthermore £,
is known, eq. (27) yields the sign of smqoaB,
indeed the scalar product of eq. (27) with
IA(%B gives
s1gn(sm(paﬁ) = sign( Qa X gB-gy) . (29)
Note that all solutions to the problems settled in
section 3 can be obtained from egs. (26) and (27).
For instance, if one knows sg, g, 5o @nd &3,
these equations show that the va?ues of Sy and
;y depend only on one parameter which 1s the
angle q}aﬁ'
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jugate we obtain, when* tr MG/MB + 0: cial help.
-1/2
My Ma + MB + (XQB) X (24)
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