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Relations Between Internal Symmetry and Relativistic Invariance

Loves MzcHEL*
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The problem of combining relativistic invariance and internal symmetry is reviewed, and a critical
evaluation of very recent papers on this subject is made. It is proposed that the Poincare group I' is not
a subgroup of the group E of invariance of a relativistic quantum theory, but is the quotient P= E/S, where
S is the internal symmetry group. Pertinent mathematical results are given.

~ 'HERE have been recently' ' several papers giving
theorems on some reasons for the impossibility

of "mixing" the connected Poincare group P with an
internal symmetry group S. Indeed, since relativistic
theory is invariant under P and since there seems to be
an internal symmetry group 5 (5Us being favored, of
course) for strong interactions, one cannot avoid the
question of how to consider P and S together in strong-
coupling physics.

It may seem natural to consider P and S as subgroups
of a larger group G, and this was done in the quoted
references. The group G could be very large. In the
quoted papers, G was taken as the smallest possible
group compatible with the condition that no element
of S can be identified with a Poincare transformation.
We give a necessary and sufficient mathematical condi-
tion for such a choice. It implies that every @&6 is
decomposable into a unique product x=sp with s+5
and p&I' (or in a unique way @=p's' with s'&5 and
p'&I').

More physics should be injected to establish some
property of the group G. The very interesting basic idea
of Ref. 1 is: Although the internal quantum numbers
due to 5 (think of 5Us) are Lorentz invariant (the
particles in a multiplet have the same spin), they may
not be translation invariant, since the particles in a
multiplet have different masses and the mass is a func-
tion of different quantum numbers of 5 (i.e., total iso-
spin and hypercharge). However, McGlinn proved' that
if a/l infinitesimal operators of S, a semisimple Lie
group, commute with every infinitesimal operator of L,
the homogeneous Lorentz group, then they all have to
commute with every infinitesimal operator of T, the
translation group. In Refs. 2-4, the authors sharpen
this theorem ands give several theorems of the same type,
with a similar negative conclusion for "mixing" S and P
(i.e., obtaining noncommutation of some of their ele-
ments, which might give rise to relations between quan-
tum numbers of 5 and P, as, for instance, a mass
relation).

The object of Sec. I is to prove a mathematically
trivial lemma giving the weakest possible hypothesis
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which yields this negative conclusion. This lemma is
much stronger than all theorems in Refs. 1-4. For
instance, a sufficient assumption for the McGlinn
theorem is that there is ore Lorentz transformation A

such that the commutator sAs 'A. ' is a Poincare
transformation for erery s+5.

In Sec. II we try to evaluate the physical implications
of these McGlinn-type theorems. In fact, the require-
ment that the Poincare group be a subgroup of the
invariance group E of a relativistic quantum theory is
not a reasonable physical assumption (see, however,
Ref. 14). Indeed the existence of half-integer spins
shows that I', the covering of P, has to be considered,
and P is not a subgroup of I'. In a formalism with a
group 5 of unobservable transformations (e.g. , gauge
group, isospin or internal symmetry group, group of the
arbitrary phase in the classic Wigner analysis of ray
representations) this arbitrariness of degrees of freedom
of the formalism appears in the following fashion: The
successive application to the formalism of several
Poincare transformations whose product is the identity
Poincare transformation will, in general, yield an un-
observable transformation. We show that the mathe-
matical analysis of this situation is: The group 5 is
an invariant subgroup of E, the invariance group of the
formalism, and the Poincare group P is the quotient
E/5.

In Sec. III, we give pertinent mathematical results
for the problem of finding E, given S and P. For the
cases where the mathematical solution is known, the
only physically interesting results are summarized by
the formula (1).

It should be acknowledged that this last point of
view for the relations between relativistic invariance
and internal symmetry, although dificult to discard in
the present stage of relativistic quantum theories, does
not give any help to the very worthwhile purpose of
understanding the nature of broken symmetry.

I. STRUCTURE OF THE GROUP G=S P

Given two sets H and E of elements of a group G, we
denote by O'. E the set of elements of G which are pro-
ducts of one element of II and one element of E(in the'
given order). A well-known lemma is:

Lenima. If H and E are subgroups of a group and
II-E=E.II, then II.E is also a subgroup of this group.

Proof: Let tr, P, y, gH and a, b, c, gK The
hypothesis implies: Given a pair Pb, there is at least a
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pair P', b' such that bP =P'b'. Given na+H E,
(na) '= a 'n '= (n ')'(a ')'gH E; furthermore, given
naandPb+H E, thennaPb=nP'a'b+H K; hence H K
is a group.

Given x+H E. Is the decomposition x=na unique?
I et us assume two decompositions: x= o.~a~= n2a2. Then
ns

—'n, =a,as—'gE and ns-'nr&H; so the assumption
Hn E={1)implies n& ——n&, a& ——a&., hence the uniqueness
of the decomposition.

Physically, the elements of 5 and P are given different
names and are distinguished. Moreover, if one assumes
that S.P=P S, that is, that the product of a Poincare
transformation by an internal symmetry can also be
obtained by making first an internal symmetry, and
then a Poincare transformation, the group S P=P-S
is the group G itself and any element of G has a unique
decomposition x=na, n+S, a+P. Let H and E be
subgroups of a group G with HA E={1)and H E=G.
For a pair x, y of elements of G, the relation x 'y+E
(or xy 'QH) is an equivalence relation whose classes
of equivalence are called "left cosets of E" (right cosets
of H); they form a set H' (E'). There is a one-to-one
correspondence between the elements of the sets B and
H' (E and E'); Every element of H (E) belongs to a
coset H' (E') and is called a representative of this coset.
Left (right) translations on G are permutations of the
left cosets of E (right cosets of H); indeed x 'y&E
(xy 'PH) implies for every s&G, (sx) '(sy) EE
(xs(ys) 'QH). It is also easy to verify that the permuta-
tion corresponding to the element ss' of G is the product
of the permutations generated by s and s'. This estab-
lishes a homomorphism b' (k'):

G ~ 5 (H') (G~ S (E')),

where tP (X) is the permutation group of the elements of
the set X. The one-to-one natural mapping between H
and H' (K and E') transfers this homomorphism to

G~ o (H) (G~ tP(K)).

These well-known properties —summarized, in mathe-
matics by the statements: H' (E') is the G-homogeneous
space G/E (H(G) make t—he proof of our main lemma
very simple.

Lemma: Let H and E be subgroups of G such that
every element x&G is a unique product x=na, n&H,
a+K If for one a of E and every n&H, n 'an&E, and.
if E is the only invariant subgroup of E containing c,
then G is a semidirect product G= EgH with E as in-
variant subgroup. (Of course one can permute the role
of E and II, a and 0,, left and right, in order to get a
syntactically symmetric lemma. )

Indeed, n 'an+E implies that n and an are in the
same left coset of Eand this for all n+H'. So a& Ker h,
the kernel of h, which is an invariant subgroup of G.
Moreover, Ker hAE is an invariant subgroup of E

which contains a; from our hypothesis it is E itself,
hence E=EAKer heKer h. This implies, for every
b&E and every s&G, that s and bs are in the same left
coset of E, i.e., s 'bs+K. This proves that E is an in-
variant subgroup of G and, by deinition of the semi-
direct product, G= EXII.

Let H=P, the Poincare group (P= TXL, the trans-
lation group T being the only proper invariant subgroup
of P). Let S=E be any group. In the physical interpre-
tation, 5 is the internal symmetry group. Instead of the
requirement' ' that elements of 5 be Lorentz invariant
(i.e., for every s+S and everyAQL, san=As), ourlemma,
worded for P and S groups, yields the minimum
hypothesis to obtain the conclusion of the theorems of
Refs. 1, 2 and Theorem 1 of Ref. 3.

Lemma for P. Let S be any group and S and P sub-
groups of G such that any s&G has a unique decomposi-
tion into a product s= sp, with s&S and p+P. If there
is ore q+P which is not a translation and such that for
all s&S, s 'qs&P, then G is a semidirect product
G=PXS.

Let us make precise which semidirect product is
meant by G=PXS. For every group R, the group
IntR of inner automorphisms is an invariant subgroup
of AutR, the group of automorphisms, and the quotient
is AutR/IntR=OutR, the group of outer automor-
phisms of H. If G=E&(H, every element of G induces

(by inner automorphisms) an automorphism of the in-
variant subgroup E; this can be translated by the exist-

ence of a homomorphism G —+ AutK. The image of f is
the semidirect product f(E)Xf(H), since f(E)= IntE,
f(H) c OutE. In order to make precise which semidirect
product is G= E&&II, one has therefore to make precise

the corresponding homomorphism H ~ OutK (where
f' is the restriction of f to H).

The Poincare group has no center. Its group of auto-
morphisms is AutP = (PXZs) SR+, where the non-unit
element of the two-element group Z2 corresponds to
space symmetries; R~, the multiplicative group of the
real numbers, corresponds to the automorphisms
(a,A) —+ ( An)aof P (n is a real number, a&T, APL);
and means direct product. '

So the semidirect product G=PXS is completely

dered by the homomorphism S—+ Z2LSR~, or, since
I f

the image of f' is an Abelian group, by S/S' ~ ZsSR~,
where 5' is the group generated by the commutators of
S.Since T is invariant under all outer automorphisms of
P, the structure of G can be written more explicitly:
G= TX (LXS). By the (well-known to physicists)
Frobenius-Wigner method for the characterization of
unitary irreducible representations of semidirect pro-

' The direct product is a special case of the semidirect product
when f' is the trivial homomorphism. It might be worth remark-
ing that all algebraic automorphisms of the Poincarb group P
are continuous automorphisms of the topological group P. So
AutP given here is the group of automorphisms of P even
when its topology is neglected.
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ducts, one immediately establishes that physical repre-
sentations of G (for m~&0) are labeled by mass, spin,
possibly parity, and the invariants of Ker f' v S'. Hence
all masses are equal in a multiplet.

Theorem 2 of Ref. 3 and that in Ref. 4, are superseded
by the application of the lemma for S.

Lemma for S. Let S and P be subgroups of G such
that G=S P=P S and SnP= f1). If there is 00e
element s+S such that for all p&P, psp-'QS, and if no
proper invariant subgroup of S contains s, then G is a
semidirect product G=SgP.

If, furthermore, there are no nontrivial homo-
morphisms of P into OutS—e.g. ,' S is a finite group, a
compact Lie group, or a semisimple Lie group on the
real field (e.g., SUs)—then G is the direct product
SP. Of course, if one applies the hypothesis of the
lemma for both S=H, P'=E and S=E, P=B, then,
whatever the arbitrary group S, G=SP (generaliza-
tion of Theorems 3—5 of Ref. 3).

II. PHYSICAL DISCUSSION OF THE PROBLEM

I should like to emphasize 6rst that the knowledge
that G is a semidirect (or direct) product is not enough
for its physical interpretation. Indeed„ in the hypothesis
of our lemma, the position of the subgroups H or E is
not canonical (invariant with respect to automorphisms
of G); it is given by physical interpretation. To take a
very simple and historical example: Let II be SU2, the
isospin invariance group, and let E=Z2, the two-element
group generated by charge conjugation. What is the
group G=II-E generated by them? That Z2 has only
two elements implies SU2 is an invariant subgroup of G,
and since SU~ has no outer automorphisms, G is the
direct product SU2Z2. This structure of G does not
mean that charge conjugation commutes with isospin
transformations. And it is physically very important to
know their relations. However, the fact that G has to be
a direct product must also be interpreted by the physi-
cist; indeed, the element of G which is not an element
of SU2 and which commutes with every element of
SU2 has a physical meaning, namely, its eigenvalue is
the isotopic parity (often called G parity). "

To summarize: Physicists are not essentially inter-
ested in abstract groups (that is, groups up to an iso-
morphism) but in groups whose elements have names
which often distinguish them (even if these elements
can be transformed into each other by a group
automorphism) .

A second point to emphasize is that the hypothesis
that the Poincare group is a subgroup of the invariance
group of a relativistic quantum theory is unphysical.
Indeed the existence of half-integer spins shows that I',
the covering of P, has to be considered, and P is not a
subgroup of P. In a relativistic quantum theory with a
gauge group or internal symmetry group S (the elements
of S are essentially not observable), the plausible
physical requirement seems to me: Given some Poincare
transformations whose product is the identity, their
successive action on the formalism can be at most an
unobservable transformation (i.e., a gauge or internal-
symmetry transformation). In mathematical terms, that
means that E, the invariance group of the formalism,
is an extension of P, with kernel S, i.e., S is an invariant
subgroup of E and P is the quotient P=E/S. This is
just the case in the classic analysis by Wigner' of the
ray representations of P (then S is the group of the
phase). It has also to be the case when one uses an
algebra 8 of linear operators on a Hilbert space K for
describing the theory (e.g. , algebra of observables,
algebra of quantum local fields, von Neumann envelope
of the C* algebra of local operations by Haag and
Kastler'), and the requirement of relativistic invariance
is that P be a subgroup of the group of implementable
automorphisms of 0', (that is, those automorphisrns of 8
which can be realized by linear operators on K). Then
the bounded linear operators on 3'. which induce on 0',

an automorphism corresponding to P form an extension
E of the Poincare group (see, for instance, Ref. 10,
Chap. III, or Ref. 14), and the kernel S of the extension
E is the group of bounded regular operators of 8', the
commutant of 8 (i.e., 8' is the set of operators which
commute with every operator of 8). In all proposed
physical theories, 0', is a *-algebra; then 0," is a von
Neumann algebra, and one can restrict S to the group
of unitary operators of 0,".

So physicists are interested in the question, "What
is known about the group extensions of P~"

III. GROUP EXTENSIONS OF THE
POINCARE GROUP

What are the extensions E of P which have S as
kernel? The question we have already met, to make
precise which semidirect product was G=P)&S, arises
here again, in the problem of extensions: A homo-

morphism P —+OutS should be chosen. For some g
there might be no solutions. ""For the other nontrivial

Because, for those groups, the set OutS is at most countable.
If one considers only topological automorphisms, this is also the
case for any finite dimensional semisimple Lie group. On the other
hand, if G is to be a connected topological group with S as a topo-
logical subgroup, then for any compact group S we obtain the
direct product SP; see K. Iwasawa, Ann. Math. 50, 507 (1949).' L. Michel, Nuovo Cimento 10, 319 (1953).I am very grateful
to T. D. Lee and C. N. Yang for the great advertisement they gave
to this new quantum number fibM 13, 749 (1956), Footnote. 3g.
However, I disagree with them for having changed the name
"isotopic parity" into the unexpressive G parity.

8 E. P. Wigner, Ann. Math. 40, 149 (1939),and the earlier book
on group theory and quantum mechanics: English translation,
Group Theory and its App/ication to the Quuntum M'echanics of
Atomic Spectre (Academic Press Inc. , New York, 1959).

9 R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964).' For a mathematical criterion satisfied by the homomorphism
g for which solutions exist, see S. Eilenberg and S. MacLane, Ann.
Math. 48, 326 (1947)."L.Michel, lectures on the theory of group extensions at the
Istanbul Summer School in Theoretical Physics, July 1962 (to be
published by Gordon and Breach).
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homomorphisms g for which there is a solution (for
example the gauge group of quantum electrodynamics),
I do not know of any general results (see, however,
Ref. 12).In the case where g is the trivial homomorphism
(and we have seen a list of groups 5 for which the only
possible homomorphism g is the trivial one), the only
extensions of P by Suseful for physics" "are of the form

&-= (58P)/~s(~) (1)

where P is the covering of P; Zs(rr) is a two-element
group, a subgroup of the center of SgP, generated by
(n,o&), where co is the nontrivial element of the center of
P ("rotation by 2'"); and a is an element of the center
of S such that n'= 1. (For n= 1, E is the direct product
58P.) When P and 5 are considered as abstract groups,
it is proved"" that the E„of (1) are the only solutions
when the center of S is a reduced Abelian group, i.e.,
it has no nontrivial divisible subgroup (a group is
divisible if every element of it has at least one eth
root, for any e), e.g. , if the center of 5 is finite (as is
the case for SUs). For arbitrary 5, one can give a purely
algebraic condition ' which is satisfied only by the solu-
tions E of (1);this implies for the other solutions a very
pathological behavior which makes them unphysical.

If 5 is a (finite-dimensional) Lie group and E is
assumed to be a Lie group, then (1) gives again all
solutions. "The case where P is a topological subgroup
(see Ref. 15 for the precise topology required) of the
group of implementable automorphisms of a *-algebra 8
realized as operators on a Hilbert space is treated in a
recent paper of Kadison" (in fact, several groups are
studied, including the homogeneous Lorentz group I.
but not P; to pass from I to P one can use some results
of Ref. 13).Again, all solutions are given by (1).

~ When S is a Gnite dimensional Lie group and E is then assumed
to be a Lie group, it is natural to translate the problem in terms of
Lie algebra. From the semisimplicity of L and the last theorem of
G. Hochshild and J.P. Serre, Ann. Math. 57, 591 (1953), the only
solution is the semidirect product of Lie algebras. How to go back
from Lie algebras to Lie groups is explained and illustrated, for
instance, in Ref. 10, Chap. I."L. Michel, Nucl. Phys. 57, 356 (1964). There exists a
precise definition of equivalent solutions of the extension problem.
Solutions of (1) for diferent n are distinct, although. the different
corresponding E might be isomorphic (example: S=ZsZs).
Physically, the E are certainly to be distinguished. It is therefore
worthwhile to remark that the concept of inequivalent extensions
(which might happen to be isomorphic) is, in this case, more physi-
cal than the concept of nonisomorphic extensions.

'4 This case covers exactly Ref. 4. Indeed, although in Refs. 1, 3,
and 4 the authors give their theorems in terms of groups, they work
with Lie algebra. This is more physical and, of course, does not
exclude P."R.V. Kadison (unpublished).

CONCLUSION

Equation (1) gives a very general way of "mixing"
relativistic invariance with internal symmetry of other
symmetry groups of a relativistic theory. Although the
corresponding "mixing" is slight, it has to be physically
interpreted. One interpretation which has already been
proposed" is the relation "b+l+2j is even" for any
physical state (b=baryonic charge, i=sum of all lep-
tonic charges, j=spin).

When the same considerations are extended to the
complete Poincare group (including P, T, and PT) and
the charge conjugation C, there are many more exten-
sions by S, and their physical interpretation is more
subtle and richer. '~

Although the existence of an extension of the Poincare
group seems to be a feature of any relativistic theory,
this has no bearing on the nature of broken symmetries.
There does not seem to be much meaning in combining
directly a group of perfect invariance (as P) with that
of a broken symmetry outside the frame of an approxi-
mate physical theory where the partial symmetry is

supposed to be exact. If one could study the relation

between, say, the algebra 0', of the refined physical
theory (where the invariance S is broken) and the alge-

bra S of the approximate theory, where S is an exact
symmetry, then a relation would appear between

AutS & S~P and AutQ & P and this would be the rela-

tion between P and S looked for in Refs. 1—4. However,

up to now, physicists have been able to compare 8,

and S only in the framework of perturbation theory.
Although this approach is quite satisfactory, for ex-

ample, for the study of the breaking of isospin in

nuclear level spectroscopy, and although it has also

been useful for guessing the mass relation in SU3
multiplets, it is surely unsatisfactory for the latter
situation.
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