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The renormalization-group recursion relations are solved for the effective Hamiltonians relative to
phase transitions with four-component order parameters. For this value of n there are 22 types of
Hamiltonians which can be classified into two categories according to the action of their normalizer

Gz on the corresponding parameter space (Gz is the symmetry group leaving globally invariant this

space). In the first case, G~ generates a finite number of isolated fixed points whose characteristics
can be deduced from the detailed investigation of five Hamiltonians only. In the second category,
for which G~ is a continuous group, there are, in addition to isolated fixed points, continuous mani-

folds of physically equivalent fixed points (the dimension of the manifolds is either one or three). In
the search for a stable fixed point, the continuous manifolds can be ignored, while the isolated points
are related to the five former Hamiltonians. For n =4, it is necessary to solve the recursion rela-
tions to two-loop order. The only possible stable ones among the fixed points then arise from a split-

ting of points which coincide, to one-loop order, with the isotropic fixed point. Extending, to two-

loop order, a result recently established to the preceding order, we show that if a stable fixed point
exists, it is unique. For n =4, the stable fixed point has one of three possible symmetries: di-

icosahedral, hypercubic, or dicylindrical. Despite this anisotropy of the critical fluctuations, the ex-

ponents associated with any of the stable fixed points are identical to order e to the "isotropic" ex-

ponents corresponding to n =4. The cubic point is destabilized by any operator of symmetry lower
than cubic. The dicylindrical one remains stable with respect to certain anisotropies of lower sym-

metry. We examine the available experimental data in light of the preceding theoretical results con-

cerning the critical behavior and the thermodynamic order of the transitions. On the other hand, we

establish two general symmetry conditions relative to the stable fixed points determined by the
renormalization-group equations. The first one specifies group theoretically, for each value of n,
the possible symmetries G; of the stable fixed points. The second one formulates a necessary condi-
tion for the occurrence of an anisotropic stable fixed point: The normalizer G~ of the considered
parameter space must fulfill the condition G~L:G;* for one, at least, of the former G;* groups.
These rules are shown to be very restrictive for n =4: On the basis of symmetry the lack of a stable
fixed point can be asserted for 10 Hamiltonians out of 22, without solving the fixed-point equations.

I. INTRODUCTION

In the framework of the renormalization-group (RG)
method in reciprocal space, the critical behavior at a con-
tinuous phase transition can be investigated by means of
an effective Hamiltonian density restricted to the n com-
ponents of the transition's order parameter. This density
contains a fourth-degree polynomial expansion (FDPE) of
the order-parameter components, which is identical to the
FDPE involved in the Landau free energy of the transi-
tion.

With respect to the linear orthogonal transformations
acting in the space carried by the n components of the or-
der parameter, the FDPE is characterized by a symmetry

group, a subgroup of O(n). This symmetry is usually
higher than that of the order parameter itself. As a
consequence, for a given value of n, the same FDPE can
be common to a wide variety of transitions. Thus, for
n =3 only two types of FDPE are of interest. They pos-
sess respectively the isotropic O(n) symmetry and the cu-
bic symmetry. Likewise, three FDPE exist for
n =2. For these values of n., even a further increase of
the symmetry is reached in the critical behavior, as the
critical fluctuations erase the anisotropies and generate
dynamically the O(n) symmetry at the critical point. 7

For n ~ 3 the situation is more complex. First, for each
value of n, there are many distinct forms of FDPE's, and
these have only been partly enumerated. ' On the other
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hand, among the already identified FDPE's, only a few
have been examined from the point of view of the RG
method" ' (generally the ones corresponding to the
highest symmetries). Finally, in the cases examined up to
now, the results show that, in contrast to the case n (3,
one never has complete erasure of the anisotropies by the
fluctuations. Depending on the form of the FDPE two
possible situations have been pointed out "', (i) A con-
tinuous transition is possible and its critical behavior will
reflect the preservation of some anisotropy (perhaps less
asymmetric than that of the considered FDPE), character-
ized by a subgroup of O(n). (ii) The effect of the fluctua-
tions can be interpreted as the production of a first-order
transition (conjectured to result from the lack of a stable
fixed point).

As noticed by several authors the occurrence of either
of the two former situations depends entirely on the sym-
metry of the FDPE. In particular, it has been suggested'
that one should be able to elaborate a simple symmetry
criterion for inferring the production of a first-order char-
acter by the fluctuations. Such a criterion would com-'

plete the well-known Landau rule relying on the presence
of a third-degree term in the transition's free energy.

Along these lines, it had been thought that the relevant
symmetry indicator could be the number of linearly in-
dependent fourth-degree invariants contained in the
FDPE. More precisely, it was tentatively suggested' that
a first-order transition would arise if the FDPE contained
more than three independent terms.

Recent investigations by Michel' and by Grinstein and
Mukamel' have infirmed this conjecture. These authors
have displayed examples of FDPE's containing an arbi-
trary number of terms and nevertheless compatible with a
continuous transition. Thus, if a symmetry criterion
predictive of first-order transitions exists, it has to rely on
another common feature of the FDPE's than their num-
ber of independent terms.

In the aim of clarifying the possible existence of such a
criterion, it seemed useful to undertake a systematic inves-
tigation of Hamiltonian densities for n )4 by the RG
method.

In this paper we examine the case n =4. Its relevance
derives from the following considerations.

(i) It is the only case with n & 3 for which a complete
enumeration of the possible forms of the FDPE has been
performed up to now.

(ii) A variety of situations is expected to be encountered
since 22 distinct FDPE s exist with as many as 11 in-
dependent terms.

(iii) From the point of view of the RG method, it corre-
sponds to a borderline situation for which the working out
of the recursion relations of the e expansion to one-loop
order is never conclusive in contrast with the situation for
other values of n.

(iv) A number of magnetic, structural, and incommen-
surate transitions in real systems are described by n =4
order parameters.

In the following section, we recall the procedure for
enumerating the Hamiltonian densities which arise in the
study of transitions with four-component order parame-
ters. Section III is devoted to the discussion of the RG re-

cursion relations, their symmetry properties, and their
special features for n =4. In particular, on the basis of
symmetry considerations, we achieve a reduction of the
number of Hamiltonian densities for which the fixed-
point equations of the e expansion must be effectively
solved. The uniqueness of the stable fixed point (FP) is
studied, and the procedure used for solving the FP equa-
tions is presented. Section IV contains the results relative
to the FP and their stability. These results are discussed
in Sec. V from the standpoint of symmetry, and the work-
ing out of a symmetry criterion for the occurrence of a
stable FP is achieved. Its effectiveness is illustrated by
the case n =4. Finally, the experimental data pertaining
to this order-parameter dimension are analyzed.

II. ENUMERATION OF HAMILTONIAN
DENSITIES FOR n =4

Written in a standard form, the effective Hamiltonian
density we consider is

n . n 4—d
H(x)= —— g P,'(x) + g (V'P;)' + P~, (1)

i=1 i=1

where P4 is the FDPE, whose general expression is

~4 = g gijkllikj 0k( I
i, j,k, l

The n functions P;(x) are the local values of the n com-
ponents of the order parameter, r and the g;ski, the coeffi-
cients of this polynomial expansion, p a dimensional coef-
ficient, and d =(4—e) the space dimension.

For a given phase transition, the form of P4 is specified
by two properties.

(i) P4 is the most general homogeneous polynomial of
fourth-degree, invariant by the symmetry group G' of the
high-symmetry phase adjacent to the transition.

(ii) The order-parameter (OP) components P; span a
nontrivial representation I of G' which is irreducible on
the real numbers (physically irreducible' ). This irreduci-
bility warrants that there is a single quadratic invariant in
(1), and it implies the trace condition formulated by
Brezin et al. The transformation properties of the P;, as
well as the form of P4, are entirely determined by the set
of distinct matrices of I . Due to the unitarity and reality
of I, this set is isomorphic to a subgroup G of the full-
orthogonal group O(n) acting in the n-dimensional space
of the order-parameter components. As a consequence, to
work out the form of Pq, we can replace G' by G which is
a point group in the n-dimensional space (while G is a
space group in the three-dimensional space) and construct
P4 as the most general G-invariant homogeneous fourth-
degree polynomial. Let us show that this property of P4
allows a systematic enumeration of the possible forms of
P4 for each value of n. The method used is to consider
the various "irreducible" subgroups of O(n) (i.e., the sub-
groups whose vector representation is irreducible' ), and
select those which describe the full symmetries of the dif-
ferent FDPE. This procedure leads, as shown by the sub-
sequent discussion, to distinguish three types of full sym-
metries (the centralizers, the little groups, and the normal-
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P
P4= g gijklf 4j4'kdl 'g u O„(P;) .

v= 1

(3)

It can happen that several irreducible groups GCO(n)
have in common the same space E=[O„] of invariant
polynomials. One of these groups, which we denote G„
will contain all the others. 6, is the largest subgroup of
O(n) leaving simultaneously invariant all the O„HE.
This group is the centralizer ' of the space E. It
represents the symmetry common to the entire set of poly-
nomials defined by Eq. (3), and having arbitrary coeffi-
cients u .

A second type of invariance group of P4 is of interest
in the RG method. It is the full invariance group of a
given polynomial (g u„O„) with a specified set of coeffi-
cients u„(i.e., a specified vector direction in E). This
group is the little group 6"of the considered polynomial,
and it satisfies 6"D 6, . Two situations can occur for the
E space.

(i) In the first one, all the polynomials in E have little
groups of strictly higher symmetry than G, . In other
words, the centralizer of E is not the full invariance group
of any specified vector of this space. It only represents
the intersection of the various little groups. This situation
implies that there exists, among the little groups, a con-
tinuous set 6"(a), having the centralizer. as a common
subgroup, and conjugate to each other in O(n) [i.e., there
exists a set of transformations S(a)EO(n), such that
G "(a)=S(a)GOS '(a)].

(ii) In the second situation the centralizer coincides
with the little groups of a dense set of polynomials in E
(these are the "general directions" of E which possess the
lowest symmetry). We can note that the little group G"
of a given polynomial can be regarded as the centralizer of
a subspace of E (possibly reduced to the sole polynomial
direction considered).

An illustration of situation (i) is provided for n =2 by
the polynomials

4 +1(4'1+4'2) +M2((14'2+113/142($1 4'2) ~ (4)

for which 6,=C4 [Schoenflies notation' for this sub-
group of O(2)]. For any specified values of the u„, the lit-
tle group of P4 has the higher symmetry G "(a)= C4,(a),
where the additional mirror symmetry v has an orienta-

izers) which are all of interest in the application of the
RG method.

A. Centralizers, little groups, and normabzers
of P4 polynomials

The most general homogeneous fourth-degree polyno-
mial of n variables P; is a linear combination of (q+ ) dis-
tinct monomials. These monomials can be considered as
the basis of a vector space having (4+ ) dimensions. For
instance, if n =4, this vector space, which contains all
fourth-degree polynomials of 4 variables has 35 dimen-
sions. In this vector space, the 6-invariant polynomials
generate a subspace of dimension p, which we can denote
E. Thus, the most general 6-invariant polynomial P4 cpn
be written as a linear combination, with arbitrary coeffi-
cients, of p linearly independent, 6-invariant polynomials
O„(P; ) constituting a basis of E.

tion (a) depending on the values of the u, coefficients.
This higher symmetry corresponds to the fact that within
a rotation of the reference frame in the two-dimensional
space ($1,$2), P4 can be brought to the standard form of
polynomials with Cq„symmetry (i.e., the cubic symmetry
in two dimensions):

A third group of interest is the normalizer 61' defined
as the largest group which preserves E as a whole. It
transforms any polynomial P4EE into a polynomial ex-
panded as a function of the same basis [0„] but with,
generally, different coefficients u . The centralizer 6, is
an invariant subgroup of 6& (however, Gz does not gen-
erally contain the little groups G" of all the polynomials
in E). In case.(i), where 6, is not a little group, the con-
tinuous set of transformations S(a) establishing the
correspondence between the conjugated little groups
6"(a), belong to G~. In this case, 6& is necessarily a
continuous subgroup of O(n).

All the preceding groups, which have been defined by
their action on the polynomial space, can also be con-
sidered as acting similarly on the space [u ] of the coeffi-
cients in Eq. (3).

B. Enumeration of physically distinct polynomials

It is worth pointing out that polynomials P4 which are
transformed from each other by a mere change of refer-
ence frame in the space of the P; components are physi-
cally equivalent and should not be distinguished. In gen-
eral their centralizers do not coincide but are only conju-
gate to each other in O(n). Conversely, if the centralizers
are not conjugate, the polynomials cannot be brought to
coincide by a change of reference frame and they must be
considered as representing distinct physical situations.

In summary, the enumeration of physically distinct
FDPE s consists in finding, up to a conjugation in O(n),
all the irreducible centralizers 6,. As shown in Ref. 6
and 10 a systematic group-theoretical method exists for
selecting the centralizers 6, of polynomials of a given de-
gree, among the irreducible subgroups of O(n), and deter-
mining the form of the invariant polynomials associated
with each centralizer. This method will also provide the
irreducible little groups since these are centralizers of
smaller spaces E. The knowledge of the various P4 poly-
nomials will permit the determination, in each case, of the
corresponding normalizer by examining systematically the
action on P& of the subgroups of O(n) containing 6,.

Such an enumeration of the conjugation classes of ir-
reducible centralizers and little groups of fourth-degree
polynomials has recently been performed' for n =4. As
mentioned in the introduction, a similar enumeration had
been achieved before for n & 3. No complete results
are available yet for n &4.

The results of the investigation corresponding to n =4
are recalled on Fig. 1 and in Table I. The notations of the
subgroups of O(4) follow the convention adopted by Du
Val based on the horn omorphisms existing between
SU(2))CSU(2) and SO(4) on one hand, and between SO(4)
and SO(3) XSO(3) on the other hand. This convention is
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TABLE I. Basic polynomials 0 appearing in the fourth-degree polynomial expansions P4 which are invariant by irreducible sub-
groups of O(4) and represent all the possible fourth-degree contributions to the effective Hamiltonians involved in the
renormalization-group method for n =4. 1))„p„p3,p4, are the components of the order parameter.

Label

00
Oi

02
03

04

05
06
07
08
09
Oio

Oi2

Oi4

X)
X2

X3

Expression

(y4+ y4+ y4+ y4)

5(rtr1+its2+ f3)+ itr4+ it 1$243its4+ 1244(41+42+43)
5

($1—1I)2)(P3—P4) +403

1t'l4'2(4'3 W4) 03jr4(4'1 02 )+4143(42 44)+424'4(41 43 }+42%t'3(1t 1 114) 41%t4(42 W3 }

q}1/2($1 f2 ) +1113/4( It 3 $4) +0'1/3(1t'1 11 3 ) +$2its4( It'2 W4) +0'1 its4( 1t('1 W4 } 0 243(Q2 f3 )

4144(3(42 q 3) (4'1 44)f q 2q 3P(41 'P4) (q 2 q 3))

4 142(43 442) A—44(4—1 '4Z)—
4 142(4'1 4Z) A—44(A'—44)—
41/3(342+ 3/4 q 1 W3)+42/4(3/1+ 3/3 f2 4'4)

(4'16+4204)(01 +42 03 44)— —
4104(302+343 q 1 44) q 2q 3(3q 1 3'$4+43
08+2(06+0 +0 —0 —012}

RG transformation determines the flow of the u„coeffi-
cients by means of recursion relations whose general form
is expressed through a transformation equation of the

g jkl coefficients:
- dgjjkI

~) =Pijkl(gpqrs ) (6)

where A, ~O corresponds to the critical singularities.
In the e expansion, the functions p;jkl are double expan-

sions as functions of the small parameters e =(4—d), and

g;jkI. In a zero-momentum renormalization scheme, and
to two-loop order (eg,g ) the form of these functions
are:

1

Pijkl &gijkl +(T ) 1+ (gijpqgpqkl +gikpqgpqjl +gilpqgjkpq }
p, q

1

(gipqrgjprsgklqs+gipqrgkprsgjlqs+gipqrglprsgjkqs+ gjpqrgkprsgilqs+gjpqrglprsgikqs+gkpqrglprsg~ jqs'
p, q, r, s

I+ ( 43 } (gsjklgspqrgipqr +gsiklgspqrgjpqr +gsjilgspqrgkpqr +gspqrgsijkglpqr }
p, q, r, s

(7)

If we take into account the total symmetry of the g;jkl
coefficients under a permutation of the indices, Eq. (3)
provides linear relationships between the g;JkI and the u
coefficients thus allowing us to draw from Eqs. (6) and (7)
a set of p recursion relations determining the flow of the
u coefficients:

dQv

d (ink, }

The critical behavior at a continuous transition associ-
ated with a given 6-invariant polynomial P4, is deter-
mined by the characteristics of the stable FP of the con-

f

sidered flow (8). A FP of the flow, denoted u*„, is defined
by

p (u*„)=0.
In the parameter space carried by the u coefficients,

the stability of a FP will correspond to the fact that the
trajectories defined by Eq. (8) and terminating at u*„must
flow towards the FP when A, —«0. If a (3r=1,2, . . . , j3}
are the eigenvalues of the matrix,

ap„'
(10)

u*
V
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the stability condition is expressed by the positiveness of
the real part of the a, for all v.

It has been shown ' that fixed points with real coor-
dinates can always be classified as stable or unstable (i.e.,
no more complex pattern of the flow will occur, such as
limit-cycle behavior) due to the fact that the P functions
Eq. (7), are a gradient field, and that consequently, the
preceding eigenvalues are real.

A. Symmetry properties of the recursion relations

The RG transformations defined by Eqs. (6) and (8) are
covariant by the operations of 0(n). This mathematical
property relies on the physical requirement that these
transformations should not decrease the symmetry of the
system considered. More precisely the little group of the
FDPE's will be preserved as a minimal symmetry along a
trajectory. These invariance properties have been ex-
pressed in various forms by Wegner, Zia and Wallace,
Korzhenevskii and more recently by Jaric and by
Michel. ' Actually G" will be strictly preserved along a
trajectory except possibly at a FP where the symmetry can
increase. Indeed the preservation of 6" as a minimal
symmetry warrants that if a higher symmetry than 6" is
realized at a nonfixed point, then, starting the trajectory
at this point we can see that the higher symmetry will be a
minimal symmetry along the trajectory, downstream, but
also upstream by changing A,—& I/1, in Eq. (8).

Thus, each of the three symmetry groups defined in
Sec. II has a specified action on the flow of the u„coeffi-
cients. The centralizer 6, leaves invariant each point of
the flow, while the little group 6" is the invariance group
associated with a trajectory. The normalizer G~, being
the covariance group of P4 leaves the flow globally invari-
ant and establishes a correspondence between physically
equivalent trajectories. ' Two consequences can be in-
ferred from the action of G".

(i) Let us consider the case for which the centralizer G,
of the (u„J space is not a little group. According to the
above property, the flow in the j u„J space will consist of
trajectories all confined to smaller dimensional subspaces
invariant by the various little groups 6". Moreover, ow-

ing to the existence of a continuous set of conjugate little
groups 6"(a) containing the centralizer, each of the
preceding subspaces will contain the complete characteris-
tics of the flow. The other, subspaces corresponding to
conjugated little groups represent identical physical situa-
tions, and display a pattern of fixed points deduced by a
mere change of reference frame. As we can generate the
subspaces from one of them by applying the continuous
set of transformations S(a) belonging to the normalizer
G~ of the space [u„j, the flow will generally contain
lines, surfaces, or more complex manifolds of FP's, each
such manifold being constituted by physically equivalent
FP's. Hence, it is not useful to perform the RG calcula-
tions for the centralizers which are not little groups.
Their pattern of fixed points is physically equivalent to
the pattern of FP's relative to any of the little groups
6"(a). Five FDPE's represented on Fig. 1 can be dis-
carded on this basis, such as, for instance C4&D . A
similar remark was previously made by Zia and Wallace

and by Jaric for the example with n =2 in Eq. (4).
These authors, relying on the work of Wegner have
stressed that the additional u3 coefficient introduced by
consideration of Eq. (4) instead of Eq. (5) had no physical
consequence.

(ii) Consider two FDPE denoted P4 and P&, with
respective little groups 6" and G'" such that 6"CG'".
In the p-dimensional parameter space [u, J associated
with P4, the set of Pq polynomials will generate a sub-
space of dimension p' &p. The preservation of G'" by Eq.
(8) means that the trajectories passing by a point of the
subspace relative to Pq are entirely contained in this sub-
space. The FP associated with the set P4, will then also
be the FP for the set P4. Furthermore, the FP among
these which are unstable in the p'-dimensional subspace
will remain unstable in the p-dimensional space (however
the stable ones will not necessarily remain stable).

Hence, the flow associated with a given 6-invariant
polynomial will possess, at least, all the FP's correspond-
ing to the entire set of supergroups of G. In particular
any flow will display the Gaussian FP (u*=o) and the
isotropic FP, which. are the two FP s of the 0(n)-invariant
FDPE. As there is only one isotropic FP for the latter
FDPE, there will only be one FP with the 0(n) sym'metry
in any flow.

Referring to Fig. 1 for the case n =4, we illustrate the
former property by noting for instance that the FDPE
having the invariance group labeled D2)&D2 will possess,
among others, the FP of the generalized cubic FDPE
(0/D2, 0/D2) ~ and those of the dicylindrical FDPE
(&„x&„)*.

Conversely the investigation of the FP's and of their
stability for an FDPE with invariance group 6 will also
determine the characteristics of the pattern of FP's for all
the cases corresponding to supergroups of G. The latter
FP's are a fraction of the FP's found for G, and the eigen-
values of matrix (10), relative to the supergroup, are part
of the eigenvalues calculated for G.

Thus we can concentrate on the little groups with
minimal symmetries. Inspecting Fig. 1 we see that we
can, in principle, restrict the calculations to two groups
only, labeled C2 XD2 and ( Y/C2, Y*/Cz), since the first
of these groups is a subgroup of 20 centralizers. However,
as will be shown later, the pattern of fixed points of
C2 &D2 is a very complex one, and the set of 11 recursion
relations relative to it would be very difficult to handle.
We have preferred to take advantage in a more limited
way of the reduction of the number of cases allowed by
the symmetry considerations. Referring to Fig. 1, we
have distinguished two sets of little groups. The "upper"
set is composed of 13 FDPE's. In this set, there are five
"minimal" groups which contain the pattern of fixed
points of the entire set. Their normalizers are finite sub-
groups of 0(4). These groups are defined up to a conjuga-
tion in 0(4). The five classes of conjugation are listed in
the first column of Table II. The form of the correspond-
ing Pz polynomials is indicated in this table for a given
representative of the class. One of the five cases requires
consideration of two u parameters. Two cases corre-
spond to three parameters, and the two last cases corre-
spond respectively to 4 and to 5 parameters. There is, on



31 RENORMALIZATION-GROUP STUDY OF THE FIXED POINTS. . . 7177

TABLE II. Specification of the FDPE relative to the five "minimal" little groups which contain the results for n =4. Column 1

contains notation of the symmetry group referred to the convention of Ref. 10 and 20. Column 3 is the form of the FDPE expressed
as a function of the invariants O indicated on Table I. Column 4 is the relationship between the coefficients u and the g;jki coeffi-
cients, as defined by Eq. (3). The g;jki not specified in the table (within a permutation of the indices) are equal to zero.

FDPE
symmetry Label Form Relation between coefficients

C2
'

C2
di-icosahedral (uOp+ v04) g;;;;(i~4)=(u+5v); g =(u+v)

gi (i&4,j%4,i')=—
.3

u us
;;44(t&4)= —+2V; g1234= U

3,
'

2

D5 D5

C2
'

C2
dipentagonal ( QOp +VO1 +WO13 )

Q +V
g iiii = ( ~ +V ) r g 1 122 g 3344

3
1 0

g 1133 g 1144 g 2233 g 2244
3
W

g 2214 g 3314 g 4423 g 2223 4
W

g 1123 g 1114 g 3332 g4441 4

D3

C2 'D2 trigonal-cubic ( uOp+ VO2+ w06) g$ggg (Q +V)r giijj (l &j)
3

g 1123 g 1124 g2213
W

g2234 g3312 g3314
12

g 1134 g2214 g3324
W

g4412 g4413 g4423
12

D2 D4

D1 D
orthotetragonal ( uOp+ VO1 +w05+p08 0 +V

giiii —{& +V ) r g 1122 g 3344
3

0 W W
g 1133 g2244 + r g 1234

3 6' 6
0 W

g 1144 g2233
3 6

g 2214 g 4423 g 2223 g 4441
E

g 3314 g 1123 g 1114 g 3332
E.
4

D2XD2 diorthorhombic ( t02+6u1X1+6u2X2
+6Q 3X3 +24P03 )

gliii = t r g 1 122 g3344 ~ 1

g 1133 g 2244 ~ 2 r g 1144 g2233 ~ 3

g1234 =P

the other hand, a "lower set" of 4 little groups. Each is a
subgroup of a centralizer which is not a little group.
Their pattern of FP's is therefore expected to display con-
tinuous lines of FP's and to be difficult to determine
directly. In the same way as the centralizers which con-
tain them, these groups are associated with a normalizer
which is a continuous subgroup of O(4). We show in Sec.
IV that sufficient information can be drawn from the in-
vestigation of the five preceding cases to infer unambigu-
ously for them the possible existence of a stable FP.

order, by means of introducing two mathematical opera-
tions defined on the set of the g,jki coefficients (or,
equivalently, on the set of the polynomials P4 they de-
fine). Thus let g'"= Ig~'k'i I and g' '= Ig JkiI be two such

(g1) (g2)
sets, associated with two polynomials I'4 ' and I'4 '
of the form specified by Eq. (3). The two considered
operations, respectively denoted (g"',g' ') and g'"vg' '

are defined by

(&) (2) (&) (2)
gij kl gi jkl

i, j,k, l

B. General characteristics of the flow
at one-loop order

It has been shown recently that the set of functions

p;Jki in Eq. (7) can be given a condensed form, to one-loop

and

with

(1) (2) (3)yg
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(g) ) 2 (g2)

'' =
144 ~ ay, ay„ay, ay„

(g"',g' ') has the properties of an O(n)-invariant scalar
product in the polynomial space, and g'"zg' ' defines a
symmetric nonassociative algebra whose properties have
been described before. '

By means of the symmetric product (12), the set of /3;jkl
functions can be expressed, to one-loop order, by

(12')

/3(g)= eg+—,'gv g- (13)

It was shown in Ref. 23 that, owing to the form of this
second-degree gradient field, some general characteristics
of the flow of g coefficients were valid for any value of n:

(i) There is at most one stable FP, and all the other FP's
are situated on the boundary. of its attractor basin.

(ii) If it exists, the stable FP g* is the fixed point having
the largest "length" (g~,g*).

On the other hand, by using the /3 functions in their ex-
plicit form of Eq. (7), Brezin et al. have shown that, to
one-loop order,

(iii) The FP's with symmetry other than O(n) can be
grouped by pairs. Each pair is located in a plane also con-
taining the isotropic FP and the origin (Gaussian FP).

(iv) For n (3 the isotropic FP is the stable one, while
for n & 5 this point is unstable for any system with lower
symmetry than O(n).

The case n =4 of interest here represents a borderline
situation for which some of the preceding statements hold
in a special form. As established by Brezin et aI.,

(v) To the order (eg, g ) all the FP's are unstable except
the isotropic one which has marginal stability. More pre-
cisely for this FP all the eigenvalues of the matrix (10)
verify a,=0 except one which is strictly positive.

(vi) The FP's can still be grouped by pairs. However in
this case one member of each pair will coincide with the
isotropic FP to order e. Thus the isotropic FP will be, to
this order, a multiple solution of Eqs. (8) and (13).

Consideration (v) shows that for n =4, the use of the
recursion relations at the usual lowest order are incon-
clusive since the stability of the isotropic FP is not deter-
mined. One has to solve Eq. (8) to the next order. As e
and g are considered vanishingly small, each anisotropic
FP found unstable at order e will remain unstable at
higher order. Besides, as these FP's are nondegenerate
solutions of Eq. (8) at order e, each will give rise to a sin-
gle FP with the same symmetry at order e . For these
FP's it is actually not useful to perform the calculations at
two-loop order.

By contrast, for the isotropic FP, the latter order is
essential to consider. This order is likely to lift the degen-
eracy of FP's encountered at order e, and induce a split-
ting of the isotropic FP into several FP's with different
symmetries and stabilities. Only one of these FP's will re-
tain the isotropic symmetry.

C. Characteristics of the flow in the vicinity
of the isotropic FP

Because we have to deal with a bifurcation of the solu-
tions of Eqs. (9) occurring at the order (eg,g ), a lineari-

zation of these equations in the vicinity of the isotropic
FP cannot be done in the first place, in spite of the as-
sumed smallness of the corrections at this order. In order
to solve this bifurcation, we have successively applied two
different methods thus allowing a checking of the results.

First we have selected the various paths of the bifurca-
tion on the basis of their symmetry. Indeed, for a given
FP, the symmetry relationship between the coefficients u*
does not depend on the order of approximation used. Ac-
cordingly we have combined in an exact way Eqs. (9) (i.e.,
without considering the order of magnitude of the succes-
sive terms) in order to isolate the solutions corresponding
to the various relevant symmetries. This step leads to
rigorous equalities or cancellations applicable to some of
the u*„coefficients. Taking then into account the former
constraints [which are trivially obeyed by the O(4) sym-
metry] we linearize the Eq. (9) to determine the coeffi-
cients remaining, in the neighborhood of the isotropic FP.

In the second method, denoting by g,*=as/2 the one-
loop order coordinate of the isotropic FP, with s =

t s;jkl I

defined by
1

ij kl 3 ( ~ij ~kl +~ik ~j1 +6i!~j k ) ~ (14)

we have put g =@(s/2+6) where h = Ihjkl I goes to zero
with e. The /3 functions can be expanded in the vicinity
of the isotropic FP as a function of the small parameters
h and e up to the quadratic terms. Due to the limitation
to this degree, the notations of Eqs. (11)—(13) can be
used. One can write, to order (eh ),

2 24

12
(s,h)s+0((eH) ). (15)

Depending on the order of h with respect to e this equa-
tion yields different results. The cancellation of the
lowest order terms leads either to h* CC e, or to h ~ cc g'

In the first case, we project Eq. (15) on the direction of
s and on the perpendicular directions. The dominant
term in each equation yields

(s,h*)=—,6
6

/3'(h) = —eh*+ h*v h* —E(h*)s =0,36
5

(16)

where K(h*) is a function of the length (h*,h*) of the
fixed point.

Due to the linear dependence of a given FDPE,
(gu, o, ), on the basic invariants 0„the use of Eqs. (16)
and (16') requires the sole knowledge of the scalar prod-
ucts (0„0 ) and of the symmetric products (0„„0,) in-
volved in the considered FDPE. These quantities are
tabulated in Appendix B for the five Hamiltonians singled
out in Sec. IIIA. The same quantities allow solution of
the one-loop order Eqs. (13).

We can note that the /3'(h) functions in Eq. (16') have a
form similar to that of the one-loop P(g) functions in Eq.
(13). Actually, the investigation of the properties of P'(h)
by the same method previously applied to P(g) allows
us, as shown in the Appendix, to establish that the flow of
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h coefficients in the vicinity of the isotropic FP has com-
mon characteristics with the one-loop-order flow deter-
mined by P(g):

(i) At order (eg,g ) if a stable FP exists in the vicinity
of the isotropic FP, it is unique.

(ii) Among the fixed points of the form
g*=e(s/2+h~), the stable one is characterized by the
largest value of (h*,h*).

(iii) The isotropic FP, with coordinates g ~= (e/2)
X[s+(e/24)] at order e, is always unstable. The last
property was also previously established in Ref. 7.

In Eq. (15) it remains to consider the case
h=h&e' + - . This case is analyzed in Appendix C.
It is shown that h ~

is a pure imaginary number and that,
accordingly, the associated FP has complex coordinates.
Such an FP must be considered as unphysical since no
real Hamiltonian will flow to it through the RG transfor-
mations which are also real. Examples illustrating this
situation are discussed in Sec. IV).

1 36'

24 '+4
QQ2

e 1 ——U*—
2 2

D. Critical exponents

Using the scaling-law relationships, the values of criti-
cal exponents can be determined from the knowledge of
the two exponents g and v respectively associated with the
pair correlation function, and with the correlation
length.

In the framework of the e expansion, the form of these
two exponents has been indicated by Brezin et al. up to
the order F. for g and e for v (these two orders corre-
spond to the working out of the fixed-point coordinates to
order e ). From their formulas we draw

the only FP's which are likely to be stable and have there-
fore to be considered for n =4. As stressed in the preced-
ing paragraph, these FP are of the form g*=e(s/2+. h~),
with (s,h*)= (e/6). Thus

(s,h *)U*=@ 1+ 1+ E

24
(21)

The value of U* is therefore the same to order e for all
the considered FP's. These FP's are associated with the
same critical exponents whose values can be drawn from
Eqs. (17) and (18) and from the scaling laws:~8

5E 1 6 7E1+ —,v= —+ —+
48 6

' 2 8 96

136 E
. p= 1+ +, cx=—

4 96 6

P= ———+, 5=3+a+1 E E' 116
2 8 64 ' 24

(22)

Thus, with respect to the values of the critical exponents
to order e, no new result is obtained for n =4, as com-
pared to n (3: If a stable FP exists, its critical exponents
are the same as those of the isotropic FP.

IV. CHARACTERISTICS OF THE FIXED
POINTS FOR n =4

We have stated in the preceding section that the charac-
teristics of the flows associated with the 22 types of
FDPE's encountered for n =4 can be deduced from the
study of five FDPE's. In the paragraphs below we first
describe the results for these FDPE's and then deduce
them for the other little groups and centralizers.

and

2e 5U*
X 1+ +

Ug2

2 +2 +24' 2

(17)

(18)

A. Results for the "upper set" of five minimal groups

For each of the five cases the explicit forms of the
/3, (u, ) functions governing the flow of the u, coefficients
are indicated on Table III. Using the recursion relations
and following the methods outlined in Sec. III, we have
determined the fixed points and their stabilities. Let us
examine the results obtained in each case.

where U~ is equal to

U ~kl X giikl ~ (19)
1. FDPE with (Y/C2, Y~/Cq)*,

"di-icosahedral" symmetry

g,ski being the FP coefficients of the FDPE written in the
form of Eq. (2). Thus it appears that the critical ex-
ponents do not depend on all the coordinates of a FP but
only on their combination in the form of the trace U*.
Using the definition (14) of the tensor s, and that of the
scalar product (11) it is straightforward to show that

U~ = —(s g*) (20)

Consistently, the critical exponents are expressed as func-
tions of a scalar product, invariant by any coordinate
change in the space g, or in the order-parameter space.

Let us now concentrate on the FP's with real coordi-
nates lying in the vicinity of the isotropic FP. These are

There are two recursion relations acting on the coeffi-
cients u and U. The coefficient u is associated with the
isotropic part of the FDPE, while V&0 reflects the pres-
ence of a di-icosahedral anisotropy. To the (eg, g ) order,
the calculation provides two nontrivial (i.e., non-Gaussian)
FP's (Table IV). One has the minimal di-icosahedral sym-
metry and is unstable. In agreement with the general con-
siderations in Sec. III 8, the other is isotropic [O(4) sym-
metry], has marginal stability, and is an m-fold (m=2)
solution of Eq. (9). At the next order (eg,g ), it splits
into two real FP's (Table V). The first one keeps the iso-
tropic symmetry. It is unstable in the U direction. The
second one, S', has the di-icosahedral symmetry and is
stable. Figure 2 shows the structure of the flow in the
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FIG. 2. Pattern of fixed points and trajectories of the flow
corresponding to the "di-icosahedral" symmetry ( Y/C2, '

Y*/C2), represented in the plane of the two coefficients (u, u).

6 and H are, respectively, the Gaussian FP and the isotropic
(Heisenberg) FP. S and S' have the di-icosahedral symmetry,
the latter one being the stable FP. The shaded area is the attrac-
tor basin of S . The double lines passing by G indicate the lim-
its of positivity of the FDPE (i.e., outside this sector, no con-
tinuous transition is possible in the Landau theory). The framed
numbers 1 and 2 refer to the ranges of stability of the two possi-
ble low-symmetry phases obtained in the Landau theory. The
attractor basin of S' is entirely within the range of phase 2.

plane of the two coefficients u and v. The attractor basin
of S' is defined by the conditions ( —2/27u & v & 0;
u &0). By comparison, a minimization of the Landau
free energy indicates the possibility of continuous transi-
tions toward two low-symmetry phases, 1 and 2, stable for
(u + v & 0;v & 0) and (u + 5v & 0;v & 0), respectively.

2. FDI'E with the (D5 IC2,D5 ICz) *
"dipentagonal" symmetry

~je
+

+
B

a]~
+
+

X

There are three recursion relations acting on (u, v, w).
These coefficients are respectively associated with the iso-
tropic part of the FDPE, a "dicylindrical" (D„)&D )*
anisotropy, and the considered dipentagonal anisotropy.

At the (eg, g ) order, we find four nontrivial FP's. The
isotropic one has a fourfold multiplicity. A second one
corresponds to the decoupling of two pairs of order-
parameter components (u =w =0). Its symmetry can be
denoted O(2)&&O(2) (isotropic symmetry in two dimen-
sions). The two last FP's, S& and S2, correspond to the
minimal dipentagonal symmetry.

At the (eg,g ) order, the marginal isotropic FP decom-
poses into four distinct FP's all unstable. One keeps the
isotropic symmetry and is unstable in the (v, w) plane.
One has the dicylindrical symmetry and is unstable in the
w direction. The two last FP's with w*&0, S& and S2,
have the dipentagonal symmetry. They are both associat-
ed with one negative eigenvalue of matrix (10).

We can note that S& and Sz are associated to identical
eigenvalues. This is also the case of S~ and S2. This cir-
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TABLE IV. Fixed points and stability for the five FDPE with minimal little group, to one-loop order (6g,g ). In column 3, H
represents the O(4) isotropic symmetry (Heisenberg-type FP). S or S; is a fixed point with minimal symmetry (i.e., identical to that
of the FDPE. The multiplicity of H is indicated between brackets after this symbol. For the case D»(D&, "perm" means that other
FP can be obtained by permutation of the (u &, u&, u3) indices. The gaussian FP is omitted from the table;

FDPE
symmetry

Fixed-point
symmetry

Fixed-point
coordinates

Fixed-point
eigenvalues

Y Y*

Cp Cp
H(2) 6—02' (6,o)

96 6

14
'

21

6'
6

21

)fc

Ds Ds

Cp
'

Cp
Q, V, W —00 (6,0,0)

O(2) XO(2) 0 36 0)
26

5 5

S].,Sp
46 —6 +46
7 7 21

46
21 21

o
Cz 'Dz Q, V, W H(5) —006

(6,0,0)

Ising

0 07

46 26 26
9 ' 9 9

26'

3 3

Dg D4

D) 'Dp Q, V, W,P H (10) —,0,0,0 (6,0,0,0)

[O(2) XO(2)]i 0, —,0,0
36' —6 —36' —26

6,
5 5 5

[O(2) XO(2)]p
36' —36' 36

,0
5 '10 5

6 36
~+

5 5 5

[O(2) X O(2)]3
36 —36 36
5 10 5

36' —26'

5 5 5

S),Sp
6' E—+—+—

2 4 2 3
6 —26

3' 3' 3
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TABLE IV. (Continued).

FDPE
symmetry [u, $

Fixed-point
symmetry

Fixed-point
coordinates

Fixed-point
eigen values

D2XD2 t, Q )~Q2~03, H(16) E E E E————02'6'6 6
(E,0,0,0,0)

Ising

,0,0,0,0

E E E E

6 6 6 6 6

E E E
E 3' 3' 3'

0(2)Xo(2)
,0,0, —,0

perm

3E E E' 3E E

10 10' 10 10 10

E 3E 3E'

5 5' 5' 5

—00 —0E

3
perm

E
E' 3' 3' 3'

TABLE V. Splitting of the m-fold isotropic fixed point to two-loop, (Eg,g ) order. The FP with isotropic symmetry
u~=(e/2)[1+ (e/24)], always unstable, and occurring for any FDPE, has been omitted from the table. The conventions are the same
as in Table IV. a=(e/2)[1+ (3e/8)]; b =(e/6)[1 —(5e/8)]; c =(e/2)[1 —(e/8)]; d =(e/6)[1+(7e/8)]; e =(e/2)[1+(e/24)];
f=(e/6)[1 (7e/24)]; g—=(e/6)[1+(17'/24)]; h =(e/6)[1+(5e/24)].

FDPE Symmetry
Fixed points

Coordinates Eigenvalues

Y Y*
C2' C2

S'
1 T

E 29E E

2 24 6

2

'
6

Dg D5

C2
'

C2
(D„XD„)* E SE E1— —0

2 8 2 '6' 3

S),S2
E 17 . E +2
2 24 2 3 6

7

2E

3

D3 0
C2 D2

0 0
D2 'D2

0 0
D2'D2

E' 7E—-1— —0
2 24 '3

E 11, E2 41+ E
' E2

2 72 9 9

6' 3

D2 D4

D] D2
(D„XD„)*

2
5

1 ——E,—,0,0
8 2

E E'6 2' 3

r

1+—E ——+—0
2 8 4 2

'
E2 E2 E2

E' ———+—6' 2' 6

(D„XD„)* .31+—
2 8

E————0
4 2' E E e'6 2' 3

S),S2 5 E2 E2 E2———+—
2 24 8 4 6

E2 E2 E2

6 3
'

6
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FDPE Symmetry

TABLE V. (Continued).

Fixed points
Coordinates EigenvalUes

D, XD,

(D„xD„)*
a, b, b, —,Oa

perm

C C E
~d~+'3'3' '

12
perm

E E
E 6'6' 2

0 0
D2 D2

( e&ftfsg&o)perm
E E' E E

,
'6' 6' 2' 2

0 0
D2 D2

g2
c,h, h, h, +

12 ~2 E2 E2 E2
E

6 6 6' 2

cumstance suggests that the FP's in each pair are symme-
try related. Actually, a correspondence is achieved be-
tween them by the action of the normalizer of the space
( u, v, w) which is the "didecagonal" group labeled
G~ =(D~p/C2', D~p/C2)*. G~ contains the considered di-
pentagonal group and is, on the other hand a subgroup of
(D XD )*. The action of G& on the FDPE with coeffi-
cients (u, v, w) transforms it into an FDPE defined by
(u, v, —w). Thus any FP with w& &0 has a symmetric FP
with m2 ———m

&
and identical eigenvalues. This is the sit-

uation realized by the pairs (S~,Sz) and (S', ,S2).

3. FDPE with the (Dz/C2, .0/Dz),
"trigonal-cubic" symmetry

This FDPE also involves three coefficients (u, v, w).
The coefficient u is again relative to the isotropic invari-
ant, while v and m are, respectively, associated to the pres-
ence of a "cubic" anisotropy and to the trigonal-cubic an-
isotropy.

There are three nontrivial FP's to lowest order (Table
IV), among which the isotropic FP displaying a fivefold
multiplicity. The two additional FP's are symmetry relat-
ed "Ising-type" points (i.e., FP's representing four decou-
pled systems with n =1). The normalizer G& which es-

tablishes the correspondence between them is the
"hexagonal-cubic" group (D6/C4 ,O/D2) 'appearing in
Fig. 1. Its action is to transform ( u, v, w) into
(u +2v /3 —w /3, —v /3+ 2w/3, 4v /3+ w /3). Thus each
FP with w&2v will posses an equivalent FP with the
preceding transformed coordinates.

The decomposition of the isotropic point at higher or-
der is more complicated than for subsections 1 and 2. It
yields two types of FP's.

The first type is in the line of the preceding results. It
comprises three FP s with real coordinates, differing by
the term of order e . One has the isotropic symmetry and
the two others are "cubic" FP's, symmetry related by the
normalizer G~. All are unstable in the (u, v, w) space.

The second type of FP, which possesses the same
hexagonal-cubic symmetry as the normalizer G&, illus-
trates a situation pointed out in Sec. III C. Thus, each FP
has coordinates containing an imaginary part. Also, the
coordinates differ from those of the isotropic FP by
corrections of order e ~ (Table VI). We can note that a
similar type of coordinates had been encountered by
Khmelnitskii and by Grinstein et al. in the study of
disordered systems, whose critical behavior was found to
be governed by a FP with coordinates of order e'

TABLE VI. Coordinates of fixed points with complex coordinates, arising in several FDPE with n =4.
Fixed point
symmetry Fixed point coordinates

0
C4 D2

D2 D4

Di 'D2
i ~ —3ie3/21+—~e

2 2
'

8

3jg~ ~ jg +jp
2 2 8

' 4
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4. FDPE with the (D2/Dt, Dq/Dt)
"orthotefragonal symmetry

Four recursion relations govern the flow in a space car-
ried by the coefficients (u, u, w,p). u has the same meaning
as before. The three coefficients u, w, and p are, respec-
tively, associated with the dicylindrical anisotropy already
encountered in subsection 2, with an "orthocylindrical"
anisotropy, denoted D2 &&D, and with the orthotetrago-
nal anisotropy.

At lowest order (eg, g ), the isotropic FP has a tenfold
multiplicity. There are five other nontrivial FP s. The
normalizer of the (u, U, w, p) space is the group
D2 XD4. ' ' Its action is to transform p into ( —p) and to
leave the other coefficients unchanged. Thus, it relates
two of the five FP's, which are denoted S~ and S2 on
Table IV. The three other FP's which have the same
O(2) XO(2) symmetry (decoupled n =2), are nevertheless
unequivalent.

At higher order, a situation similar to that of subsection
3 occurs. The isotropic FP is split into six real FP's and
four complex ones. The real FP's are three unequivalent
dicylindrical FP's, and two orthotetragonal ones symme-
try related through ihe action of the norrpalizer. These
five FP's differ by terms of order e . The four complex

I

FP's have the same characteristics as in subsection 3:
their coordinates involve corrections of order e /. They
comprise two pairs of FP s, each pair being constituted by
FP symmetry related by the action of D2 XD4.

5. FDPE with the Dz &(Dz diorthorhombic symmetry

This FDPE requires solving a system of five FP equa-
tions relative to the coefficients (t,u~, uq, u3, p, ). For the
sake of convenience, we have made a different choice of
basis 0 than in the preceding cases. Thus, the isotropic
symmetry is not associated with the vanishing of certain
coefficients, but with a relationship between them
(t =3u

&

——3u2 ——3u3).
At the order (eg, g ) one finds that the isotropic FP has

a 16-fold multiplicity. There are 15 other nontrivial FP's
which correspond to some decoupling of the four com-
ponents of the OP. These FP's can be classified into only
three sets of unequivalent FP's, each set being composed
of symmetry-related points. The three sets, respectively,
correspond to Ising (n =1) FP's, to O(2)XO(2) (n =2)
FP's and to decoupled (n =2) FP's with cubic symmetry.
The transformations relating equivalent FP's are generat-

ed by the permutations of the three coefficients u;, and by
the transformation

3 3 t
I tyu]~u2~u3~p] ~ ' + (u /+u2+u3) — p~

up+u3 p

t 3u2

4 4
3u3+u3 p

4 2'4 4
u$+up p t u] +u2+3u

4 2'4 4 2
(23)

They belong to the normalizer G& which is a subgroup
of O(4) denoted (0X0)* having 2304 elements. ' '

To the next order there are no complications of the
kind encountered in the two preceding paragraphs. Thus,
the multiplicity of the isotropic FP is entirely lifted and
gives rise to 16 FP's with real coordinates differing from
each other by corrections of order e . These FP's can be
classified into three unequivalent sets. One comprises 9
FP's with symmetries conjugated to (D XD )*. The
two other sets contain three FP's each with the cubic sym-
metry. All these FP's are unstable in the considered pa-
rameter space.

B. Results for the remaining little groups
of the "upper set"

These little groups are supergroups of the five preced-
ing groups. Their fixed points can be found by simple in-

spection of the results already worked out. In each case,
we have to retain the FP's whose symmetries are equal to,
or greater than, that of the considered supergroup. The
stability of a FP can be inferred on the basis of the infor-
mation explicitly contained in Tables IV and V and in
Fig. 1 (i.e., number of positive eigenvalues, number of u,
parameters, group-subgroup relationship).

In order to illustrate this deduction, consider the FDPE
with the orthocylindrical symmetry Dq &(D . This is a
supergroup of (D2/D&, D&/D2) and D2XD2 (subsections

I

4 and 5 considered above). Inspection of Tables IV and V
reveals that there are seven nontrivial FP's with sym-
metries equal to or higher than D2&&D . In addition to
the isotropic FP there are three equivalent FP's corre-
sponding to the (D XD )* symmetry and, also, three
FP's with the O(2) XO(2) symmetry. This pattern of
FP's, constituted by triads of FP's with identical sym-
metries, derives from the fact that D2 XD is a subgroup
of three conjugated (D„XD„)~ groups. One
(D XD )* group has both its C„axes parallel to each
other (i.e., O' X C' ), while for the others, the "left" C
axis and the "right" one are taken along perpendicular
directions of the three-dimensional space, respectively,
(C",C') and (C~,C' ). The normalizer establishing the
correspondence between the three symmetry-related FP's
is a subgroup of O(4) denoted OXD .' ' On the other
hand, Tables IV and V show that for (D2/D~, Dq/D2) the
six preceding FP s involve at most two positive eigen-
values. As D2 &D is associated to three u coefficients,
we can conclude that none of these FP's is stable in the
considered three-dimensional I u, I space.

Table VII summarizes the results obtained along the
preceding lines for all the nonminimal little groups. Part
of these results can be compared to the ones worked out
previously. Thus, Mukamel et al." had examined the

two FDPE s with dicylindrical and ditetragonal anisotro-
pies. They had found that in both cases, the same FP
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with dicylindrical symmetry was stable. Our results agree
with theirs, and further show that any anisotropy other
than the ditetragonal one destabilizes the dicylindrical FP.
This had been previously checked for the ditetrahedral an-
isotropy ( T/D2, T/D2)*, " and conjectured' for the
orthocylindrical one D2)&D . Similarly, we find that the
stable "cubic" FP found by Aharony ' for the cubic
(0/Dz, O/D2)* FDPE, is destabilized by any anisotropy
with lower symmetry than cubic.

C. Investigation of the centralizers
which are not little groups

As apparent on Fig. 1 there are five centralizers of
fourth-degree polynomials which are not little groups.
We have explained in Sec. III B that the flow relative to
them can be generated from the flows associated to the lit-
tle groups by application of continuous sets of transfor-
mations belonging to the norrnalizer G~ of the space
Iu, I. With respect to the action of G&, the fixed points
can be classified into two categories. Either a FP will be
invariant under the action of G&, and it will then consti-
tute an isolated FP of the flow (this is always the case of
the isotropic FP) or a FP is not invariant by this action,
and it will generate lines or higher-dimensional manifolds
of physically equivalent FP. The dimension of a manifold
will depend both on the symmetry of the considered FP
and on the number of parameters a defining the continu-
ous group G&.

As an example, let us examine the case of the FDPE
with CqXD'„symmetry (Fig. I). The C„axis of the left
group is assumed to lie along z. There exists a continuous
set of little groups, denoted D2 XD'„(conjugated to
D2)CD ), containing C4XD'„as common subgroup, and
differing by the orientation of the binary axis in the left
(x,y) plane. The relevant normalizer is

Gz ——(D' XD'„)*. The orientation of the set of
D2 XD' groups is defined by a single parameter. As
stressed above, the pattern of FP's relative to C4&D'
can be found by applying the action of G& ——(D' XD' )*

to the FP of D2 &&
D' . The latter FP's have been

enumerated in the preceding paragraph. They comprise
the FP's corresponding to the three symmetries
(D' XD' )*, (D XD' )~, and (D~ XD' )*. The first
group coincides with G& and its FP s are thus invariant
by G&. These FP's are the Gaussian and isotropic FP as
well as one (D XD )* FP and one O(2)XO(2) FP.
They are isolated FP's of C4 &D' . The second and third
dicylindrical groups also give rise to one (D XD ) and
one O(2) XO(2) FP each, which are not invariant by G~.
As those two groups are conjugate with respect to G&,
each pair of FP's with the same symmetry will generate a
single line of FP's under the action of Gz. In summary,
the flow relative to C4&&D' contains four isolated FP's
and two lines of FP's.

Table VIII reproduces the results obtained by the same
type of derivation for all the centralizers appearing on
Fig. 1. As the little groups containing these centralizers
depend at most on three continuous parameters, we obtain
manifolds of equivalent FP's having at most three dimen-
sions. It is worth noting that a single one of the centraliz-

ers, denoted (C8/C4, D4/D2) is associated with a stable
FP (with dicylindrical symmetry). However, as men-
tioned above, the lowest symmetry preserving the stability
of the former FP is actually the ditetragonal one since for
the considered centralizer with symmetry (C8/C4, D4/D2)
all the trajectories possess the ditetragonal symmetry.

D. Absence of a stable fixed point
for the "lower set" of little groups

Let us examine the four little groups whose respective
labels are (C6/C2, T/D2), (C&IC2;D4/D2), C4XD2, and
Cq XD2. The peculiarities of their pattern of FP's can be
discussed on the example of C4 &D2.

First, we can note that, in contrast to the case of the
"upper set" of little groups, C4&D2 has a continuous
normalizer G=D &O, though being itself a discrete
subgroup of O(4). C4 XD2 is the common subgroup of a
one-parameter continuous set of groups D2 )&D2 conju-
gate to Dz&Dz. As shown by Fig. 1, the FDPE relative
to C4XDz is a linear combination of seven independent
fourth-degree terms, respectively, labeled OO, O&, Oz, 03,
05,09 0]0 The five first of these invariant terms span a
space whose little group is D2XDz. Each one of the
remaining two terms 09 and 0~0 can be shown to invari-
ant by a group of the form Dq XD2. Thus the pattern of
FP's relative to C4 )&D2 will contain the fixed points gen-
erated by the action of the normalizer G& on each FP of
D2&&D2. This action provides isolated FP's as well as
lines of FP's.

Aside from the former sets of FP's, others can exist ly-
ing in general directions of the Iu, I space (i.e., in direc-
tions whose little group is C4XDz) since all the "high-
symmetry" directions have at least the symmetry Dz XDz
already considered. For FP's having such a "minimal"
symmetry, the action of the normalizer Gz necessarily
generate lines of physically equivalent FP's. Thus, there
are no isolated FP's with symmetry C4&Dz. As shown
in Sec. II D the stable FP, if it exists, is unique. Accord-
ingly it cannot belong to a line of physically equivalent
FP's. Thus, no FP with C4&oz symmetry can be stable.
Since, on the other hand, the FP's corresponding to
D2XD2 are known to be all unstable (Tables IV and V),
we can conclude that the FDPE with symmetry C4)&D2
does not have a stable FP.

The same type of argument allows to show that no
stable FP exists for the little groups of the "lower set".
This argument had previously been used by Kor-
zhenevskii to conjecture that, more generally, low-
symmetry Hamiltonians were unlikely to display stable
FP, due to the existence for most FP's of continuous lines
of equivalent FP generated by a continuous normalizer.

V. DISCUSSION

When dealing with a phase transition described by a
four-component order parameter the effective Hamiltoni-
an determining the critical behavior can have one of 22
possible forms. The above investigation shows that aside
from the "isotropic" case, there are only five "anisotro-
pic" effective Hamiltonians associated with the oc-
currence of a stable FP. Three of the preceding five cases,
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TABLE VII. Real fixed points for eight FDPE whose little groups belong to the "upper set" of little groups and are supergroups
of the "minimal groups" considered in Tables IV and V. The conventions are the same as in these tables. The choice of the parame-
ters u for the groups in the right column is the same as for the group D2 XD2 (see Table II).

FDPE Symmetry
Fixed points

Coordinates E&gen values

0(4) 0(4)
2 24

(D„xD„)' 0(2) x0(2) 3e
5

5e1—
2 8

g2

'2

E', —
5

g2
E,'

6

0
C4 D2

0 0
D2 D2

Ising
26

'
3

E, ——
3

No real fixed point aside from the Gaussian and isotropic ones

0 0
D2'D2 2

76'

24 3

g2
E,'

6

0(2)x 0(2)

36

36 36' 36
5

' 10' 5

36
5 5

(D xD )Q

5e e
1 ———0

8 2

3E +
8 4 2

g2 g2
' 6 2

D4 D4

D2 D2
O(2) xO(2) 3E

5 '5 5 5

&(2)xB(2)

2c
7 7

—0—3' '3

E
3' 3

(D„xD„)' aa b— g2 g2

'6'6
0 0
D2'D2

(e,f,g)
(a,f,f)

g2 g2

6 6

T. T
D2 Ising

00

E 6 E+—6'6' 6

0 0
D2 D2

( a,f,O)

2

12 2

' 6 2
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FDPE Symmetry

TABLE VII. (Continued).

Fixed points
Coordinates Eigenvalues

(D2xD2)* Ising ,0,0,0 3' 3' 3

0(2)X0(2) 36
5

perm

E 36E—
5 5 5

B(2)&B(2) —,0,0, —3'''3
perm

3' 3' 3

(D„XD„)* a, b, h, —a
perm

2 ~2 62
E'6'6 2

0 0
D2 D2

( e&f~f~g)perm
E E'6' 6' 2

0 0
D2 D2

(a,f,f,f) E 6 EE—'6' 6' 6

respectively characterized by the FDPE symmetries
(D XD )*, (D4/D2', Dz/D2)*, and (Cs/C4, D4/D2) pos-
sess the same type of "dicylindrical" stable FP. For any
of these FDPE, the fluctuations generate the same
(D XD„)* symmetry at the critical point. The fourth
case of interest is the thoroughly discussed ' cubic FDPE
whose symmetry is preserved by the fluctuations. The
last one is the di-icosahedral ( Y/C2, Y'*/C2)* FDPE. Its
symmetry is also preserved by the fluctuations since the
corresponding stable FP has itself the di-icosahedral sym-
metry. This type of stable FP was not previously detect-
ed. Its symmetry contains both threefold and fivefold ro-
tations.

The structure of the flow of Iu„I coefficients around
the di-icosahedral FP (Fig. 2) has been discussed in Sec.
IV A. In Fig. 3 we have represented the flow associated to
both the cubic and dicylindrical FDPE's: these two flows
are identical, within a change of the FP labels. Examina-
tion of Figs. 2 and 3 reveals that all the unstable FP's lie
on the boundary of the attractor basin of the stable FP's.
The general validity of this property had been established
previously to one-loop order. In the considered exam-
ples, we find that this validity is preserved to the next or-
der. It can also be noted in Figs. 2 and 3 that, consistent
with a trend generally found, the effect of critical fluc-
tuations is to decrease the range of occurrence of a con-
tinuous transition with respect to the range determined by
use of Landau's theory. This effect is expressed in the
cases considered here by the fact that the FP is contained
in the range of Iu, I coefficients associated to a single of
the low symmetry phases found in the framework of
Landau's theory. ' Thus, fluctuations suppress the pos-
sibility of a continuous transition toward one of the two
low-symmetry phases and reduce this possibility toward
the second phase to a narrower range of the [ u, I coeffi-
cients. (The converse effect, pointed out by Blankshtein
and Aharony, of an extension of the range of continuous

transitions, was based on the consideration of terms of de-

gree six in the FDPE.)

It is also of interest to plot the trajectories of the flow
in the case, lacking a stable FP, defined by the
(D6/C4, O/D2) symmetry as this is the simplest example
involving the occurrence of FP's with complex coordi-
nates. Figure 4 shows that this flow has a very simple
structure, without any apparent pattern revealing the in-
fluence of the complex FP's near the isotropic FP.

A. Symmetry conditions for the stable fixed points

Let us now examine the symmetry conditions presiding
over the occurrence of a stable fixed point, and investigate

FIG. 3. Pattern of fixed points and trajectories common to
. both the "dicylindrical*' and the hypercubic symmetries. The
FP labeled 2 is, respectively, a decoupled isotropic n =2 FP for
the dicylindrical case, or an "Ising" FP in the hypercubic case.
The stable FP labeled B has the symmetry of the considered
Hamiltonian (respectively, dicylindrical or hypercubic). The
meaning of the other symbols are the same as in Fig. 2.
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FIG. 4. Pattern of fixed points and trajectories of the flow
corresponding to the symmetry (D6/C4, O/D2). The symbols
have the same meaning as in Fig. 2.

the specific symmetry of these points. The symmetry of a
given FP [u*„j is defined as the little group 6* of the po-
lynomial (g u*O„). We can consider, the space E~, con-
taining the FP, and having G* as a centralizer. For in-
stance for the cubic FP, the space E* is two dimensional
and generated by the basic invariants Oo and Oz. Any
FDPE displaying [u „jas a FP is of lower symmetry than
6* and its parameter space E will contain E* as a sub-
space. Thus, if [u' j is stable in a certain space, it is also
stable in E~. Invoking the unicity of the stable FP in E,*
established in Sec. III C, we deduce that [u j is invariant
by the normalizer 6& of E*. This requires Giv C6*. On
the other hand the general relation between the normalizer
and the centralizer of E* is 6*C:Giv. 3 stable fixed point
is therefore necessarily characterized by the coincidence of
the centralizer and the normahzer associated to it:
G,*=G =Gz.

This is a well-defined symmetry condition which allows
a systematic enumeration of the possible symmetries of
stable FP on the basis of group theory. In Table IX we
have listed for n =4 the normalizers associated to each ir-
reducible centralizer. We deduce from the comparison of
the G& and G, reproduced on this table that there are
only four possible symmetries of stable FP's: O(4),
(D XD )*, (0/D2', 0/D2)*, and ( Y/C2, ' Y/C2)*. We
know from general arguments (Secs. IIIB and III C) that
the fixed point with the O(n) symmetry is never stable for
an anisotropic Hamiltonian with -n )4. This leaves three
possibilities corresponding to 3 groups 6,'. We have seen
that they were effectively realized.

Furthermore, we can consider the unicity of the stable
FP in the larger space E, corresponding to an FDPE with
lower symmetry than 6*. This unicity requires 6& C:F,
where 6& is the normalizer of E. Referring to the list of
possible symmetries 6;* of the stable FP for the con-
sidered value of n (i=1,3 for n =4), we can formulate
this condition as a necessary condition for the occurrence
of a stable FP: The normalizer G& relatiue to the con-
sidered Hamiltonian symmetry must satisfy 6~L:6,* for
one, at least, of the 6;* groups. (Conversely, the nonfulfill
ment of this condition is a sufficient condi tion for the lack'
of a stable FP).

The application of this rule allows to show, on a
group-theoretical basis, that among the 21 anisotropic
Hamiltonians arising for n =4, IO cannot have stable
FP's. For instance, the normalizer associated to Dz XDz
is the group (OXO)* contained in none of the 6;* and ac-
cordingly the five-parameter space [u, j of symmetry
Dz&Dz cannot have a stable FP in agreement with the
detailed working out of the recursion relations.

This rule can be used more generally for the search of
stable FP's for phase transitions with an anisotropic order
parameter with n & 4. For such systems the O(n)-
invariant FP is not stable. One has first to determine for
each n the irreducible subgroups 6;* of O(n) which are
identical to the normalizer of their FDPE. Those G,*.

represent the possible symmetries of stable FP's for the
considered value of n Fo.r a given Hamiltonian, one has
then to check the condition G~ C: G for one of the 6 at
least. Only in this case can a stable FP exist.

We can note that if the polynomial space considered
(gu, O, ) has many dimensions, its global invariance

group Gz is likely to be a large subgroup of O(n) not con-
tained in any of the 6;*. Thus, we can expect, in agree-
ment with the initial conjecture' stated in the introduc-
tion, that only Hamiltonians involving a small number of
u„coefficients will, generally, possess a stable FP. How-
ever, while the earlier conjecture only provided a general
trend, the group-theoretical criteria established here define
precise constraints.

B. Discussion of the experimental data

Let us now, analyze the experimental data relative to
phase transitions having four-component OP s in light of
the present theoretical results. Table X lists the available
examples as well as the symmetries of the corresponding
FDPE's. The systems undergoing a transition to an in-
commensurate phase (structural or magnetic) appear as al-

ways associated to an FDPE whose little group is a con-
tinuous subgroup of O(4). Indeed for these systems the
order parameter describes the breaking of a continuous
symmetry consisting in the translational invariance of the
"phase angle" of the modulation. For a similar reason,
certain speculative types of transitions ' between meso-
morphic phases, will also be defined by a "continuous"
FDPE. Ordinary structural or magnetic transitions corre-
sponding to a "simple superstructure" are, instead, asso-
ciated with a finite subgroup of O(4).

The discussion of the experimental data can focus on
two aspects. Whenever the theoretical results disclose the
existence of a stable FP and when the transition is experi-
mentally a continuous one, it is of interest to compare the
experimental and theoretical values of the critical ex-
ponents. On the other hand if there is no stable FP, the
relevant experimental result is the thermodynamic order
of the transition since one expects a first-order transi-
tion. This derives from the argument that the trajec-
tories of the flow starting at any trivial point of the [u
space will flow out of the range of positivity of the
FDPE. An illustration is provided by the diagram in Fig.
4

However the observation of a discontinuous transition
does not necessarily constitute a convincing test of this
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TABLE IX. Normalizers and little groups of the different polynomial spaces. The little groups and the invariant polynomial
spaces are specified in columns 1 and 2. The action of the normalizers on the basic invariants are indicated for the relevant opera-
tions of the normalizer which are not contained in the little group. This action is not shown for the normalizers which are continuous
groups. 6" in column 3 means that the normalizer coincides with the little group.

Little

0(4)

group
Gg In variants

Op

Norm alizer
GN

Action of the
norm alizer

Stable
fixed point'?

yes

( r/Cz; r*/Cz)

(D„xD„)*
(0/D;0/D )*

op04

Oool

Oooz

yes

yes

yes

0
C4 'Dz Oo(oz+20

Dlz 0
C8 'Dz no

D5 D5

Cz
'

Cz
000 Dlo Dlo

Cz
'

Cz
OI3 ~( —013 ) no

D, XD„ Opoi OxD„ Oi
(C3

~
1) OI~ Op — +Op

2
no

os op 30I
05—+

2 4

(C8
~

1) 05~ —05

05
2

D4 D4

Dz Dz
ooo, (D4XD4)* yes

T. T
Dz 'Dz Opoz 0 0

T'T (C3
~

1) 02~ & Op — +603
Oz

2
no

03 03~ Oz 3
16 8

+=03

0
Cz 'Dz Opoz

o6

D6

C4 'Dz Oz —+ 3 (20p —Oz+406)

06~ 3 ( —Oo+20z+06)

no

C4

Cz 'Dz Opoi05

060809

D„XD4 (
continuous no

Dz D4

DI 'Dz Oool

0508

Dz XD4 (C411) 08 +( 08) no

(Dz XDz)~ Oool
0 0

Dz 'Dz (Cg
~

Cg) (Og —403)~ —(Og —403) Ilo
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Little
group

GQ In variants

TABLE IX. (Continued).

Norm alizer
GN

Action of the
norm alizer

Stable
fixed point?

D2XD,

C4 XD2

T
C2'D2

C, XD,

Oo0)02
030s

OoOl02

030s09

Oio

Oo0203

0607
Oo —0

(OXO)*

D„XO

D„
C„' T

O(3) XO

(Cp
~
1) (0),Op, Oi, 05)

( Cs
~

1) 02~( 4 Op —
2 Op)

Os~ —Os
03—+(03—

4 Os)
1

(C8
l
CS) 03~—03

Os~ —Os
continuous

continuous

continuous

no

no

no

no

theoretical inference since the discontinuity can have an
origin other than the growth of the critical fluctuations.
More specifically a minimal requirement is that the exper-
imental results should contain simultaneously evidences
for the existence of critical fluctuations in the neighbor-
hood of the transition, and for its first order character.

Among the results reproduced in Table X, two sets of
transitions are associated with the occurrence of a stable

FDPE. In the two cases the symmetry of the FP is
(D„XD „)*.The magnetic transitions in these sets were
discussed previously by Mukamel et al." These authors
examined the available experimental data and pointed out
that though the considered transitions were found con-
tinuous, either the data were insufficiently accurate to as-
sign reliable values of critical exponents (e.g., for DyCq or
TbAu2), or the measured critical exponents differed signi-

TABLE X. Comparison of the available experimental data relative to the thermodynamical order of
some transitions in real systems, to the theoretical results revealing the absence or presence of a stable
fixed point.

FDPE
symmetry

Nature of the
transition

magnetic-
incommensurate

structural-
incommensurate

nematic —multilayer-
smectic

Chemical
composition

TbAu;DyC2
DyAu2

biphenyl
8a2NaNbsO»
speculative

yes
yes

yes

39
40
37

Experimental Stable
thermodynamic fixed

order point? Ref.

yes 11

D2XD„

T. T
D2 D2

structural-
incommensurate

nematic —multilayer-
smectic

antiferromagnetic

BaMnF4

speculative

NdSe;NdTe;

CeS;CeSe;CeTe

110

no

no

45
47

37

D4 D4

D2 D2
structural Nb02 2 yes 41

D2 XD2
C4XD

structural

magnetic-
incommensurate nematic —multilayer-
smectic

PbNb206

VO2

Ca3(Fe2)(Ge04) 3

speculative

yes

no

no

9
43
48
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ficantly from the theoretically expected values (for
Tb,Dy, Ho). For instance, in the case of the incommensu-'
rate "spiral" magnetic transition in Terbium, the experi-
mental values are P =0.25, y = 1.33 as compared to
theoretical values of P=0.39 and y= 1.39. The structural
transitions in biphenyl and in barium sodium niobate
which pertain to the same theoretical scheme, are also
continuous. In the first material the P exponent has,
surprisingly, the classical value 0.5 in a wide temperature
interval below the transition. However its value has not
been probed in the close vicinity of T, (i.e., for
b, T/Tc &2&&10 ). The case of barium sodium niobate
is even less clear since the transition shows a diffused
character with the order parameter vanishing with a hor-
izontal tangent in the region of Tc."

Only in the case of the structural transition in Nb02
has an assignment been given of the critical exponent con-
sistent with the expected theoretical value. ' However the
corresponding measurement is not very accurate
(0.33 & P & 0.44) and the interpretation of the observations
still requires clarification (existence of an unusually nar-
row crossover region to another critical regime, ' tempera-
ture independence of the crystal periodicity inconsistent
with the OP symmetry ' ).

Table X shows examples for 4 theoretical schemes asso-
ciated with the lack of a stable FP. In this category, the
transition in VOz is observed to be strongly of first order.
This order is unlikely to be caused by the fluctuations.
The behavior of physical quantities on approaching the
transition show no precursor effects, thus disclosing no
apparent growth of the fluctuations. Besides a recent mi-
croscopic theory of this transition "shows that its strong
first-order character can be understood even in the mean-
field approximation. In the case of BaMnF4, , recent opti-
cal data have disclosed a slight first-order character.
Manifestations of the presence of critical fluctuations are
also known. " However a number of previous measure-
ments had assigned to this transition a continuous char-
acter, and the first order cannot be considered yet as well
established.

The most thorough discussion for systems with n =4
lacking a stable FP has been performed by Mukamel and
Wallace" in the case of the family of magnetic transitions
described by the (T/D2, T/D2)* FDPE. These authors
have shown that for this symmetry the lack of a stable FP
can be demonstrated beyond the approximations of the e
expansion, thus confirming that one is entitled to expect a
first order transition. By contrast, careful experimental
examination by two different techniques have shown that
the transitions in CeSe, CeTe, CeS, appear as continuous
with critical exponents which, within the experimental un-
certainties, are consistent with the values of Eq. (22).

The preceding evaluation of the experimental data thus
reveals an unsatisfactory situation. Either the experimen-
tal data contain some uncertainties or inaccuracies not yet
resolved, or they are found to be in clear contradiction
with the expectations. For systems in which the [u„)
flow lacks a stable FP, this overall disagreement had al-
ready been pointed out in the broader framework of sys-
tems possessing on OP with n &4.

Judging from the case probed in detail by Mukamel and

Wallace, " the theoretical results drawn from the e expan-
sion do not seem questionable. Thus, we can rather infer
from the experimental observations that the first-order
character induced by fluctuations must be, in all cases,
very slight. In the examples for which a pronounced first
order had been convincingly attributed to the effect of
fluctuations (e.g., in the magnetic transition in MnO,
corresponding to n =12), additional effects, such as a
strong coupling of the OP to strains, can be considered at
the origin of the magnitude of the discontinuity.

As for the matching of the measured critical exponents
with the calculated ones, a systematic discrepancy has
also been recently noted in all the structural phase tran-
sitions in which the expected behavior is nonclassical.
The reason underlying this situation has been assigned to
the sensitivity of structural transitions to the influence of
defects, always present in the real systems, and whose
modification of the critical behavior can be drastic. The
present analysis shows that such a discrepancy even ex-
tends to some examples of magnetic systems.

VI. CONCLUSIONS

In the present work we have completed the theoretical
framework describing the critical behavior of phase tran-
sitions with n-component order parameters by specifying
this framework for n =4. We have seen that in the same
manner as for other values of n & 3, one does not find in
the available experimental data a satisfactory illustration
of the predictions of the theory. The successes of the RG
method for other classes of transitions warrant, neverthe-
less, that the theoretical results obtained here provide the
correct situation of reference for systems with n =4. The
observed deviations must be i.nterpreted as disclosing the
influence of a variety of possible effects in the real sys-
tems such as the presence of defects.

On the other hand, the examination of the complex set
of effective Hamiltonians which arise for n =4 has led us
to rely systematically on the symmetry properties of the
RG recursion relations and on those of the pattern of
fixed points. Along this line we have extended methods
and specified inferences previously stated by a number of
authors, and especially clearly by Korzhenevskii and by
Jaric. In particular, we have based on the unicity of the
stable fixed point, the group-theoretical enumeration of
the possible symmetries of these points and the formula-
tion of a necessary condition for their occurrence. This
formulation specifies the group-theoretical condition rela-
tive to the absence or presence of a stable FP, which had
been searched for previously. ' '. Furthermore, we have
illustrated the fact that symmetry considerations allow
one to avoid, in many cases, the actual solving of the RG
fixed-point equations.

APPENDIX A: NOTATION OF THE CLOSED
SUBGROUPS OF O(4)

The notation used in the paper is due to Du Val. It is
based on the following properties.

(i) SO(3) and SO(4) are homomorphic images of SU(2)
and SU(2))&SU(2), respectively, with a two-element ker-
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nel. The first homomorphism allows to use for the sub-
groups of SU(2) the same label as that of their image in
SO(3): 0, T, and D [which have, respectively, 48, 24,
and 4m elements as subgroups of SU(2)]. Du Val does
not apply the same labeling rule for the cyclic groups.
Thus, C„ is an n-element cyclic subgroup of SU(2). The
second homomorphism allows to label the elements of
SO(4) by pairs (g&,gz) of elements of SU(2), with the gen-
eral relation (gi,gz) —( —g'i, —g2).

(ii) Let L, Lk, R, Rk be four subgroups of SU(2) satis-
fying the conditions that Lk (Rk) is an invariant subgroup
of L (R) and that the two quotient groups (L/Lk) and
(R/Rk) are isomorphic. We can write

L= U g; Lk (R = U g .Rk),

where g; Lk and g Rk are isomorphic elements of the
quotient groups. Then, the elements of SO(4) of the form
(g;.Lk,g Rk) (same value of i for g and g'), constitute a
subgroup G of SO(4) denoted (L/Lk, R/Rk). Besides, one
generates in this way all the subgroups of SO(4). In the
case (L=Lk', R=Rk) the group is the direct product
I.&R, and we use this simpler notation. The order of 6
is half the product of three terms: the order of Lk, the or-
der of Rk, and the order of (L/Lk). For instance
D2 XDq has 32 elements ( —, X 8 X 8).

(iii) The subgroups of O(4) comprise, besides those of
SO(4), additional groups of the form G*=G+SCXG,
where S is an element of SO(4), C is the "axial rotation"
(i.e., the transformation represented by the matrix
CJ = c;5;J, with c; = 1 for i = 1,2,3 and c; = —1 for i =4),
and G is a subgroup of SO(4) satisfying Lk ——Rk, L =R.
The subgroups 6*are denoted G*=(L/Lk, R/Rk)*.

APPENDIX B: SCALAR PRODUCTS AND SYMMETRIC PRODUCTS FOR THE BASIC INVARIANTS 0„

These products are required to solve the set of fixed-point Eqs. (13), (16), and (16 ) for the five Hamiltonians investi-
gated in Secs. III and IV. From left to right, we specify the FDPE symmetry, the table of scalar products (0„,0„)and
the table of symmetric products (0„„0,).

( Y/C2, ' Y /C2)* 0() 04 0() 04

8 28 —,0 —,00+ —,04
178 90p +404

D5 D5
00 01 013 00

2 2
01 013

8
16 0

016
3

3 0 9 00+ 3 1 3 13—010 1

9 1
—03 13

—,0 —401 1

0 4 1

o
C2 'D2 Op 02 06 Op 02 0,

8 4 0

1

3 00+ —,o —,064 1 2 2

02 —,06
8 0 12 2+ 6 6
1 1 1

D2 D4
Op 01 05 08 00

1 2
01 05 08

016
3

016
3

4
3

0 —0 —0+—0 —04 4 2 2
3 0 9 0 3 1 3 5

0 —,0110
—,052

0

—02
3 8

—01

3 8

—0 ——0 —02 1 1

9 0 6 1 6 8

—200 —
4 01+—,051 1 1
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D2~D2 02 03 X$ X2 X3 02 03 X) X2 X3

4 0 0
01

24
1

0 0 020
0 0
0 0

0]
3

1

—X1

3 I
—X]
3 2 —,X3

(Xi +X2 + X3 ) —,
' 03 —,03 —,03
3', (02+ SXi ) —„X3

—,', (02+ 8Xp) —,', Xi

—,', (0,+SX,)

APPENDIX C: FIXED-POINT COORDINATES
IN THE VICINITY OF THE ISOTROPIC

FIXED POINT, AND UNIQUENESS
OF THE STABLE FIXED POINT

1. Uniqueness of the stable FP of the form e[(s /2)+be]

As mentioned in Sec. III A, the P functions involved in
the recursion relations are the gradient field of a potential
I' whose general form at two-loop order has been indicat-
ed in Ref. 23. In the vicinity of the isotropic FP, for
g =@[(s/2) + h] =@[(s/2)+be], F takes the form

e F=const+ (s,b)——3 e 2 (sb)
16 '

3

(b „b,b)
+e (s,b) 5(b, b)

24 48
(C 1)

e F=const — — — (b*,b*) .e 19@ e
632 293 2232

(C2)

The stable FP corresponds to the lowest value of F and
thus to the largest value of the "length" (b*,b*)

Let us assume that the stable FP is not unique and con-
sider. two stable FP's associated with the values b& and
b2. Necessarily, (b i,b i ) =(b2, b2 ). Along the line join-
ing the two FP's, defined by b =

t A b i + (1—A. )b 2 I, the
potential (Cl) becomes a third degree scalar function of A,

having two equal minima for A, =0 and A, = 1 and is there-
fore independent of A, . As a consequence, if we consider
the matrix of second derivatives F' '=r) F/r) b,jki, its
average value taken for the vector (bi —bz) vanishes
along the line. However one can show that (bi —b2) is
not an eigenvector of F' ' corresponding to the zero eigen-
value. Indeed if the opposite was true, we could draw
from Eqs. (16)and (16'):

If g~ is a FP, we can apply the set of Eqs. (16) and (16')
and eliminate (s,b)~ and (b*„b*)from Eq. (Cl). We ob-
tain

e F' '(bi bz) —
~ bg

(s,hi)=0,
(s,h2)+(h„hi) = —,

'

(hi, hi)s
—,'(hi „hi)=

8

(hi, hp)s
2 (Ii ] y b 2 ) 4g Ii 1

8

(C5)

(C5')

(C5")

(C5"')

Projecting (C5"') on hi and using (CS') and (C5"), it is
easy to find

(hi, h, ) = ——,',
which can only be achieved if Ii i is imaginary.

(C6)

=3bi y b 2
— (bi +b2) —K(bi )$=0 . (C3)

24

Equation (C3) is symmetric with respect to the permuta-
tion of b; and b2, since K(b) only depends on the length
of b. Projecting (C3) successively on bi and on bz and
subtracting the resulting equations we find

(bi, bi )=(bi,b2)=(bp, b2),
which implies that b

&

——b2 in contradiction with the ini-
tial assumption.

The zero average of F' ' for a vector which is not one
of its eigenvectors, requires then that this symmetric ma-
trix possesses both positive and negative eigenvalues for
b~ or b2. This is also in contradiction to the assumed
stability of these FP which implies that all the eigenvalues
are non-negative. Therefore the stable fixed point is
unique.

2. Fixed-point equations for h~ of order eirz

We proceed as in Sec. III C and project Eq. (15) on the
direction of s and on the perpendicular directions. Put-
ting h=(hie' + hze) and retaining the two lowest or-
ders in the equations, we obtain
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