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The paper is an extension of the previous work based on the idea of a universal seesaw mechanism to
explain the hierarchies in the fermion mass spectrum. A model is proposed within the framework of
left-right symmetry with a minimal Higgs system and an axial U(1) symmetry imposed to distinguish the
generations. Previous work was confined, for mathematical simplifications, to the case of nonsingular
mass matrices. In the present paper, singular matrices are considered. A systematic perturbative tech-
nique is developed to display the mass eigenvalues in terms of the vacuum expectation values of the as-
sumed Higgs multiplets. The model successfully correlates the mass hierarchies among the quarks to the
assumed hierarchies in the vacuum expectation values without appealing to a hierarchy in the Yukawa-
type fermion —Higgs-boson couplings. By considering a general Higgs potential appropriate to the mod-
el, we study its minimization and prove that there exists an open subdomain in the parameter space
where the orbit of the lowest minima of the potential corresponds to the kind of hierarchy in the vacuum
expectation values needed for the success of the model.

PACS number(s): 12.15.Ff, 12.10.0m

I. INTRODUCTION

The idea of a universal seesaw mechanism [1] has
several attractive features that include (1) the generaliza-
tion of the mechanism to explain the superlightness of the
neutrino masses to all fermions, (2) a generalization of the
left-right symmetric framework with a minimal Higgs
system, (3) a correlation between the smallness of the
charged lepton masses and superlightness of the neutrino
masses, and (4) the possibility of incorporating the as-
sumed heavy left-right singlet fermions in the framework
of a grand unified theory [2]. Indeed, if nature were kind
and simple and had we a single generation of quarks and
1eptons, the universal seesaw mechanism would have pro-
vided probably the best explanation for the observed
mass hierarchies within the framework of the left-right
symmetric standard model.

As in all models, the existence of more than one gen-
eration and the bewildering mass hierarchies within and
between generations pose di%cult problems, and in spite
of wide ranging ideas in recent attempts, no convincing
explanation has emerged. It is universally recognized
that an appeal to hierarchies in the Yukawa-type
fermion —Higgs-boson couplings [3] is not a satisfactory
way out. On any type of symmetry principles, one ex-
pects them to be of similar orders of magnitude and
hence incapable of explaining the five or so orders of
magnitude difterences in the masses of the fundamental

fermions. We would like to attribute this phenomenon to
the breaking of left-right symmetry leading to parity
violation. The generalization of the standard model then
provides a natural hierarchy in the vacuum expectation
values of the left and right Higgs doublets, which is
necessary to account for the known experimental limits
on the associated phenomena. By introducing global axi-
al U(1) symmetry quantum numbers to distinguish the
generations, we allow ourselves the possibility of also
linking two problems, namely, the problem of the strong
CP violation and the structure of fermion mass matrices,
which play such an important role in determining the
Cabibbo-Kobayashi-Maskawa angles and the physics of
the new flavors.

The present paper is a continuation of the work in
which we treated the case of the three generations assum-
ing a nonsingular structure for the submatrix involving
vacuum expectation values of the heavy singlets [4]. This
was done so that we could then reduce the 6 X 6 mass rna-
trices to 3 X3, express elements of the mass matrix in
terms of the masses themselves, and thereby predict the
mixing angles. The results, although satisfactory in some
respects, showed that the resulting Yukawa-type cou-
plings had a high degree of hierarchy. Our treatment of
two generations [1] showed that the singular case avoids
this problem and provides a natural hierarchy only in
terms of a hierarchy in the vacuum expectation values.
We generalize these considerations to the realistic case of
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three generations by treating the full 6 X 6 mass matrices
in the case of quarks.

The paper is organized as follows. In the next section,
we review, for the sake of convenience, our assumptions
and the general structure of the mass matrices in our
model. In Sec. III we discuss the perturbative technique
we employ to derive the eigenvalues of these matrices and
express their dependence on the vacuum expectation
values analytically to any desired degree of accuracy. In
this way the inherent hierarchies are manifest. Section
IV is devoted to a discussion of the numerical results, a
summary, and conclusions. In the Appendix we discuss
the minimization of the relevant Higgs potential and jus-
tify our assumption regarding the hierarchy in the vacu-
um expectation values of the doublet and singlet Higgs
bosons.

II. BRIEF REVIEW OF THE MODEL

Working within the framework of left-right symmetry,
we shall consider three generations of conventional fer-
mions fL R accompanied by SU(2)L@SU(2)R singlet
partners F~„, i =1,2, 3. We assume a minimal Higgs
system consisting of a left doublet qL, a right doublet tp~,
and a left-right singlet o.. At the classical level, we postu-
late that the Lagrangian containing the above fermions
and the Higgs system is invariant, in addition to the usual
gauge transformations, under a global, axial, U(1) „sym-
metry. Under U(1)„,let the fermions transform as

the associated quantum numbers to characterize and dis-

tinguish the generations. Therefore we impose the con-
straints on the PQ quantum numbers x, ,y, :

x,Px, y;Ay, if i' . (2.3)

Because of the U(1) „symmetry, a given scalar field y
and its charge conjugate q =i ~2y* are distinguished since

they have opposite U(1)„charges. When the symmetry
is broken spontaneously due to g acquiring a nonvanish-

ing vacuum expectation value, g and y generate fermion
masses in different charge sectors. If q is chosen to be
the conventional doublet

h, =+1, h2=+1 . (2.4)

to
Therefore, under U(1)„, the p's transform according

it contributes to the down-charge sector and p contrib-
utes to the up-charge sector. Since y and q have distinct
PQ quantum numbers, we are led in our model to have a
minimum of four Higgs doublets,

t~L (1,2, 1)t tL'(1, 2, 1)i,
—

h1
—h2

fR '(1, 1,2)t, O'R '(1, 1,2)

where h, represent the U(1)„charges that can be nor-
malized to +1,

+i Hx,. + (9&;

fLR e fLR ~LR e FL~, R (2.1) (2.5)

and the Higgs scalars as

ki HhL +8hzfI. e O'L 0'z e (2.2)

where 8 is a continuous parameter and x, , y;, hL, and hR
are as yet unspecified U(1)„charges. As discussed in the
previous section, we would like to identify U(1)„as the
Peccei-Quinn (PQ) symmetry and, at the same time, use

The charge-conjugated fields y are defined by

='r2(0' ) @ 'r2(t (2.6)

Tables I and II describe, respectively, the particle con-
tent in our model and the mass-generating, nonvanishing
fermion —Higgs-boson couplings.

As discussed in detail in Ref. [4], the quark mass ma-
trices assume the form

TABLE I. Particle content and the quantum number of the particles.

SU(3), SU(2) SU(2)q

Conventional

quarks d L

1

3

Heavy

"singlet"

quarks

UL

DL

UL

DL

4
3

—2
3
4
3
2
3

Higgs

bosons

+1
+1
0
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TABLE II. Nonvanishing fermion —Higgs-boson couplings.
K;, represent the sums of the U(1) & charges of the fermions.

and, likewise,

CX12VR =b, CK23VR =B1 2 (2.12)

q Lq'L 'Di(

q L q'L
'

UR

+1 i

U'I. q R qR

Mass-generating
quark —Higgs-boson couplings the 33 matrix elements in ML"' and MR"', respectively, are

((233/(212)a and (a33/(212)b. Let

q'LqL'D4

q LyL 'Ug

D'ay~'A
ULyR'q

+33 b b'

B B'
(2.13}

0 ML

M. M, (2.7)

where ML, MR, and M& are in general 3 X 3 complex ma-
trices which will contain the vacuum expectation values
(VEV's)

' &=vL, (q)L &=—(q)L'&=v

(qR&=VR (qR& (qR &-VR, - (2.8)

1
&12VL 0

M(d) 1

M(d) 1
~12VR

20 CX23 VL

2 1
&23VL Q33VL

1
~12VR

2
23VR

2 1
~23VR

(2.9)

and, in the up sector,

0

M(u) p 2
L 12VL

0

M(u) p 2e
R 12VR

P12VL

0 P23VL

1
P23VL P33VL

P12VR

(2.10}

In order to reduce the number of parameters in the
model, we have assumed, in addition to left-right symme-
try, that the Y-type couplings are symmetric. Since the
VEV's are arbitrary at the moment, if we write

10,'12UL =Q, 2=
CX23VL

=- r4 (2. 1 1)

and Mr will contain the VEV g of 0. The U(1)„quan-
tum numbers of cr will depend on how it is coupled to the
y's and will be discussed shortly. A closer ana1ysis of the
nonvanishing couplings that enter the mass matrices sub-
ject to the constraints (2.3) shows that the matrices ML
and MR in both the charge sectors (down sector consist-
ing of d, s, b quarks and the up sector containing u, c, t
quarks) are of the Fritzsch type, namely, in the down sec-
tor,

With this simplified notation, the matrices in (2.9) take
the form

0 a 0 0 b 0
ML"'= a 0 A, M'"'= b 0 B

,0 A a' 0 B b'
(2.14)

As discussed in Ref. [4], the form of Mr depends on
how we choose to couple e to the Higgs doublets or on
the choice of the U(1)„charge of rr With. a singular Mr
in mind, we have the following choices.

(a) U(1)„ofo. is zero. There are three possible forms
depending on the choice of x, x =2, 4, or 5:

0 0 0
(i) x=2,

(ii) x =4,

(iii) x =5,

0 0

.0 X

0 0
0 0 0

0 0

0 0
0 0 0
0 0 0

(b) U(1)„ofcr is +2. There are two possible cases cor-
responding to x =3 or 5:

0 0
(iv) x=3, 0 0

0 0
0 0 0(v) x =5,

0 0

Again we have absorbed the Y-type coupling in the
definition of the VEV of 0. and assumed only one g
representing the heavy, singlet fermion mass scale.

In case (a), where the U(1)„quantum number of cr is

zero, while o. breaks L-R symmetry and brings about par-
ity violation, it does not correspond to the singlet that
makes an "invisible" axion [5]. In case (b), o can be the
singlet subject to the constraint on (o & =y arising from
cosmological considerations. For determining the eigen-
values of mass matrices, however, these considerations
are not relevant. We have four cases to consider in which

Mz is singular. In each case we calculate MM and, us-

ing the perturbative technique to be described in the next
section, compute analytical expressions for the (mass) ei-
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ML, MI. MLM~

M~ML M~ Mg +M~M

where each element is a 3 X 3 matrix. Denoting

(2.15)

genvalues to the desired order.
Assuming that (o ) =X has the highest value, we

divide each matrix under consideration by y. The mass
matrices MM have the block form

a A b 8—=I, —=L, —=r, —=R,
x

' x
'

x
'

x
(2.16)a', A'

x
' x

O' B'—=r, =R',
x

'
x

the 6X6 matrices in the down sector that we want to
consider are as follows.

(1) x =2, U(1)„charge of o =0:

M(23) =

I 0 /L 0

0 1 +L Ll' 0

Ll I'L L +I' 0

0 0 0 r rR (2.17)

0

l L Rr r'R
0 r2+R 2+1 Rr'

r'

(2}x =4, U(1)„charge of cr =0 or +2:

I' 0 IL

0 /'+ L'
Ll I'L L +I'
0 L
0 0

0 I

(3}x =5, U(1) z charge of cr =0:
Rr r'R

I'

r +1
0 r+R

rR

Rr'
r'

(2.18)

I 0

0 /2+L 2

I'L

0 I

0 0
0 0

IL

Ll'

L +I'

0

I

0

r +1

Rr

0
r2

r'R

rR

Rr'

R +r'

(2.19)

(4) x =3, U(1)„charge of tr =+2:

M(13,23)

l' 0

Ll l'L

0 L
0
I

IL

Ll'
I'

r +1

Rr

1

r2+R 2+1
r'R

rR
Rr'

R 2+r'+2

(2.20)

In Eqs. (2.17)—(2.20} the matrix elements are dimen-
sionless quantities. M(,-

)
denotes the matrix derived from

the form of the matrix X in which X,"%0. The (mass) ei-
genvalues of MMt are then given by X X(eigenvalues of
MMt).

III. van VLECK PERTURBATION TECHNIQUE
TG DETERMINE THE EIGENVALUES

We adopt the van Vleck procedure [6] for carrying out
a degenerate perturbation theory calculation to deter-

(3.1)M =Mo+M)+M2,
where Mo is block diagonal containing all the zero eigen-
values in its top block. M& will contain all the first-order

I

mine the eigenvalues of the mass matrices (2.17)—(2.20)
described in the previous section. We note that each ma-
trix element outside the lower right-hand block is by as-
sumption small compared to unity, and we intend to cal-
culate the eigenvalues to fourth order in these values.

Let the generic 6X6 matrix M be decomposed as fol-
lows:
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elements in l, L, /', L ', r, R, r', and R ' and is block off di-
agonal. M2 will contain all the second-order elements
and has a mixed form. We shall specify this decomposi-
tion in each of the four cases separately, but it turns out
that, in all the cases, Mo and M, can be written in the
form

M(1)—

where

[M,S,]„,
On!

(3.4)

0 0
M =

0 a1 M1=
0 A1

AT 01

(3.2)
[M,S, ]O=M, [M,S, ]„=[[M,S, ]„„S,] . (3.5)

where 0, 1, and A1 are block matrices of appropriately
chosen dimensions.

The van Vleck perturbation procedure consists of
bringing the off-diagonal higher-order terms into the
lower-order diagonal blocks by successive unitary trans-
formations.

Now let S, be so chosen that

M, +i [Ma, S)]=0 . (3.6)

From (3.2), it is easily verified that the desired S~ is given

by

A. First van Vleck transformation

Let U1 be a unitary transformation given by

U, =exp(iS, ), (3.3)

0 —A
l 1

A1 0

which implies

[MO, S)]=iM, .

(3.7)

(3.8)
where S, is Hermitian. Then the transformed matrix
M"' is given by Using (3.6) and (3.8), we can write

~ n
l lM'"=MD+ Mq+ —[M))S)] + t[M~, S, ]——,'[M„S)]2 + + [M2, S)]„n1

in+1
+ (n + 1)[M),S) ]„+1 +

(n +2)!

(3.9)

From the structure of (3.9), it is clear that the first two
terms contain all the second-order corrections to the
block diagonal part of M and the transformed matrix
M'" now has only second- and higher-order terms in its
off-diagonal blocks.

B. Second van Vleck transformation

M2D=(1)

Then

S() 02

0 c'(" '
2

0 2

2,0D A (1) 02

M(1) =Mo+M2(1) +M(31) + (3.10)

In view of the above noted fact, we can rewrite M"' in
the form

0
lS =—

A (1)
2

A (1)
2

0
(3.13)

where we have used the notation M„' ' to denote nth-
order terms in M found after the kth unitary transforma-
tion U& on M.

We can then find another unitary transformation,

Using this, we find

M' '=M +M'" +M"'
0 2, D 3

U~ =exp( iS2 ),
such that

(3.1 1)
+ M4 +—[M2 oD, S2]+t [M2 D, SQ] +

(3.14)

M ~'oo +i [Mo,Sq ]=0,
where

~2 ™2D ~2OD(1) — (1) (1)

(3.12)

with Mz'D the block diagonal and Mz'o& the off-diagonal
parts of Mz"..

Proceeding in this way, we can consistently bring all
the terms up to any desired order in the block diagonal
elements. We shall carry out the calculations for our
model to fourth order. As a check of the calculations, we
compute three invariants: Tr(M), Tr(M ), and Det(M)
of the final matrix and make sure that, to the desired or-
der, they agree with the required quantities from the
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given matrix. In what follows we shall discuss the details
of the calculation in one case, namely, the case in (2.17),
and sketch the results in the other three cases.

(1) For M~z~i in (2.17), the following decomposition
into 4X4 and 2 X 2 block diagonal forms for Mo and M2
and 4 X 2 and 2 X4 nonvanishing block forms for M1 sug-

gests, naturally, and

I 0

0

lL Ll'

0 0

lL 0
LI' 0

L +l' 0
0 2

0 0 is 4X4 null matrix,

1 ' 1 is 2X2 identity matrix,

0 A1
M1=

1

where

(3.15a)

(3.15b)

r2+R 2 r
r'R r' +R

Two van Vleck transformations are carried out on

M~&&~. The first, Eq. (3.9), yields second-, third, and
fourth-order terms in M"'. The off-diagonal part of

(1)M2,

0 I

L 0
A1=

0 rR

0 0
0 0A'"=
0 0
0 rR

where

B2 0

0 C2
(3.15c)

is then used to generate the second transformation, Eq.
(3.14).

The results after this second transformation for the
4X4 block are

B(1)
2

0 0 0 0
I' 0 0

0 0
2

B(1)—
3

0 0 0 IrR—
0 0 0

0 —LrR
0

B(2)
4

I (R +r' ) ILRr' 1[L(R +r' )+I'Rr']
L(I r R—) L [—I'( —,'I +r +R )—+—LRr']

L [(R +r' )+I' (r +R )+2LI'Rr']

ll'Rr'

0
—r R2 2

The eigenvalues of the B matrix are found using perturbation theory. The smallest two eigenvalues, corresponding to
the 0 diagonal entries in B'2", must be found by diagonalizing a 2X2 matrix. The larger two can be found directly since
they are not degenerate to second order. The results are

(Lr +I'R ) 4aP
2 (1+a+@)

1/2

k3 l +fourth-order terms, A.4
= r +fourth-order terms

where

I&r'& I'&r&

(Lr'+ I'R ) (Lr'+ I'R )

The eigenvalues of the C matrix are

=1+L2+R2+ l +l' +r +r' +
2

2
j'2 l'2 2+

+ (Ll'+Rr')
1/2

(3.16)
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where these results are only reported to second order. The full fourth-order results were used to check that

6 e
Tr(M)= g k, (to fourth order), Tr(M )= g A, , (to fourth order),

and

detM= gA, ; (to 12th order) .

(2) For M(»& in (2.18), a similar decomposition into a 4X4 and a 2X2 block applies. The results for the lowest four
eigenvalues are

(lR +Lr)', p, 4a P
2 (1+a' —P')

k =I +L k =r +R

1/2

(3.17)

where

a'= l2r2r&2pl-
(l +L )(lR+Lr) (r +R )(lR+Lr)

The largest two eigenvalues, to second order, are

2+L2+l'2+r2+R 2+rI2
+ l L l' —r+—R —+r'

+(IL+rR )2
2

1/2

(3.18)

Once again, using the full fourth-order results, the ei-

genvalues reproduce the values of three invariants.
(3) For M(„( in (2.19), the decomposition yields a 5 X 5

and a 1X1 block. After the first transformation, the
5X5 block still has one zero eigenvalue. The results to
lowest nonvanishing order are

0 0 0 0 0 0'
0 0 0 0 0

0 0 0 0
0 0 0

2 0
2

l'+2L'+ l'
+

2
j'2 —l'2

+L 2j"'2

l4li2 4 2

(l2L2+l2l i2+L4)(r2R2+r2r 2+R )

1/2

(3.19)

Using the basis that diagonlizes Mo allows the decompo-
sition into a 4 X 4 and a 2 X 2 block.

The eigenvalues can be found as before. We shall not
write out the values of A, , and X2 since the expression is

very lengthy and the value of A, 2 allows us to rule out this
case:

r +2R +r'
4, 5 2

2 &2

L2
2

R2
A3=1 +, A4=r +, A5 6=2 . (3.20)

Re=1 .

The eigenvalues through fourth order check with the
three invariants.

(4) For M((3 23) in (2.20), we must perform a simple
2 X 2 rotation before starting the van Vleck procedure:

0 0 0 0 0 0
0 0 0 0 0

0 1 1 0
1 0

2

can be transformed into

Once again, the invariants check with the full fourth-
order results.

IV. DISCUSSION OF NUMERICAL RESULTS
AND CONCLUSIONS

As stated in the Introduction, we would like to relate
the mass hierarchies ranging over three to five orders of
magnitudes in the two sectors primarily to the hierar-
chies in the VEV's of the Higgs multiplets and not to the
hierarchies in the Y couplings of Higgs bosons to fer-
mions. The reason is simple. Whereas spontaneous sym-

metry breaking of a Higgs potential does not forbid
wide-ranging VEV s, the desired hierarchies in the cou-
plings are gener a11y not possible in any theoretical



49 QUARK MASS HIERARCHIES FROM THE UNIVERSAL SEESAW. . . 1385

schemes known so far. Therefore we would like to seek
solutions in which all the Y couplings are approximately
of the same order of magnitude.

With this in mind, we recall the definitions of I,L, r, R
in the down and up sectors of the quark mass matrices.

Down sector:

(1)
a

l =—=a12
x "x'
b

(1)
=a12x "x'

AL=—=a23

8R=—=a
x

V(2
VL

x
(2)
R

(4.1)

m„=5.1+1.5 GeV, m, =1.35+0.05 GeV,

m, =225+75 GeV, md =8.9+2.6 GeV,

m =0.175+0.055 GeV mb 5.6+0.4 GeV .

(4.3)

The above values of quark masses are assumed to be at
the scale of 1 GeV. The physical mass of the top quark,
mf""'= 06m, (1 GeV)=135+45 GeV. The eigenvalues
A, , in the previous section are related to ( m, ) by the rela-
tion

(m;} =yA, ;. (4.4)

With our chosen criteria, three out of the four cases con-
sidered in the previous section can be ruled out. Those
are the M(13) M(13 23) and M(») cases. Since the argu-
ments are similar in the three cases, it is suScient to con-
sider one case. Consider, for instance, the eigenvalues for
m3 in the M(13) case:2

~/2$(d) (d) m 2 2
u

(1) +a2 u
(2) +. . .

3
—m 3

—mb —a 12VL a23VL (4.5)

Up sector: The expressions for the eigenvalues will still
be given by identical formulas, but with the following
redefinitions of l, L, r, and R,

V(2) U(1)
VL Ul

I =P 2, L =P23

(4.2)

r=p2, R =p'x' 'x'
since UL"~VL ', UR"~UR ' with different Y couplings in
general as we go from the down to the up sector. To
compare with experiments, we shall take the following
values for quark masses [7]:

' 1/2 (1)mdm VR

a33
mb

1/2 (2)
mg m~ URP33, (4.7)

m,

(2) (1)
33 23 pi2 UR R

(m, —md)= mb +m,
iz aiz

(4.8)

P33P23
(m —m )=c Il p

Pi 2 UR
(2) (1)

mb +m,
X

(4.9)

mb =aizuL, mi piz—ui
(1) — (2) (4.10)

It is interesting to observe that the four VEV's associ-
ate themselves naturally with the hierarchical mass ratios
and masses. This makes it possible to fit the mass param-
eters keeping the Y couplings essentially to be of the same
order of magnitude. Indeed, substituting the mass values
from (4.3), we find, from (4.7)—(4.9),

(1) (2)
VR

a33 =7.1 X 10, p33x
=3.7X 10-', (4.11)

=0.11,
i2 a33

=0.85 .
Piz

(4.12)

One of the vL"s should correspond to the VEV of the
Higgs doublet in the standard model. If we assume vL

' to
correspond to that doublet, UL '=246 GeV and, with the
given mass of the top quark, p, z = 1. Choosing UL"- mb,
we see that a12=1. Thus we are able to fit all the quark
masses keeping the Y couplings within one order of mag-
nitude. It is also worth noting that since the U(l)„
charge of cr in this case is zero, cr is not the Dine-
Fischler-Srednicki [5] singlet-breaking U(1}pq needed to
avoid the strong CP problem. In our model, the left-right
symmetry and U(1)z are both broken by the largest of
the two vR', namely, vR". If this is limited to the
10»-10' GeV range from axionic considerations, g is
pushed to the grand unification scale. Clearly, to make
the model more precise, further work on mixing angles,
CP violation, and experimental restrictions on left-right
symmetric models is necessary.

To summarize, we have found a model based predom-
inantly on the idea of universal seesaw mechanism that
can explain the quark mass hierarchies. It has a minimal
Higgs system within the framework of left-right symme-
try, and an axial U(1) symmetry is imposed to distinguish
the generations by assigning them distinct quantum num-
bers, thereby leading to restrictions on the form of the
mass matrices. With a hierarchy

—m 2 —a2 u(2) +a2 V(1) +. . . (4.6)
(4.13)

It is clear that in the extreme case when all the Y cou-
plings are equal, mb=m, . If we assume a hierarchy
uz « ui or vI « vz, then mb /m, =a23/piz or(1) (2) (2) (1)

a,z/Pz3, leading to an exPlanation of the hierarchy in
mass ratio in terms of a hierarchy in the ratio of Y cou-
plings.

The remaining M(23) case stands out as the most plau-
sible and attractive solution. We shall consider this case
in some detail. From (3.16), expressing the A, 's in terms
of the (eigenmass) values, we can deduce the relations

we are able to explain the mass hierarchies. We will
show in the Appendix that this hierarchy is obtainable by
examining the absolute minimum of the relevant Higgs
potential.

The model, however, is not totally satisfactory in that a
certain hierarchy in the Yukawa coupling constants is
necessary to explain the mass hierarchies. In addition,
the observed mass hierarchies appear to be just correlat-
ed with the hierarchies. The number of assumed hierar-
chies in the vacuum expectation values almost coincides
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with the number of mass hierarchies that are accounted
for. However, the model has now predictions on the
Kobayashi-Maskawa angles and the related physics of
new Aavors. Further study of these matters will decide
the fruitfulness of the model.

Finally, a word about the choice of the U(1) symmetry
to be axial. In our original considerations [8], we were
motivated by grand unification that at some stage had
left-right symmetry [SO(10), for example]. If the U(1)
symmetry was a part of such grand unified theory (GUT)
symmetry, then it has to be axial. However, if one is sim-

ply interested in a minimal model beyond the standard
model, a vectorial U(1) symmetry combined with the idea
of a universal seesaw mechanism is not only possible, but
has some new and interesting features which will be re-
ported elsewhere.
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1. Higgs potential JV: Its gradient and its Hessian

&= V~+ V3
—V2, (Al)

The most general Higgs potential to be considered is
the sum of the following polynomial terms:

APPENDIX

In this paper we have implicitly assumed the existence
of a Higgs potential & with a symmetry group G contain-
ing the continuous symmetry group GO=SU(2)L
XSU(2)a XU(1)„and the discrete left-right symmetry
L~R, such that its lowest minimum orbit yields VEV's
of the Higgs fields with the hierarchical scale properties
specified in (4.13). We prove the validity of this assump-
tion in this appendix.

(1) We shall consider the most general Higgs potential
% with the full required symmetry in the case which pro-
vides a satisfactory mass spectrum discussed in the previ-

l

2V —'

y A [(~(r) ) t~(r)+(~(r) )t.~(r)]+Aa2
'
M2

r =1,2

(A2)

2V a
'

y p [(~(r))t ~(r) (~(r))'t. ~(r)]
'

r =1,2

(A3)

V =V~+V +Vf' (A4)

with

with [the dots indicating the scalar product of SU(2) spi-
nors]

4Vq —y (a [(+(r))&.+(r)+(+(r))t.+(rl]2+P
[
[(+(r))'t.+(r)]2+ [(+(r))t +(r)]2]

r =1,2

[( (i))t (i)( (2))t (2)+( ()))'t (i)( (2))t (2)]+2 [( (i))t (i)( (2))t (2)+( (2))$. (2)( (i))'t. (i)]

+y[(y'L") (pP'((p'R") qr'„'] +Hermitia nconjugate) . (A

a„,P„,p, v, tr, k, , k,„,p„,A, A„. (A7)

The existence of a local (i.e., with a strictly negative Hes-
sian) maximum at the origin requires A )0, A„)0. That

Later, we denote by I the terms with the coefficient y:

4V4 =ko.
(A6)

4Vya 2a2 y [g [(+(r))t +(r)+(+(r))& (r)]
~

r =1,2

Like the Higgs fields, the constant M has the dimension
of mass; it is introduced for dimension homogeneity. As
stated earlier, the Higgs potential & depends on 15 di-
mensionless real constants, which are C2a1 C1 a2

(1) (2) (2)
O'L, y 0's

1 1 2. 2

Then

I

& be bounded below requires that V~)0 for all field

values. This requires that the values of the ten parame-
ters a, P, )u, v, )r, A, , and A.„be inside a ten-dimensional
convex domain 2). We will need to know an open subset
of it, which we will define below.

It is convenient to use some explicit notation. Let the
values of the four Higgs doublet components be complex
numbers a„,b„c„,d„defined by
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I =(a f a, +b;b, )(c;c,+d', d, )

+complex conjugate. (A9)

By contracting each spinor with its conjugate, we obtain
four of the five quadratic 60 invariants of V2. We denote
them by

(~,"')'~,"'= ia i'+ ~b, i'=Z'

( (1))t (1)
~

i2+ id i2 Z2
(A 10)

(2'lit' (2)=
~a i

+ ib i2=Z2

( I2&)t '2'= (c2i2+ (d i'=Z2

More complicated inequalities need to be added to define
the domain 2). Those of (A14) and (A15) define only a
convex domain 2)'&XI, which is sufficient for our pur-
poses.

We assume that the coeScient y is small, so that we
can treat the yI term in Vf' as a perturbation. Remark-
ably, the unperturbed Higgs potential, which we denote
by %o, depends only on the five variables Z; whose
moduli at the equilibrium are the five VEV's of (4.13).
The gradient and Hessian of &o are

0 =Z; F; + ,' 5;5M—QNkZk,

with

V, =—g Z,'K„Z,'. +yr1

IJ

V3 —,
' MZ5 g Nk Zk, V2 —

—,
' M g L& Zk

k k

(A 1 1}

With the notation 0 =Z5, we obtain, for the Higgs poten-
tial (1 (i,j,k, ( 5 },

with

F; =g (K;k Zk ) +MZSN; ML;—,
k

zj
+M(5;5N Z +N, Z, 5 5) .

(A16)

(A17)

a, +p,
a&

pi

pj

a&

ai+pi
a2+ p2

a2

Ai

a2 A2

a2+p2 A, 2

A2 A

(A12}

Note that, at any extremum,

8&0= Q Zk =4V4+3V3 —2V2',az.
hence,

&=—,'( V3
—2V2) .

2. Higgs lowest minima
with vacuum expectation values satisfying Eq. (4.13)

(A18)

P2, L = A2

P2

A

The boundedness below requires that V4 & 0 for any value
of the fields. We leave to the reader the proof of the lem-
ma:

x +y %0, px +2~x y +oy &0 p&0,
o &0, r& +pcr . — (A13)

A &0, a„+p„&0, 2a„+p„&0,

p++(a, +P, )(a~+P~) & 0,
v++(a, +p, )(a2+p~) & 0,
A,„+QA, (a„+P„}& 0 .

(A14)

Applied to V4 in (All) and (A12), this lemma yields the
inequalities (r =1,2)

b, :Ia„=k,„=p=v=y=O, p„&O, A, &0] . (A19)

6 has been chosen in order to make E," diagonal. The
extremum corresponding to the five Z;WO is

The breaking induced by the Higgs potential ~o will
yield the modulus of the five Z, 's, i.e., the five VEV's of
(4.13); all values of their phases are equiprobable, and the
perturbation term yt will introduce some changes in
them without affecting the hierarchy.

To build the Higgs potential %o given the physical
VEV's, replace the Z s by the five desired VEV's in (4.13)
in the five equations BXfo/BZ;=0 [see (A16}]. This im-
poses 5 linear relations among the 14 constants of (A7)
other than y. The 14 constants must also satisfy the 3
inequalities in (A7), the inequality V4 &0, and the posi-
tivity of the Hessian (A17). And one has also to verify
that the other orbits of extrema either are not minima or
they correspond to higher minima. It is suScient to do
all this in an open subset 8 of 2).

Let 8 be contained in a neighborhood of 5C2):

(2a;+P;)+2p+2vky&0 .
i =1,2

(A15)

For given relations between the field values, it is easy to
find other conditions on the ten parameters of V4 in order
that this term is positive: for instance,

i+1
2

Z; =P„'M [L; N; (Z5 /M) ] . —

Zs A, 'M A+ g pI.P. , i (i &4,
r =1,2

(A20)



1388 DAVIDSON, MICHEL, SAGE, AND WALI 49

Indeed, the four Z, , 1 i &4, are solutions of F; =0 [see
(A16)]; then, r =1,2

(A23)

4

g N„Zk= —2MZ5 g p„p„' . (A21)
k=1 r =1,2

and (Zs/Z5) & 10 . We can assume

Using (A18), one verifies that the values of the potential
at these extrema is independent of the sign of Zs (it is the
same for the 32 possible combination of signs of the Z, 's).
At these extrema, the Hessian H,

&
is not diagonal [be-

cause of the terms in 5;s or 5s in (A17)]. We can write it
as 0 =DHD, were D is a diagonal matrix with elements
[Z, ,Z~, Z3 Zg M ] and the symmetric matrix H depends
only on the parameters P„&0, p„, A„)0, A)0. One
verifies that its determinant and all its principal minors
are positive; this proves both the positivity of H and also
that of H. So the 2 extrema of (A20) are minima with
the same value.

For simplicity, we assume that the physical extremum
is that with all Z; & 0. According to (4.11) and (4.13), the
coordinates of this minimum satisfy

Z1 (UL Z2 (Ug Z4 +Up Z3 Cg Z5
(1)— (2) — (2) — (1)—

(A22)

All the other nonvanishing parameters of the Higgs po-
tential are determined by [we add inequalities implied by
(A22)]

M=Zs, A =—'(Z, +Z )M &10

A =-'(Z', +Z', )M '&10 ',
p =—'(Z~ —Z )M )0,
p~= —,'(Z~ —Zs )M &0, ip„i & A„.

(A24)

%e prove that for this Higgs potential any other ex-
tremum is not a minimum by showing that the corre-
sponding Hessian has some negative diagonal term. Let
Z be the coordinates of such an extremum. Then at
least one Z =0. If Zs =0, then from (A16) and (A17),
we find H»= —AM &0. If Zs@0, at least one Z =0
for 1&i &4. Then H;; = M(I.; —N;Z,'M—'), which
can also be proved to be negative. For all the four values
of i, one can show that the value of Z5%0 can be re-
placed by Z5 with an accuracy of 10 . Then, according
to (A20) and (A23) (/3„= 1), H, ,

——Z~ & 0.
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