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1. - Introduction

It is a great pleasure to dedicate this paper to Luigi, as token of our
thirty year old friedship. Our two families have been several times neighbours;
with our wives, we have seen growing the Radicati and Michel children. It was
always a deep joy to meet. We also wrote many letters to each other. This
Festschrift is a great circumstance to thank Luigi for all that I learned from
him, from his approach to life and... from his approach to physics.

We have published together six papers [MR]. Most of these papers are
related to spontaneous symmetry breaking. Most of them use or sharpen a
mathematical tool which is the subject of this short paper. Jordan algebras
are examples of “covariant symmetric non-associative algebras on group
representations” (we shall simply call them “V — algebras”); they were invented
[JO1,2] for the need of physics sixty years ago. The second example of V-
algebras explicitly used in physics was introduced by Gell-Mann [GE] on the
octect, ie. the adjoint representation of SUs; he called it the “D-algebra”,
This algebra was introduced independently by Biedenharn [BI] for all SU,
adjoint representations. We made a systematic approach of these algebras and
extended them to different representations of Lie groups. In physical applications
the vectors of these algebras describe physical states; we emphasized that the
idempotents of the algebras, or we can also say, the one dimensional subalgebras:

(1.1) vVuU=Au

are good candidates for states with spontaneous symmetry breaking.

(*)  LH.E.S., F-91440 Bures-sur-Yvette.
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2. - The v-algebras and their automorphisms

Consider a vector space & on the field K = ~ or . It becomes an algebra
when we choose a homomorphism:

(2.1) E®E S €.

To have a commutative algebra, we consider only the symmetrized tensor
product:

(2.2) €®gf N £,

When there are no ambiguities about the algebra we consider, we shall often
use the notation:

(2.3) z,yeé, zVy def a(z®s y).

Given z € €, the correspondence £ 3y — z V y is an endomorphism of £ that
we denote by:

(2.4) Vye &, Doy vy

The symmetric algebras on ¢ form a vector space, generally denoted by
Hom(& ®s €, &) of dimension n?(n + 1)/2 where n = dimé.

The automorphism group of € is GL,(K). It acts naturally on Hom(£®g &,
¢). Using the same letter for g € GL, and the corresponding isomorphism
£-5¢&, this action is:

(2.5) atrrgoaog l®g gt

We denote by (GL,), the stabilizer of ; it is the automorphism group of the
algebra defined by a.

In physics, we often start from a symmetry group G and its representation
on ¢ of dimension n; it is given by a homomorphism G — GL,. We do not
require the representation to be irreducible and we denote its character by:

(2.6) g€ G, x(g)=1tr T(g).

We recall that the determinant and the characters of the symmetrized tensor
product representation satisfy:

det(T(g9) @5 T(9)) = (det T(g))"**+1)72,
(2.7)
tr(T(9) €< T(g)) = xs(9) = = (x(9)* + x(¢%))
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If 7" is an irreducible representation of G and if the reduction of the
symmetrized tensor product representation 7' ®g 7', contains the representation
7" without multiplicity, there exists a unique (up to a scale factor) G-equivariant
map o (sometimes called an intertwining operator) which defines a v-algebra
which has G as group of automorphisms. If 7' is contained in 7' ®¢ 7 with a
multiplicity v, this is also the dimension of the vector space of the covariant
algebras. It may happen that G is a strict subgroup of Aut A ¢ GL,; this
occurs more often when the representation 7' is reducible. Indeed the dimension
of the vector space of covariant V-algebras is then larger than one and for some
directions of this vector space the automorphism group of the corresponding
v-algebras might be larger (this is similar to the situation, well known to
physicists, of accidental degeneracy accompanied with larger symmetry). A
famous mathematical example of this phenomenon is told at the end of section
5.

It may happen that G is a strict subgroup of Aut 4 ¢ GL,; this occurs
more often when the representation 7' is reducible. That G is an automorphism
group of the algebra, means:

(2.8) (T(g)z) vV (T(9)y) = T(g)(z v y).
This implies for D, defined in (2.4):
(2.9) T(9)D.T(9)~" = Dr(g)a-

If the representation T is irreducible or, more generally, if it does not contain
the trivial representation, it leaves no non trivial linear form invariant. So, by
taking the trace of the preceding equation:

(2.10) No vector # 0 invariant by T = trD, = 0.

Unitary group representations are very important in physics: they leave
invariant a Hermitian scalar product whose real, imaginary part is a symmetric
(= orthogonal), antisymmetric (= symplectic) G-invariant bilinear form. In
particular, the unitary representation might be real; if not it can always be
considered as an orthogonal representation of double dimension.

We end this section by recalling definitions valid for all types of algebras.
Given a v-algebra on ¢ and two vector subspaces B;,B, ¢ E, we denote
Bi Vv B, the vector space {, V by,Vb, € By, Vb, € By}. The vector subspace B
is a subalgebra, an ideal of the v-algebra A4 when:

(2.11) B subalgebra of A< Bv B c B, B ideal of A BV ACB.

The intersection of two subalgebras (respectively, ideals) is a subalgebra (an
ideal). The sum of two ideals is an ideal.
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3. - General methods of construction of v-algebras

In this section we will consider three general methods to construct V-
algebras without starting from a group representation, as we have done in the
previous section.

As we have seen, the n-dimensional Vv-algebras form a vector space of
dimension n(n + 1)/2, and we could determine all automorphism groups of
these algebras by finding the stabilizers of GL, on Hom(& ®s &, &) which is
equivalent to the action on (&' ®s €') ® & where &' is the dual space of &.
This representation of GL,, is the direct sum of two irreducible representations
and the stabilizers are the intersections of the stabilizers of the two irreducible
representations. This study could be done for each n.

Another approach is possible. The G Ls-representation g — g ® g on the
n? dimensional space can be realized on the space of n x n matrices by the
action:

(3.1) mi— gmg .

There is a unique decomposition of m into a symmetric and an antisymmetric
part:

(3.2) m=3s+a, s=—21-(m+mT), a== (m-m')

DD |

which is invariant under the action (3.1). The action on the symmetric part
realizes the representation g ®s g. One must find the subgroups G of GL,
leaving stable an n-dimensional subspace of S, the set of n x n symmetrical
matrices and such that the restriction of the G-representation on this invariant
subspace be equivalent to the natural representation G C GL,,. We shall carry
this program for n = 2 in the next section. Note that for n = 1, there is only
(up to scaling) one V-algebra of dimension 1. The elements of K* (= CX*,RX)
(the multiplicative group of the field) which are automorphisms of this algebra
must satisfy A2 = A, so A = 1, the automorphism group is trivial.

The third approach starts from a symmetric trilinear form and a non
degenerate symmetric bilinear form. We first recall how to build a completly
symmetrical m linear form from p,,(u) a homegenous polynomial of degree m
defined on the n-dimensional vector space &,. The gradient of p,, at u along
the vector z € &, is by definition:

(3.3) Dx.upm(u) = lim (pm(u + 62’) - pm(u))

6—0

For a fixed u the gradient is a linear form on ¢,,, for a fixed z. it is a degree
m — 1 homogeneous polynomial. Moreover, the homogeneity of p,, implies:

(%4) pm(/\u) - )\mpm(u) = Du.upm(u) = mpm(u)-
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Remark also that:

(35) Dx,upy‘upm(u) = Dy,upx.upm(u)-
Then:
(3.6) Pr(Z1, 22, .., 2m) = (m!)"IDxX’uD“tu oDy ubm ().

is a completely symmetrical m-linear form such that:

(3.7) P, 1w, ., u) = p(u).

A bilinear form §(z,y) is non degerate if, and only if, Vz € Enyd(z,y) = 0=
y = 0. This is equivalent to say for the quadratic polynomial g(u) (usually
called a quadratic form) that the gradients D, ,p,,(u) of n linearly independent
vectors z; are linearly independent. We call this quadratic form non degenerate
(in a coordinate system g(z) = g,pz%z” is non degenerate < det Qap # 0).
Given a homogeneous polynomial ¢ of degree 3 and a non degenerate quadratic
form g, one defines the v-algebra 4 on ¢, by:

(3.8) Vz€ &y G(zVy,2)=t(z,y,2).

This method allows to build a v-algebra with a given group of automorphisms
G when the linear representation of G on ¢, leaves invariant a non degenerate
quadratic form (e.g., it is an orthogonal representation) and also a third degree
polynomial. For instance, the permutation group S, acting by permutation of
coordinates of &, is represented by real orthogonal matrices (with elements 1
or 0); it leaves invariant the one dimensional subspace &/ of vectors with all
components equal and the orthogonal subspace €!_, of vectors whose sum of
their components vanishes. The polynomial ¢ = Yor_i(z*)® is evidently §,,-
invariant; with the invariant quadratic form ¢ = Y."_ (z*)2, it defines a §,
covariant V-algebras. The vector subspaces €; and £/ _, carry subalgebras.

This last method does not build the most general v-algebras. Indeed, given
a V-algebra on &, we say that it leaves invariant a symmetric bilinear form
(denoted simply by (u,v), it can be degenerate), when:

(3.9) (zVy 2)=(zVzy).

From the symmetry of the v product and the symmetry of the bilinear form,
(3.9) defines a completely symmetrical trilinear form that we have denoted
{z,y,2} in our papers (e.g. [MR5]). With (2.4) and (3.9) we see that D, is
a symmetric operator: D, = D]. For any symmetric bilinear form on 4. we
define:

(3.10) Bt s 4 vte B, (a,8) = 0},



542 LOUIS MICHEL

LEMMA 1. If a V-algebra A carries an invariant symmetric bilinear form,
B ideal of A = B* ideal of A. If the form is non degenerate, B 0 B+ is a
trivial v-algebra.

Indeed, Va € A, Vbe B, Vo' € B+, 0= (b, bva)= (bt va)=(bVH, a).
[f the form is degenerate, A+ is a non trivial ideal.

4. - The 2 dimensional v-algebras and their automorphisms

It is a classic result on the diagonalization of quadratic forms on  that
in the symmetric representation of GL, (C):

(4.1) g€ GL,(C), s' =38 gsg’

there are n+ 1 orbits; they are characterized by the rank of s. One orbit is open
dense, that of the invertible matrices; I belongs to it. Its stabilizer is the group
of matrices which satisfy gIg" = I; this is the (complex) orthogonal group O,,.
The group which leaves invariant the one dimensional subspace {A[} of the
n(n + 1) /2-dimensional space S is generated by O,, and the dilations:

(4.2) gg" =M,  with \" = (det )%

In dimension n = 2 we use the three Pauli matrices:

(4.3) ’r1=<(1] é) Tzz(? gz), Tsz(é __01).

An easy computation yields for the matrices g which satisfy (4.2) for n = 2:

(4.4) A=det g, g=al —birg, A= —det g, g=ars+br,
with a? + b2 = X,

The group O, and the dilations leave also invariant the 2-dimensional subspace
of S spanned by the symmetric matrices ars + Ar;. Its representation on this
space is:
(4.5) A =det g, s gsg' = (al—biry)(ars + fri)(a + burz)

& g (a® — b2)I — 2abury;
T

(4.5") A= —det g, s> gsg' = (ars+ br)(ars + B11)(ars + b7y)

& g (a® — b2)73 + 2abr,.
The conditions tor this representation to be equivalent to that of (4.4) are:

(4.6) (a* — %) = a, 2ab = ¢b, € = +1.
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This implies either b =0, s0 a =1, g=1, g= 175 or a = €/2 € but e =1 1is
ruled out, because it implies det g = 0. So we obtain finally for the elements g
of the automorphism group G of the algebra:

(Ii\/éiTz), T3, (Tg:i:\/g’i'l).

B | o=

(4.7) 1,

DO | b

This is the 6-element group Cs,, which is generated by two reflections and is
subgroup of the real orthogonal group O,; it is isomorphic to the permutation
group Sz. By polarization equation (4.6) gives the algebra law; if we denote by
z,y;z',y';. .. the vector coordinates:

' I /
(4.8) Vv (T =5 ),
Y Y’ —zy' — ya!
It 1s well known [MI3] that the invariant polynomials of the representation (3.9)
of §3 are polynomials in the two invariants ¢ = 2% + 42, t = (2° — 3z32) /3. So

we have obtained an example of application of the third general method of the
previous section:

(4.9) u= (;C), (u,u) = q, uVu= % grad t, (uVu,u) =t, uVuVu = (u,u)u.

Remark that this algebra is simple (no ideal except itself and 0). Note also that
(u Vu)Vu=uV(uVvu) since the algebra is symmetric and the polarization of
the third degree invariant yields an invariant symmetric triple product of vectors
(= symmetric trilinear form):

' "
(4.10) <(;> vV (;)) (;;;)) = 22'2" — yo's" — zy's" — za'y".

We are left to study the second non trivial orbit of GLy(C) on the symmetric
quadratic forms, the orbit of those of rank one. The subgroup of G L,(C) which

. . : . a 0Y .
leaves invariant the one dimensional subspace ( 0 o) s the subgroup G of

a b N
0 d).lndced.

@11 (¢ ° a 9 a 0) [ a?a+2aby+bdf d(ay+ bp)
' 0 d v B bod) T d(ay + bp) 25 )
The verification is done for f = 4 = 0. But the reducible representation of

G is not decomposable: it does not leave invariant a two dimensional sub-
space. For this we have to impose ¢ = 0. Then the group of diagonal matrices

upper triangular matrices (

a 0 . R .. . :
( 0 d) 1s represented on the subspace of quadratic forms of coordinates ~, A

ad 0 ) _ ‘ - B
by ( 0 d2>' The two representations are equivalent if, and only if, d = 1.
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So the symmetry group is isomorphic to C* and its representation is reducible.
The corresponding algebra law is:

(v E)-(2)

The linear forms invariant by the group are, including a factor f3:

o1 (6 8) = (G) ()=

while the quadratic forms invariant by the algebra depend on two parameters:

(4.14) (‘g g) ie. ((;) (;:)) = aus' + Byy.

So (4.13) shows that the one dimensional subspace of ({j) is an ideal, while
(4.14) shows, for g = 0 that the one dimensional subspace of ( ) is also an
ideal.

Any two dimensional subalgebra of a Vv-algebra is a (sub)algebra of either
of the two forms found here.

0
Yy

5. - Other examples of Vv-algebras

The SU, covariant V-algebra carried by the SU,, adjoint representation (of
dimension n? — 1) [BI] [GE] [MRS5] has been used in physics. The vector space
of the SU, Lie algebra can be represented by the n x n traceless Hermitean
matrices z = z*; the invariant orthogonal scalar product, the Lie and Vv algebra
laws are normalized to:

? 1 1
(51) (z,y)ztrxy, mAy:”'z" [zay]) TVy= '2— {zﬂy}——; (:z:,y)I
where | | and { } indicate the commutator and the anticommutator. The V-

algebra is trivial for n = 2. The roots r of the algebra have square length 2
and satisfy the characteristic equation:

(5.2) (r,r)=2, r"- —21- (r,r)r" 2% = 0.
So:
(5.3) TVrVr:nkzr

P P ———
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Radicati and I have introduced the pseudo roots g:

def 2(n — 2 n—4
g =rvr, (q,q)=—£—;l—-—l, qVq=

q;

(5.4) L

n

(g,r)=(rvnrr)=0 gVr=rvrvr= r
A Cartan subalgebra C is a maximal Abelian Lie subalgebra: it has dimension
n — 1. It contains n(n — 1) roots that we label r,, 1 < k < n(n—1). The Cartan
subspace C is also a Vv subalgebra, isomorphic to the V-algebra on the space
£, 1 we have studied in 3. after (3.8); it has §,, as automorphism group: this is
here the Weyl group of SU,,. For a € C, the spectra of the operators ad a and
D, on the n(n — 1) dimensional space C* orthogonal to the Cartan subspace
are respectively:

(5.5) Spectra on C*:  ad a= {i(a,7%)}, Da = {(a,qk)} With gx = ri V ri

Remark that with the interplay of these two algebras one makes a Z,-graded
SU, Lie algebra. Another example of V-algebra for the 18-dimensional real
irreducible representation of SU; x SUs; is given in [MR1].

When we restrict SU,, to SO,, the n?—1 dimensional adjoint representation
of SU, decomposes into the direct sum of the adjoint representation of SO,
and its symmetric traceless rank 2 tensor representation of dimension n(n+1)/2.
The latter carries a SO,, covariant v algebra (see e.g. [MI2]). This is also the
case of the SO,, representation of symmetric traceless tensors of rank 2k; (e.g.
for k =2 [MI6,8,9]).

Let us give now an example of Vv algebra from the mathematical literature.
In 1955, in a famous paper [CH], Chevalley found that all known simple (non
Abelian) finite groups are simple Lie groups on finite fields except the five
Mathieu groups discovered between 1861 and 1873. From 1965 to 1975, 21
other so-called sporadic groups were discovered and it is now a theorem that
there are no more. The largest sporadic group is called indifferently “Friendly
giant” or “Monster”. It was defined [GR] as the automorphism group of a
V-algebra of dimension 196883. The construction of this Vv-algebra is clarified
in [TI]. In a n-dimensional orthogonal space, a lattice is said to be even if the
norm (z,z) of each vector is even. The Grammian I' (= matrix of the scalar
products of basis vectors) of an even lattice is a n x n matrix with integer
elements. The lattice is self-dual if |det T'| = 1. Even self-dual lattices exist
only in dimension multiple of 8; one for n = 8, the root lattice Eg; two for
n =16, Eg @& Eg and a lattice of D¢ (well known in string theory); twenty
four fox n = 24, among them there is a unique one with shorter vectors of
norm 4: the Leech lattice (found in 1965). The quotient of its symmetry group
G, divided by its center {I,—1I} is a sporadic group Co; found by J. Conway
(1968). The norm 4 and 6 vectors form two orbits of G whose stabilizers are two
other sporadic groups, respectively Co, (of index 98280) and Cos. The smallest
irreducible representation of G are orthogonal and of dimension 24,276,299, .. ..
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One builds naturally a larger group C' © G, but [ cannot give here the details;
on its representation (direct sum of 3 irreducible representations) of dimension
299 + 98280 + 98304, the C covariant Vv algebras form a 6 dimensional vector
space. One (up to a scale factor) of these Vv-algebras has an exceptionally large
automorphism group: the Friendly Giant.

6. - The meaning of idempotent of \/-algebra in physics

Radicati and I showed that in the space of internal symmetry (essentially
flavours at that time) of the fundamental interactions, the direction of spontaneous
symmetry breaking are idempotents of Vv algebras [MR1,2,3,4]. This was
extended by some of our students [PE] [DA]. It is true-that from these algebras
one can build G-invariant degree four polynomial (bounded below) similar to
those proposed sixty years ago by Landau as mathematical model for second
order phase transitions, and, more recently by Higgs (in the Lagrangian of
the scalar Higgs field) for the spontaneous breaking of symmetry in gauge
theories [MI1,2,4,5,7]. There is a difference with the Landau polynomial; for
v-algebras with an invariant polynomial (zV z,z) of degree three, the “Landau”
polynomial has a degree three term which excludes second order phase transition,
but describes first order phase transitions “not far from second order” as they
occur sometimes in crystals and often in liquid crystals. It is true that for an
orthogonal representation of a symmetry group G without fixed vectors # 0, the
invariant polynomial of degree 3 are of the form p(z) = (zV z,z) — -g— Mz, z),
so their extremas satisfy: z vV z = Az. However, for the dimension n > 1,
they are all saddle points: indeed the Hessian is 2D, — AI; at an extremum
z, (z, Hyz) = Mz, z), tr H, = —n) (see 2.10).

The situation is different if we consider a general bifurcation problem with
a symmetry group G. At a bifurcation point, the solutions are tangent to the
space of an irreducible (orthogonal, if the problem is on the real) representation
of G; with some analyticity hypothesis D. Sattinger [SA] (and his papers quoted
there) has shown that bifurcations generally occur for irreducible representations
with a G-covariant Vv-algebra, in the direction of idempotents.

I had the occasion to verify these properties [MI6,8,9] for the
renormalization of the Landau-Higgs model. The symmetry group G acts on an
orthogonal n-dimensional representation. The physics must be independent from
the basis chosen for this representation; indeed the renormalization equation
is O, covariant and the critical exponents are O,, invariants. At that time the
bifurcation equation was written [BR] in the ¢ = d — 4 expansion. It was
convenient to consider all Lagrangians with quartic polynomials and to study
the renormalization flow as a vector field » in the vector space P of quartic
polynomials; the dimension of P is 1+ ((n + 6)(n + 1)n(n — 1)/24) since we
assume that the n-dimensional representation of G is irreducible on the real.
There i1s a O, covariant V-algebra on P. The renormalization flow u of a G
invariant Lagrangian £ stays tangent to the space P of G invariant quartic
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polynomials. In the neighbourhood of small ¢ the number and the type of
stability of the renormalization fixed point «* depend only on the leading term
of the renormalization equation, i.e. v* v u' = £ e’ if no further degeneracy
appears (this is not the case for n = 4; this exceptional case has been completely
treated in [TO]J). Let G the stabilizer of L in the O, action; it might be strictly
larger than G and it is the true symmetry group of the problem. If there are
solutions u/, we can form others by action of the stabilizer in O, of PC. It
can be shown that the latter is equal to the normalizer No, (G). T could prove
the theorem: if there is a stable fixed point, it is unique. This shows that the
symmetry of a stable fixed point satisfies G = No, (G). With 1.C. Toledano,
we have studied the physical implications of these results [MI10].

However there is much more to say on the use of covariant V-algebras in
physics; I hope one day to work again on this subject with Luigi!
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