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"The first problem in data presentation is the realization
that the problem of presentation exists. It is possiblie to
compare models with experimental data using an insensitive
variable such that agreement is obtained whereas if anothe:
variable had been used dissgreement would have been found.
The real problem is to find variables, or way of disp.aying
the data such that the "physics” of the experiment is clearly
visible'.

D.R.O. Morrisson
(Proceedings of the Lund International Conference on
elementary Particles, p. 261)

There is surely such a problem for the communication of polarization
measurements. For severai years we have been interested in this problem
either in papers of ours, or lectures and mainly in discussions with experi-

mentalists.

This preprint starts a series of preprints where the problem will be
studied case by case, for the different values of spin and the different types of
experiment. It will contain tables and diagrams directly useful to the experi-
mentalists. We give our planned table of contents in next page. The mark 1
indicates the content of this issue. Following issues will contain a cumulative
table.

As much as possible every part is self contained and can be read indepen-
dently. For more details o1 for general study (valid for any spin value) we
will refer the reader to the appendices, which are labelled Al , A2,

We hope to receive many comments from our colleagues and we intend

to write an improved version before publication.
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Part 1. THIT POLARIZATION DOMAIN

0  Introduction.
Relativistic invariance requires that transition rates for particle

decay or particle reactions are functions of the momenta of the involved parti-
cles only through the Loreniz invariants formed with their energy momentum

2 2

vectors p i, e, o= m . oand p.o.p..

-1

The value of these invariants can be
deduced from the energies and momenta in some particular frame (the center
of mass frame, the laboratory frame, etc...). Useful experimental results
must be given directly or indirectly in terms of these invariants. For instance
for a three particle decay, this is made by using the Dalitz plot or a s,t,u p]otvt
What is physically relevant in such a decay is the position inside this geome-
trical plot of the point which represents an event. This plot has moreover the
property that its natural measure de is that of the phase space after integra-
tion on the kinematical group of symmetry of this decay, i.e., the rotation
group in the rest frame of the decaying particle.

The dimension d of the diagram of invariants, i.e., the number
of linearly independent products oo Bj With i #j increases with the number
n of involved particles

d = 3n-10 for n3» 4, d=0 for n< 3 (1)
(for n = 4, d = 2, indeed s+t+u = }:mz1 ).

So for a many particle final state the high dimension of the diagram
of invariants makes its representation more difficult. However some recent work

(e.g. VanHove - 69) have emphasized the usefulness of geometrical plots.

1 In the Dalitz plot of the energies Ei of 3 particles from the decay at rest

. . . 4 . .
of a particle with energy momentum Py = (m, 0), the three invariants
- 2
are mIi. = p . p and as well known s = SPR 1 = -ps)
R T i as wnos = (pg-py), (Py - Py
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In the particle reactions made in high energy physics, some of the

involved particles have a spin different from zero. Then a complete information
on the physics of the reaction requires the measurement of particle polariza-
tions and also, eventually, the use of polarized targets and/or polarized beams.
Of course many experiments do measure polarization. This includes experi-
ments producing resonances, because the same approximation which attributes
a mass and a spin to a resonance aiso defines its polarization states.

It must be however recognized that for the description of pblariza-
tion of particles with spin greater than 1/2, there are many different parame-
trizations in the literature. Too often the choice of the polarization parame-
ters is made for the comparison with a fashionable theoretical model. But
experimentalists who expect their experimental results to be useful for many
years, should use a more intrinsic description of polarization, since the mean
life of most of the theoretical models is not more than one year !

What is more disheartening is to see that the domain of value of
these parameters seems to be unknown to some authors ; at least it is generally
not indicated. And often some experimental points appear outside the allowed
domain of values.

We see the situation as follows : for each point of the Dalitz plot
(i.e., set of values of the pi) of a given experiment, the measured particle
polarization can be represented by a point in a domain ¢ which is a convex
domain in an Euclidian space of dimension N (Table 1 in I.0. gives the
value of N as a function of the particle spins and Table 1 in II.0. gives N
for one-particle states in given experimental conditions).

In this part, we give general properties of @ . In the other parts
the domain & will be computed and described for each spin vahie and different
types of experiments. Remark for instance that there is a natural metric ondD
and it is somewhat puzzling that several fashionable parametrizations corres-
pond to a choice of non orthonormal coordinates for &0 !

What is physically relevant is the geometrical position of each
experimental point in @ : is it on the boundary ? is it near a remarkable
point, etc... ? Indeed, with the discussion of each experimental situation
we will indicate which part of the domain @ is preferred by different theore-

tical models. Given in this intrinsic way, results of an experiment could be
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TABLE 1

Number N of polarisation parameters as functions of the particle spin j

(with non zero mass)

Single particle state Two particle state

1 3 5 1 1 1 3 3
j 5 1 5 2 5 ('2"95) (2,1) (1,2) (2,2)
N 3 8 15 24 35 15 35 143 399

for one particle N = (2j+1)2_ 1 When all polarisation

2
for k- particles N = (]'[1;1(2ji+1)) -1 correlations are included.
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more easily compared to any new theoretical model ¥ as soon as it appears.

This method of presenting polarization measurements may make
also less difficult the comparison of several identical experiments performed
by different groups. The combined result will be given by the barycenter of
the representative points corresponding to a same kinematics. Finally, by
plotting the margin of errors on the same diagrams it would be worth to see

how small there are, compared to the size of the domain 1“'_.

As much as possible, part II has been written independently of this
part I, so experimentalists do not need this part for using part II. The main
body of this part I.1 to 4 has been written to explain part II and those to come.
The 8 appendices to part I have been written(or planed) for further explanations.
They also intend to prove every equation or statement used in the practical

parts.

t This would be particularly easy when our theoretical colleagues will take
the habit to describe their predictions in the same intrinsic fashion. 1t is
also useful for theoreticists to check whether their predictions are inside

the allowed domain !

tt+ Sometimes published statistical errors are of the size (unknown to their

authors) of the domain. One may then wonder to know what is measured.
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1. What is Polarization.

Polarization is what one has to measure in order to characterize the
kinematical state of a particle whose momentum is known. Indeed the polariza-

tion operators form a complete set of commuting observables with the energy
momentum operators for the one-particle states,
The pure polarization states of a particle with a given momentum

form a Hilbert space ’;‘é of dimension
n

n = 2j+1 where j is the spin of the particle with positive mass
n = 2 for a photon
n =1 for a two-component massless neutrino.

A pure polarization state can be described

- either by a unit vector |[x)> € %n (i.e. «x|x> =1) defined up to

a phase,
- or by the rank one projector PX = | x > < x| which is Hermitian P =P
and satisfies tr PX = xlx> = 1.

A general polarization state is a "mixture" and is described by a

"polarization density operator" e, represented by a n xn, trace one, Hermi-

tian matrix (i.e. P = @*, tr ¢ = 1) which is positive, i.e.,all its eigenvalues
)'i are non negative. Indeed such an operator can be decomposed into (summa-

tion over repeated indices is implied)
p=AP (1)
i i
where Pi are orthonormal, rank one, Hermitian projectors on an orthonormal

set of eigenvectors of 4

PP. = § P (2)
i ij o

Then the )[j's which satisfy

).. = ‘crePi

1

are probabilities to observe the particle whose polarization is described by f s
into the pure polarization states Pj . The number of li # 0 is called the rank

of the matrix. When all )\i’s are different, the decomposition (1) is unique.
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For asystem of k particles (with non zero masses) whose momenta

. A . . . k .
are known, the Hilbert space of polarization states has dimension n = ][ (2114-1);

. S i=1 . .
since it is the tensor product of the o for each particle. The pélarlzatlon
P 2. +1 P
1

state of the system of k particles is described by a density operator ? , repre-
sented by 2 n X n, trace one, Hermitian matrix. So equations (1), (2) and (3)
extend to this case : indeed the mathematical description of polarization is
similar for the case of 1 or k particles. However the physical interpretation
is different : in the latter case one has to measure the correlation between
these polarizations in addition to the polarization of each particle. This is quite
analogous to the measurement of momenta. Consider the example of a sample
of 7m0 decaying at rest into two photons. The momentum distribution of each
photon is isotropic (since 7© has spin 0) but momentum conservation requi-
res a strict correlation between the momenta of the two photons : these
momenta are opposite. Similarly the polarization distribution of each photon is
isotropic, but angular momentum , P and T conservations require a strict
correlation between the two photon polarizations (there are diametrically
opposite points on the Poincaré sphere, i.e., orthogonal states in the two -

dimensional Hilbert space of polarization, since 79 is pseudoscalar).
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2. The domain chn of polarization density matrices.

'he n x n Hermitian matrices form a n = N + 1 dimensional

Fuclidean space g\,+l whose scalar product is

- g = z 4
(Cp0 0g) = v ¢, €, (4)
(The integer N was given in Table 1 for some spin values).
Of course orthogonal states in ’ff’n (i.e <x|y> = 0) are orthogonal mgN_H
(indeed PX Py = 0), and the scalar product (4) has therefore an obvious
physical meaning.
The condition ir ( = 1 defines a Fuclidean subspace (iN of 8N+l .
2

And the condition tr e = 1 defines a sphere Q\fN of unit vectors.
The positive matrices form a cone 51\1 whose vertex is 0, the center of UON.
This positivity domain is convex, i.e., if €i € \6n then Z )"i ei _6 fn
when ki > 0. !

We call polarization domain O@n the set of polarization density

operators; their characteristic properties : hermiticity, trace one, positivity

D, - £y, %,

Rank one Hermitian projectors which correspond to pure states

imply , see Fig. 1

(i.e., e* = e = 62 , tr e = 1) belong to the boundary 0 O‘Dn of D(Dn
and to the sphere Z{}N 1 intersection of the plane gN and the sphere Z)ON .

The center of this sphere jN 1 is (?O = ;11 /0 the density matrix of the

unpolarized state ; its radius is J(n-1)/n . Except in the case of one particle

1
of spin 3 (then N = 3) the pure states of polarization cover only a small

part of JN-I .
For each value of n we will change the scale of g’-\? , so that the
1
radiu‘s of dN-l be 1 . Then the distance of the point ? to €O , the center
of N_1 will be the degree of polarization de o e :
1

de = [;]—?i tr(e— eo)zjé (5)

with 0 < d€ < 1. (5")
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’We will call €"N the space gN with this new scale and e' the
point of 8 N corresponding to ¢
=\t (P po) (6)
We have then the properties
f'*‘—‘-e,,trF'ZOgOétr 9'2_41 (7)
(7")

?' - \/ nill eO 7 0
“L[“( Pr Pz)‘lj (8).

' _ n 1
R T T B 2T 2 e s

In the appendices A6, A7, A8 we will continue the general

study of the geometrical shape of @n .
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Fig.1 The Euclidian space g of Hermitian operators on % he
subspace 8 of trace one operators and the unit sphere (7 . The polariza-
tion domain @n is the intersection of the convex cone g of positive ope-

rators and the subspace 8 Pure states are represented by the points of the

N’
boundary of@lcontamed in the subsphere 3 = éf ng . By a dilatation of
. »ater O and factor “E-f the radius of N-1 is made unity, and then for any ()

it~ distance d, = e e , gives the degree of polarization of ()

¢




3. The choice of reference frame and coordinate system.

It is of course useful to use a coordinate system in EN . This is
even a necessity for the processing of physical information by computer; the
density operator 0 has to be described by a set of real numbers,

This set will depend on two choices

a) Choice of a reference frame for each particle,

To each particle we associate a tetrad, i.e., a set of four vectors
() ,, . :
n &A= 0,1,2,3, which are orthonormal, i.e.

n(<:><) (B) @ (9)

. 2 \ = g‘

and whose time axisg 1(0) is _p/m where P is the energy momentum of the
particle. Often this tetrad is specifiedby choosingthe three (space-like) axes

in the rest frame of the particle and transforming them by the boost (i.e.,the
pure Lorentz transformation) transforming the four-vector (m,6) into_}_3_= (po,g).
By convention the axis _r}_(g) is the "quantization axis". Up to ten years ago,

the most usual choice used to be 2(33; along the normal to the scattering plane

in the two-body collision A+ B — C+ D, i.e.,

(3) - (3) - (3) (3)

E'—BAmn'—EB_B'—pCZE'BDzo' (10)

Then the quantization axis _r_l_( is common to the four tetrads.

: 1 2
This is called nowadays a transversity frame. The choice of Q( ) and Q( ) for
each particle can be fixed for instance by choosing a "channel" e.g. s- or t-

or u-transversity.

Helicity axis are also used; Jacob -Wick-59 introduced the
s-helicity and Jackson the t-helicity, etc... In Appendix A1 we will describe

explicitly these different possible frames.

b) Choice of a coordinate system for EN

By the choice of frame, the matrix which describes the density
operator P 1s well defined and it can be parametrized by its matrix elements
or by their real part and their imaginary part in order to use a set of real
numbers. However, these numbers do not correspond to the value of the coor-

dinates of me' an orthonormal basis of the Euclidean space SN . A multipole
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expansion (for the rotation group) of the density matrix exhibits more physical

proper-ties. Let us first consider one particle states : then n = 2j+1 .

The real and imaginary parts of the tiJ/I , coefficients of the multi-

pole expansion form a set of orthogonal coordinates. However there are diffe-

rent normalizations of these coefficients in the literature and most of them

destroy the natural metric of C$n . In Appendix A2 we define the multipole

parameters that we shall use and denote by v Then the degree of polariza-

M
tion dP which is the distance in Z’N between 9' and e'o (see equation 6)
is given by

d = Z' (rk/[) (1 <L gn-1=2j, -LgMgL)
e L, M

3

The multipole expansion depends on the physical nature of EN .

As any linear operator on ﬁn . Q is transformed by the rotation t R into

. .\ sk
p ~ pUlrep" (1) (11)
So the rotation group acts on the space 8N4~1 by the linear representation
(up to an equivalence : ~)
pWe 50 o plilg plil o o ij);l ptb) (12)
=) . . (J)
where D is the complex conjugate of D 7.

Then p can be expanded into irreducible tensor operators

. 2] (L)
p-2x” P
L=0
with
0) 1
P " n ‘ﬂ “
The linear combination of elements of P which transform as the
IJ
irreducible representation D( ) of the rotation group form the L-multipole P

of the polarization state. The observation of the angular distribution of decay
products of the polarized particle yields directly the value of some multipoles
e. g the even L-multipoles for the sirong or electromagnetic (i.e. parity

conserving) two-particie decays.

T By "rotation" we mean rotation for the particle at rest and more generally

transformation of the littie group d‘fp the subgroup of elements of the
cle energy momentum p invariant.

P

liorentz group which leave the parti



For two particle states n is (B_il 12, + 1), and F/‘ is transfor-
med by the "rotation" group according 1o
(iy) (,12); (i) (y)
P~ @& D o e T (13)

instead of (11). So Pvan be expanded into double-multipoles (I/I ,J,Z) with
0 SLI < Z‘jl . 0k« Lr) < 2‘12 ~ whoso properties are straightforward generaliza-

tion  of single multipoles

) (0 1..) (L)

(Ll
P , P = Py

where Pi is the polarization density matrix of the particle i when the polari-

Note that P !

zation of the other particle is not observed (or not taken into account).

When P— ( Pl ® PZ) # 0 , there is polarization correlation.

In the ideal case of very accurate polarization measurement, the
position of the representative point of P in the domain c@n must be independent
of the choice of the reference frame and polarization parameters (elements of

P , multipoles parameters, etc...). However, when one varies the kinematics
(considering for instance P as a function of s and t in a two-body collision),
the transformation from a conventional frame of reference to another conven-
tional frame may depend on the kinematics, so the trajectory (e.g. as function
of s, t) of the representative point will look different in the two conventions.
To give an example, in the two-body collision (see for details Appendix Al

§7 - 9) the transformation from an helicity frame to the transversity frame in
the same channel is independent of the kinematics (it is a - ; "rotation"
around the common p_(l) axis) Bul the transformation from the s-helicity
frame (Jacob and Wick) to the t-helicity frame (Gottfried and Jackson) does
depend on s and t . We suggest that it might be worthwhile to process the
data in the computer through different coordinate systems and {rames and see
how the final results -grouped by bins - yield points in the domain ;Dn depen-
ding on the intermediate parametrization. If they do, it must be checked that

it can be reasonably explained by a kinematics - dependent transformation.
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Since such a transformation cannot be made on a published data grouped by

bins, it might be worthwhile in some cases to publish the different diagrams
corresponding to the different "physical" choice of frame (a s- or t- or
u-channel frame is best suited for studying particle or trajectory exchanges

in the corresponding channel).

For each value of spin and each type of experiment we propose
a set of diagrams. Some of them average over these kinematical transformations.
loosing physical information, but allowing a possible direct comparison

between differently processed data.

We will not discuss difficult guestions of physical interpretation

which occur from two facts

a) The accuracy of most experiments is limited by poor statistics.
Of course such experiments yield only a limited physical information ; here
we shall deal very little with the question : how to obtain all information

contained inaa limited statistics, although we shall give a few hints.

b) The majority of the new particles are resonances, produced
with a background. If the background is incoherent and unpolarized, its only
effect is to decrease proportionally the degree of polarization defined in (5).
However the situation is generally more complicated : for instance one may
have interference between different orbital waves, and we will also study
later such situations (see part V.). It is the art of physicists to know when
a simple approximation cannot be usefully applied. But it is necessary to know

first the simple approximation !
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A
4. The domain (@n which depends on the experiment.

We have discussed up to now the most general polarization density
operator for the one or several particle states with given momenta. However,
in an actual experiment the polarization density operator, may not be the most

A

general one and we shall denote by §Dn its domain of value.

Angular momentum and parity conservation may imply constraints
on Q . Then é\n is a subdomain of @n . We will consider essentially two
types of conditions, which are studied in detail in Appendix A 3. One type is on
the rank of ()(1. e.,the dimension of the space P%}) which has to be smaller
tgén or equal to a given integer k « n . The otherlicype of condition yields that
@n is the intersection of @n with a subspace gN of SN . In part II we
shall treat explicitly, for each spin value, the following situation. The beam and
the target are unpolarized; either it is a two-body reaction A+ B - C + D
or, when there are more final particles, one observes the polarization of only
one of them and one averages over the momenta of all other final particles.

In that case the experiment has a symmetry plane (three-dimensional plane in
space-time). Parity conservation in such reaction implies that the polarization
density operator is in a subspace 8BC 8N . The dimension of this subspace
is

2 N+1

12 ’
2 n = D) 1 n even

dim GB = (15)
2

(n"- 1) = if n odd.

DO =
> |z

As we shall see in Appendix A6 , @n = &Bﬂ @n is also a convex domain.

In many experiments this whole domain é\n cannot be observed or
is not observed. That is, only a subset of the polarization parameters is obser-
ved while the value of the other is not known ; for instance we have said that the
observation of a two-body parity conserving decay allows to measure only the
even L - multipoles. In all the physical situations we will study, this means tﬁx\at‘
one observes only the orthogonal projection of Qon a linear subspace H of SN .

For instance H can be the subspace geven of even multipoles in the decompo-

sition of 8N = Eeven e godd into a direct sum of orthogonal subspaces.
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A
In general P, the projected image of gbn on H (one also says, A
A

the apparent contour of o@n on H ) is strictly larger than the intersection C=t®nnH.

(See Fig. 2). Of course C =] when H is a symmetry r - plane of C@n
(r =dim H). This is the general case met in part II and part III. In those
parts we will study B -symmetric experiments (so p € 8B) and consider

both cases : the odd part of the polarization is or is not measured.

R The equality’\ C= F may still hold when H is not a symmetry
plane of $n (e.g. : @n is an egg and H is its equatorial plane). This
occurs for instance when one measures only the diagonal elements of P .
When T is larger than C , the matrix which would be obtained by putting
zero for the unobserved elements of a density matrix P would be non positive

if its projection on 1—\ is outside C (see part V.).

In part IT and part III, for each spin value , and for respectively/\
one and two particle states, we will study explicitly the different domains °®n
of possible polarization density operators for different types ofl experiments ;
we will give the physical signification of its different regions and eventually

place the theoretical predictions of different models in ﬁn .

-
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FIG.2

A

Fig. 2. r‘ is the vertical projection of ébn on the horizontal
. .

two-plane H and C = $n n H . Both C and F are convex and Cc [ .
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Part I, APPENDIX 1

COVARIANT DESCRIPTION OF POLARIZATION AND COVARIANT FRAMES

1. The particle at rest
The particle in motion
Wigner formalism

Polarization observables

The [matrix
Covariant frames

2

3

4

5. Parity and Time reversal

6

7

8. Helicity and transversity frames
9

The crossing angle

THE PARTICLE AT REST

Consider a spin j, mass m particle at rest. Let %2j+1 the 2j+1 dimen-

sional Hilbert space of its polarization pure states. It carries the irreducible
unitary linear representation for short ("irrep") D! of the rotation group SO(3)
(more exactly one must use SU(2),the covering of SO(3), when j is half integer).

Any operator on ‘73:@ is transformed by the (covering of the) rotation R

2j+1
according to

A ~sDR) A D*I(R) = DiR) A DI(R)L. (1)
The action (1) leaves invariant the Hermitian metric

<Al> = tr A'B (2)

it also transforms the Hermitian operators into themselves. For the real vector
space of the Hermitian operators of J:(?G) , the scalar product (2) reduces to an
Euclidian scalar product. We can also say that the rotation group acts on the
space oﬁ("}@) of linear operators on Cfﬁaccording to the unitary representation :

e D) ~ D@D ~ eij:-o p (3)
where ~, means equivalent. The elements of the irreducible orthogonal
subspaces of £(‘§C) are called irreducible tensor operators or 2L~ multipole

operators. So we can write the decomposition into multipole operators
2j (L)

P
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(o)

is a multiple of 4 . The orthogonality of the irreducible subspaces yields

P

ir pl©) P(L) =0 = tr ()(L) , L#0 (5)
and the condition trﬁ) = 1 implies
(0)_ %
P - 2j+1 1 (6).

The unpolarized state has P(O) for density operator.

To represent operators by matrices one has to choose a frame Oxyz in
our space (here always right-handed). By convention Oz is always chosen as
the "quantization axis" i.e., the unit eigenvectors of the rotations around the

axis Oz are taken for the orthonormal basis |ju

<jiw'lim > = 8“; (7)

of ﬁZj-hl :

Then a vector | x> € G is

lx>= ¥ [ju> (8).
1
It is transformed by R according to [x')> = g'“ [iup'y  with
¢! = DIt g (9).
The corresponding density operator is
P=lx><x1 = p" jiu>< vl (10)
where its matrix elements are
M = BV = oV = 1 i !
eu. g 3 ?“ . <JH‘?‘JV> | (10").

THE PARTICLE IN MOTION

All this is well-known to physicists. But when the particle is not at rest,
too many physicists seem scared, although things are very simple and what
to do was explained more than 30 years ago by E, P. Wigner in one of his many
fundamental papers "On unitary representations of the inhomogeneous Lorentz
group" Ann.Math. 40, 149 (1939).

We denote %2]'*1 (p) the 2j+1 dimensional Hilbert space of pure polariza-
tion states of the particle of energy momentum p = (E,B) (with _pf = m2 =

2 2
= E° - P7). The (covering of the) rotation group has to be replaced by the

subgroup £p of the (covering of the) homogeneous Lorentz group £ which is

the little group of p .
b, = setof ACL . Ap = p. (D)
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This group is isomorphic to the rotation group

indeed et A be the boost i ¢, . the purce Lorenty transformation, along —}%
) : e
and of velocity p/]J; thien b@ is the conjugated of the rotation subgroup S&)(B)
P ‘
ofs bv A i e.
p ]
L= A som) op (12)

We will still call the elements of the liftle group of,  "rvotations" bui use this
]’)

word between quotation marks  Given a Minkowsk: frame - time axis + Oxyz ,

its transformed by A is calied a "tetrad” for the particie It is a set of four
P
orthonormal vectors

T N (13)
m :
the set of E(j) is denoted sometimes by ;1) .
They satisfy
L) E((3) gch (14) .

The right handed orientation is defined by

(0) n(l) () (6) (¥) 6) =1 . (14")

(2) (3) 1 Apve n 'n''n

1 i n
det (Il , N » N ) - 4t € 60(@7'6 l H v P

. (3) . N L : .
By convention n ) is the quantization axis. To summarize, for each particle
one has to choose a tetrad. It is often convenient but not compulgory to choose

for the different particles the tetrads obtained by "boosting" the same reference -

frame. The use of any other element of & which transforms (m’,aﬁ = mt into
p = (Egg) is permissibie. Such an element is a product /\p R, when R is a
rotation.

WIGNER FORMALISM

We can now define the infinite dimensional Hilbert space C(%(m i) of all
J

states of a particle of mass m and spin l . Indeed such a state is known when

the value of the 2j+1 coordinate X“(Q) are known for all p of the posgitive
2 2

energy sheet Qm of the mass hyperboloid p " m . Tosummarize
L}C is the Hilbert space of functions X defined on Q with value
(]n; J) M §el!
in .. » which have a finite norm for the scalar product < X_[ly > in % .
2j+1 m, j)
3=

. N : v _dp
«UV»vQ<MMWM>ZWT? (15)
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where < X 'W D = Z )( ( ) is the scalar product in %2 e (p) and
p=-]
1
2, 2 3 2 2, 4
S(B+m) ° P = §(p"-m”) d" p (15")
'p°>0
is the invariant surface measure on .Q . This space ﬁ 9 is called by

mathematicians a direct integral of the %2 1 (p)
&

~ ) > d
L Ton®
Ly P

and x“(p) is called by physicists the wave-packet. A transformation of the

(16)

(covering of the) Poincaré group (° is the product of a homogeneous transfor-
mation A € of , the ( (covering of the) Lorentz group and of a translation in
space and time a . So an element of [ is a pair (a, N). The group law is

(@, N)(b,M) = (a+Ab, AM) (17)
Wigner - 39 showed that the unitary representation (a,/ )MaU(m’ j)(_'c}_, A)
is defined by
O™ D@, XM = 2 P DiwrEan* | M te as)
When Ap = p i.e., /\écfjp then the rotation R(p,A) is that which appears
n (12)

-1
R = 19
(p, A) Ap A /\p (19)
If Ap = p' # p then the rotation | R(p,A) is
-1 -1
R = = N A 20
(p, N) Ap' N /\p Ap /\p (20) .

t As we said this choice is convenient, but not compulsory. Wigner esta-

blished the necessary and sufficient condition

R(p,N) R(A""p,M = R(p, AM)



Of coursce in the particu: o ca~c ol o poiicie o cest pooat 1o o genuine
rotation R, equation (18) 1 cdiaces 1o

- m,

U M

(Rys (v DU

which is just (9).
. 0 . .
Given & tetrad p/m . n itoshoud become ciear what is the "rotation"”

(i) (1)

R (p, 6) around the axis n by an angie 0 oS in the two-plane p . n
PP . 2
(n (K .
are unchanged, those in1he two poane n : o1 (v J, k is @ permutation
of 1.2,3) "rotate” by an angle 0.

Explicitly (see for instince Wigne:

D'Ryp. oy e T oy ug Mg e

POLARIZATION OBSERVABIL.ES

Relativistic invariance is expresced by the invariance under the Poincaré
group /¥, It implies the conser vation ol enet gy, momentum, and relativistic
angular momentum. We denote by E = P9 | pl ) vty .MVH ,the Hermitian
operators on Jﬁ% the Hiibert space of physica: states which correspond to the

coordinates of these absapvmbles. These operator s satisfy the commutation

relations : (pvd e -~ 0,1,3.4 , 1 = 1,2,3)
[P“, Pl - o (23)
[MH Vﬁ M= 1g“€} Y i gu‘ wHE 1g“0’ MY 1gu"u~ M'uo‘ (23")
2 1 R N VN S v
[P , M ?~ g HpY Y p (23")
These operators form a represenisiion on “ of the Lie aigebra of [O.

The polynomials in P's and M's form « 1epresentation of {¥, the "envelopping

algebra" and they also are kinematica observabies (when they are Hermitian).

For example ( €O 123 1)
W= L pH on (24)
/. 2 s uv
2 v TN
P -~ PP - PP g (25)
e u T
2 » , M o
W - W W W w e (25")
S r
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We remark that

{Wl ,P“] = 0 (26)
_E._VK=P1W1 = 0 (27)

‘and also that _]32 s _'\ﬁz commute with all P'S and M'S and therefore with all

their polynomials. In other words, they are in the center of the envelopping
aigebra and they represent relativistic invariant observables.

For instance, if %= %m, ) the Hilbert space of the states of a particle of
AeA.vanishing mass m and spin j, the P's and M's form an irreducible repre-
sentation of the Lie algebra of KD and

P2 - m?t WP os w1 (28)

where I is the identity operator on %(m i)
To completely characterize a one particle state, one must extract from

the equations (23), (23'), (23") a complete set of commuting observables. When

one includes the energy momentum Pl in this set, the operators necessary

to complete it are the polarization observables. As equation (26) shows we can

choose functions of the W'S . It must be noticed that the W'S do not commute

among each other ; indeed from (24) and the (23)'s ,

= i v P
[WR_ s W“] 1EMWPP W (29)

One shows that a complete set of observables (one can also say : amaximal
abelian subalgebra of ﬁ) including the P'S is obtained by adding __W_z and one
component of W ,
We can now use the direct integral decomposition of (16) for the operators
on (o, 5 For example o ) ‘
wh = WA (p) 4P (30)

.Qm 2 \113 +m

where Wl(p) is an operator on the 2j+1 dimensional Hilbert space %j—i—l(«g)'

Let g(d)(E) a tetrad for the energy momentum p (i.e., n(o) = E/m).
We define for m # 0
s@py = ‘“lzﬁ” W (p). n®) = ?;.. Wl(p).n({() (31)

and we have equivalently (i,j,k = 1,2,3)

wip) = -m 2 sV ) (31)
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0)

Equation (27) means S( - = 0. We deduce from the commutation relations (29)
. . . K
[s(”, st -yl gl (32)
k
This shows that the S(l) are the generators of the "rotations" of the little group

oﬁ} of p. They can be called the covariant spin operators,
) D

2 (3 ' . -
W= and S( )(p) complete the set of commuting observables containing P and,
L L 2 3
from our definition of polarization in 1.1 , W7 and S( )(B), p€ ‘ﬂm are the
polarization observables.

Of course

5 sWpp? - G (33)
i

where Ip is the identity on Ctﬁzﬁ_l(p) .

Then the polarization density matrix of a particle of spin j, energy momen-

tum p is (Michel-59) 2j factors
A X u ‘ A u )
I w W=y W (12 Wiy Wy W
P = 2541 'g’km(2)+slu o ) = (p) A (1) Sy ..o m® @
(34)

where the g are respectively axial vector, second rank completely

AH

symmetric zero trace tensor, ..., zero trace (s‘ll U = 0), completely

symmetric 2j-rank (pseudo if 2j odd) tensor. The conditions imposed on thesg™ ™

G
by the positivity are partly given in Henry - de Rafael - 65.

If one replaces Wi(p) by its value in equation (31') where S(i)(p) are the three
Hermitian (2j+1)x(2j+1) matrices satisfying (32), then P(p) is the (2j+1)X(2j+1)
matrices that we study in part I.

In § 3 we did not explain Wigner's treatement of the zero mass case.
Let us consider it shortly here, from this operator algebra point of view,
T"Cis the Hilbert space spanned by the state-vectors of a particle with zero

mass. So 5
P = (35)

(0) (s4) (0, (3)

We choose a time axis t = n :let n be a tetrad with p = & (n""+n )
i.e., o= pO.
Equation (27) then implies

s+ 5@

(p) = 0 (36)



2 2 2

so Wi = sPp - s@p i3 < o (37)
which is independent of P .
The commutation rules of the S(l) are

ERIEC) JEC) (38)

-

[ s@] - s (381)

s @7 . (38")

This is the Lie algebra of the two dimensional Euclidean group which is

isomorphic to O(;p when EZ = 0 and B?L‘ 0.

2
Wigner showed that when - E in equation (37) is different of zero dim %(p)

is infinite, so he called this case zero mass, infinite spin representation

U(O’w) of \P (there are two inequivalent irrep. corresponding to ‘the integer
and half integer spin).
The zero mass finite spin case is given by 5 = 0 , so

P2 = 0 B W2 = 0 (39)

which implies

W o= AP (40)
and the pseudoscalar l (indeed W is an axial four-vector and P a polar four-
vector) is the helicity. Then %(,E) is one dimensional. When one adds space
reflexions, we must double the dimension of P&CQ in order to have -I— )_ for
the helicity value. For the photon A= N I (right and left circularly pola-

1 1
rized photons). For neutrinos ;L = - ) and for antineutrinos 2_ = =,

PARITY AND TIME REVERSAL (m # 0 case)

We have spoken only of the "rotation" group. In order to study parity
conservation, we have also to consider space inversion : is(t,?) = (t, —?)
and space symmetries : the product of space inversion by an element of the
connected Lorentz group.

Only relative parities are measured in guantum mechanics ; but a univer-
sally used convention gives a parity T) = T'1 to each particle at rest ; and we
denote D(J‘“n) the corresponding representation of the (covering of the) rotation

group enlarged with space inversion i

S

PO ) =4 . (41)

2i+1
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In the three-dimensional space a reflexion SH through the plane orthogonal to h
is the product of is and the rotation of 7 around 1 . Covariantly one defines

also a reflexion Sn through the three-dimensional plane orthogonal to the space
like unit vector n with 22 = -1 and .p = 0 (See Fig. 1)

n
Sng = a+2(a.n)n = is(E) . Rn (p,m) a (42)

where Rn(pg 8) is the "rotation" of angle 8 around n and

i(plp = p., i_(p) g(l) = _2(1) : (43)
S S
So, with the use of (21),(22)
(3. m) - SimA A
DN ). = me 5%, (44)
L@ T X
G.m) A - im(j-A) A
DY (s = Me 5 45
" G o)p =7 1 (45)
The tensor product of the irreps D(J”r]) of the 'orthogonal group is
(G;.1m4) (iy Ms) Jp + (L, )
D1*\1®D2‘772 o ool 2 e 46)
L=l -3yl
L
Since T) = ¥ 1 ig real, equation (1) shows that for every L , P( ) transforms
L, +
under D( ’ 1)0 For instance for L =1 , the dipole polarization is an axial

vector,.

For a particle at rest, one must also add to the invariance group the time

inversion it (t,?) = (-t,?) which acts on %2j+1 by an antiunitary trans-
formation V(it) defined by
A , ) _l’ . Y
» . I B Ao A
oo™ = ol @ - co't s @ (47)

The covariant generalization is it (p) defined on space-time. Since

V(it (p)) is an antiunitary operator, in the Fourier transformed space of energy

momenta, E does not change sign and B does.
Explicitly we use the convention

i

| x Gk -
[Ve,ex]™ ) = 1 . 5);1, (XS~ (o) (48)

where p' = (E, -B).
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e [T MATRIX
We will have to study also charge conjugation and crossing symmetry. For
these discrete operations and others we will have to use the FJ matrix which

exhibits the equivalence of D’ and D! .

Indecd | o |

Dlay = 1ol (49)
where

‘FJ’)}) ST 5‘1,1, (50)
Note that

" e g, (51)
and

o= Pl (511)
(Remark that BT T e L A T i A

Equations (22) and (45) show that

D [Rz (E,—ﬂ’):} = f‘j . (52)

D(jﬂﬂ)[sn(z)] = ) (53)

COVARIANT FRAMES

One tetrad must be chosen for each spinning particle. By convention this

tetrad will be always right-handed (see 14'), i.e.,

det(Eﬁg(l), n(z)ﬁ _9(3)) = m > 0 | (54)

and 2(3) will be chosen as quantization axis. Hence, to specify a tetrad, one
has to choose only two of their three vectors n(i) orthogonal to p, e.g., 3(2)
and 1_1(3)» One could publish with the experimental results a drawing of the
laboratory representing also the chosen axis! It is more customary to fix these
two unit vectors in a covariant way, i.e, . as function of the four-momenta of
the other particles in the same reaction. Let i be the label of the particle
whose tetrad we want to fix. In order to define these unit vectors orthogonal to
P. . we will consider pairs P, ’-Ej . and riplets P, Py ’Ef, of linearly indepen-
dent four-momenta (the latter is only possible for reactions involving at least
four particles!). We call a k - plane the linear subspace generated by k sueh

linearly independent vectors.
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A two-plane which contains a time like vector, p; does also contain space
like vectors; we will call it a hyperbolic two-plane. We can define such a two-
plane P, ’-P-j , by choosing another particle j (we assume that particles i and j

are not relatively at rest). In this two-plane we can define the space like unit

vector
1 A A
1 o - 55
g (i) Sh‘Pij,. (Bi chcpij gj) , (55)
where /\ ‘ N N
= = . 0. 5!
P, Ei/mi’ chq)ij B - B and Sh(Pij> (55")
Then ﬁi and q.(j) form a orthonormal basis,
A N A2 2
El ﬂl(J) B O: Bl - 1 H ﬂl(J) = -1 (56)

A A . .
. p. o= . = 57
P; - P, gi(:}) qj(l) chcpij , (57)
A . . A
B = B = s
p; gj(l) g, (i) By Shtpij (57")
As function of the invariants
2 2
o= + 8
m, (p, EJ.) (58)
we can write
2 2 2
chg.. = (m.. - m. - m))/2m m, , (59)
ij ij i ] i3
and
2 2 2.1/2
< = i B o, . s 60
htpij A (mij m, . mJ) /2m. m (60)
with the notation
Alx,y,z) = x2 + y2 + z2 - 2xy - 2yz - 2zx . (60")

A three-plane containing a time like vector, p; , can be fixed by choosing

two other four-momenta Py > Ef (we assume P » P > and Et linearly inde-
pendent, i.e., in the system of one of these three particles at rest, the other
two are not colinear), One can define, as another space like unit vector, the

normal n to such a three-plane B, Py oo Py by

n,E.moﬂn@pk:(),n.gem(),gzr-ulu (61)

1 - — AL —

The ambiguity of its sign can be removed by

det(n.p, .p .p,)> 0 . (61")



