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We could now make a general convention for fixing the tetrad of any final
particle i, produced in a collision betv een a beam particle b and a target

particle 1. IFor instance : we choose the two unii vectors q.(b) and n, the

normal to the three-plane p ,p . p, with det(n ,p. ,p, ,p, ) >0 . as the
(3) b A S B S|

(2) . , S
vectors n and n of the tetrad. However this convention is not the most

natural for some frequent type of reactions, which we study in the next paragrap.

TRANSVERSITY AND HELICITY FRAMES IN s- , i- , and u-channels

We will study here in detail only the case of two-body reactions with

four- momenta
..} s e 62
e R N (62)

in which a natural correspondence can be established between one initial and
one final particle,
1 &> 3 . and 2 ¢« 4
having the same baryonic, and/or leptonic, and/or electric charge.
These reactions define (except in the colinear case of forward or backward
scattering) one three-plane, and six two-planes, three of them containing a
given particle. The two-planes have the following names

s-channel two-planes Py 5Py and Ps 5Py
t-channel two-planes  p, ,p, and p,,p, (63)
u-channel two-planes El 5 94 and Ez ’EB

We will use the letters a,b ... as a symbol for any of these three channels,

and call "ai" the particle associated to particle i in channel a . Explicitely,

for
i =1 2 3 4 (64)

we have
si = 2 1 4 3
ti = 3 4 1 2 (64")
ui = 4 3 2 1
As usually. we will call also s,t, and u the kinematical invariants correspon-

ding to these three channels. They can be written for any i

2
s = (p * Ry
2 .
t = (Apl - Rl)) . (65)
2
u = (p. - p )
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One sign convention must be made for the normal n to the reaction three-
plane (see expression 61'), For this kind of reactions we shall always use the

nearly standard "Basel convention" (Basel-61)

det(p; *py . Py s Pys n) = det(p; *py . By s By s 1) O, (66)

dettn . p;, Py » P3) > 0. (66")

In the center of mass system, i.e., in the rest frame of EI+_E2 = EB+—p4 5

expression (66) means that 31 33’3 33 and 32 s 15’4 ,B are right handed triedra :

> _ =2 -3 e "
Py X Py - 1 Pox Py - 1 >0 (66")

We insist again that conventions are arbitrary but must be specified in each

self-contained publication ! Let us review here some possible conventions.

The transversity tetrad, associated to a particle i and a channel a, is

3)

defined by choosing the quantization vector g( , up to a sign ’r] , along the

normal n
T8 . T , (67)

a—i ali’

=}

2) . . . ; .
The vector E( ) is chosen in the corresponding a-channel two-plane, and

fixed by another sign €

T (2) _ T ) '
o1 = aei - 9, (ai) . (67")

The helicity tetrad associated to the particle i and the channel a is

(3)

defined on the contrary with the quantization vector n in the corresponding

(2)

a-channel two-plane, and the vector n along the normal n . These vectors

are fixed by two new signs 7 and €

5 ,
Hn{ ) H"'?' n o, (68)
a1 ail o
Hn'(S) - HC q. (ai) (66")
a—i a i “i

It might be useful to prepare a table of the choice of the forty-eight signs
T H T H v
.5 .M., _€., €. made in different papers by the same or by different
ali’ ali” a i’ a i
authors. We intend to do it. Let us just remark here that the most frequently

used conventions for s-helicity (Jacob-Wick-59) and t-helicily (Gottfried-

H
Jackson-64) correspond to opposite choices for the €'s . For Jacob and
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. H (3) . ! § . s >

Wick Sni is along p. inthe center of mass frome,i. e, , for P, + psi =0
i
. - ‘ H ) i o
as equation (55) shows, this means € =~ +1. For Gottfried and Jackson,
(N
H (3) . S B |
tni is along p’t, in the rest frame of particle i ,i.e.,for pi = 0, this
i

H

means t€ = -1,

In this work we make the rollowing conventions
T H T

;o

. H . .
a) The signs € . and ¢ arcindependent of the particle i and

of the channel a .

b) We want the two tetrads T and 1 of s given particle and a given channel
1)

to have the same vector g( TLdoe

T (1) H (1) (69)

This is equivalent to
T H,, T H _: (691)

c) We extend the Basel convention to the basis vector along the normal in

each tetrad, i.e.,
T, H
I o !
/

3

+1 . (70)

Remark that conventions a), b). and ¢) leave still one arbitrary sign
“ o }—IE o ,_’16 (71)

Conventions a) and b) are natural and happely the most common in the
literature. The Basel conveniion c¢) is more and more adopted. Thus for
instance, Cohen-Tannoudji - Morel -Navelet - 68 adopt the same conventions
and fix € = +1. However, as already pointed out, widespread conventions differ
by the sign of € . So we will keep this sign not fix, and include € in our
formulae when necessary. We took this decision because, as a matter of fact,
most of our formulae are independent of € . Let us see two examples

A transversity tetrad is transformed in the corresponding helicity tetrad
by a "rotation" of +Z around their common E(l)vector, This is a consequence

2
of conventions b) and ¢), since the sign of this rotation angle is given by

1 (1) T (2) H (2) 1 (1) T (3) Hn(:}) SHN T,

—rg—det(&g ., n ' 7n )-.»~?—‘.—,~det(9:§ .on o, n ) |

HeTe=+1

(72)

The crossing angle, to be studied in the next paragraph, is also indepen-

dent of € . This can be¢ seen in equations (75) and (76) which contain two
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T
vectors n(z) or H_Q(S) corresponding to different channels. Of course we

suppose, according to convention a), the same sign € for all channels.

To summarize, for the four particles and the three channels we fix the

transversity tetrad by

and the helicity tetrad by

@ o, BO @) (74)
a—1 - a—1 -1

where n is the "Basel normal" (see equations (66) and _c_li (ai) is defined in
(55) and (64'). The sign € will generally not appear in our formulae, but it
should be fixed in every experimental paper measuring odd multipole polari-

zation.

THE CROSSING ANGLE

The transformation between two transversity (or helicity) frames corres-

ponding to the same particle i and different channels a and b, will be a
"rotation" around the normal n which brings the a-channel two-plane into the
b-channel two-plane. Let us call Wi,ba this crossing angle. From our sign
conventions a) and c), one can use indifferently the T or the H tetrad for

its definition. Indeed

T (2) T (2) H (3) H _(3)
= _ = . . 7
cos Y pa ai = b a™i " bH : (73)
) 1 T (2) T (2) 1 H (3) H (3)
= = —— 76
sin. Y 1a m, det(p;, m, ,n; % poy ) m, det(p;m, oy 7,y ) (76)
(we recall that n = TnA(B) = Hn@) for all i , all ¢ ).

- c—1 c—1

From our conventions in (73) or (74) and the definition of the vectors q.(j)

in (55) to (60') one obtains

cos Y pa = -qy(@i) . qbi) = [Ch‘f’i,ai Cho; by - Ch‘Pai,bi]/Sh“’i,aiSh‘Pi,bi B
m 2 2 2), 2 2 2) 9m2 2 2 2,
i,ai "™ T Map MUy g Ty 7 Iy ey My g gy Ty

2 2 2 1/2 2 2 2 12
A(mi i ’mi’mai) A(m., i,m.,mb.)

2
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But the invariants used in this expression are, according to equation (58),

2 2
= +
™ ai (B * Py;) (78)

If we want to use the standard invariants s,t,u defined in (65), we can write
equation (62) in the form

El +E2 +E§ tpy = O s (79)

by changing the sign of the final state four-momenta. Equations (55) to (60')
are also valid for time-like four-momenta P » Ej with negative energy. But
the sign of gi(j) will be changed whenever j is a final state particle. And the
sign of gi(ai)qgi(big will be changed unless ai and bi be both initial or both
final particles, i.e., (a,b) are (t,u) or (u,t).

The right hand side of equation (77) can be written in a more symmetrical

way. Calling Fi ai bi its numerator and ¢ = ba , we have from (79)
2 2 2

+ + -
rig alpbl [‘.i’ aig ci A (ml ai ’ ml 9 mal ) 0 . (80)

9

This expression and the symmetry properties of rand A give the new form

i,ai,bi
17 2 2 2. 2 2 2 2 2 2
ri,aijbi S T2 [A(mlgai -y e Mo )+A<m1,bi - Ty e M )_A(ml,ci e Tt
(81)

Thus, cos ) is given by the expressions (a,) and (b,) in Table 1 .
i,ba °8 P 1 1

The explicit value of sin (JUi ba defined in (76) is given by the expressions

in the same Table. The signs in (b,) are easily obtained from (66)

(a2) and (b 5

and (62).

5)
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Table 1. - Rotations around the normal which relate the frames associated .

with s-, t-, and u-channels

Crossing angle . which transform for particle i the frames associated
g g i, ba b

to channel a into the frames associated to channel b
12
2 2 2 2 2 2 2 B

(al) cos ('Vi,ba = €ba{(a*mi -m )(b—mi -m, )—Zmi (c—mi -m . )]/[Ai,afAi,l?]

N _eba[Ai,a " Ai,b B Ai,c]/ 2[Ai,a' Ai,b] v

5 1/2
() SN W, e € e (100 Y, ) =

" i, ba [‘A(Ai,a A ’Ai,c)] /Z[Ai»a' Ai’b]

3

(bl) Signs of the expressions in (al), for the same sign conventions in

channels a and b ,

€ ° +1 for (b,a) = (u,t), (t,u)
eba = -1 in any other cases.
(b2) Signs df the expressions in (a2), for the Basel convention (66),
ei,ba = +1 for i = initial and (b, a) = (s,1t), (u,t), (u, s)
for i = final and (b, a) = (t, s), (t,u), (s, u)
ei,ba = -1 in any other cases
(c) Terminology used in (al) and (a2)

a,b,c= label for the three different channels s,t,u, and for
their corresponding invariants
ai = label for the particle associated to particle i in

channel a (see 64')

[

mass of particle 1 .

2 2
Aa,m”, m )

m,
1

A

i,a 9
Ox,y,2) = x°+ y *z - 2xy - 2yz - 2zx

i




l

o

Paosr i APPLNDIX J

TOLARIZATION DENSITY MATRIX - MULTIPOLE EXPANSION

A HL DENSITY MATRIX ELEMBNTS

The dynanoca! state of a sampie of pariicies with fh ol energy. nemnenturn

pi e

Andfixed spin g ois o statisiics MIsIUT € 0T PUre PO 173 TON STates 37 s de~ ciie aln

e posarization density operator (D acting on the veciors of & (2)71 airaen-ion .
Hiibert space %) . Howe choose a reference Tvame, the 2)00 vectorns ( i D
&)

7 )
ergenvectors of J% and (]3
22 . 4
JT ) gm> = gt [ jm > (1

JS l jm> = Een) l _;4n> ,
form an orthonormai basis of the Hilberi space ?fé
ek

<jm ' im'> = gm'

m-

i+

3

In thig basis the poiarization density operator is mepresentet by «

(2§41) x (2j+1), trace 1, Hermitian, semi-positive matrix, (See Appendis €,
lig e’ements are 9 L jm ‘ Qljl’l) (3
with |
Z oe (4)
0",

m
. Y ‘ ) m . et
The N = (2j7+1) - 1 independent elements e L may be chosen as coordinastes of
the density matrix in the space gN . However, as it has been emphasized mn !. 3,
this coordinate system is not an orthogonal coordinate system 1or g N
Furthermore if we performa rotation of the frame of reference, the basis

vectors I jm > undergo a unitary transformation :

{ im > o~ L1 ‘ jm > = ] jm'> D‘](R}m' (5

m
. . T)‘] R .4 DEPN ; o S e s s gy 1 o . a1 eyt g b e O
where (R) 18 the (2)+1)-dimensional representation of the rotanion group.
The corresponding unitary transformation of operators s
-1
Q M 9'”' - 17(1—{‘) Q L: \J{) . \.('f.
cnd the density matris elements undergo the transfor mstion
m

WIn R T 0o m .j.,-1n
y o DYR Dy (7
? n ""59 n () m e n . n' -’ ‘

, m : ,
oo the Noandependent coordinates e transform mto eqch other whien the
n
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reference frame is rotated but the transformation law involves the reducible
tensorial product of two representations D’ .

For these reasons we shall consider another set of coordinates for the density
matrix, ci'’ed the muitipoie parameters. Let us before review some of the pro-
perties of the Wigner's 3j-symbols and of the representations of the rotation group.

THE 3j-SYMBOLS, THE TENSOR c’;m

The 3j-symbol is defined by the relation

iy g i -jo-m =
< (P2 30541 26 m jomy | jo-my) (8)
= I3 Jymyomy| ja-mg

where (jlmljzmzl j3—m3) is the Clebsch-Gordan coefficient of Condon and
Shortiey (Condon - Shortley - 35).

The vaiue of this 3j-symbol has been given by Wigner and Racah (Wigner-59),
(Racah-42), (Rose-57)

Jp g N O AN [ 1.
1 72 73 T P P G PR PSS PORNG P P PO ES PR PR FOR

= (') P R 3 '
(312«12 Jg 1)!

X (j1 %ml)i (jl—ml)i (j2+m2).', (j2—m2)5 (j3+m3)! (j3-m3);!

r S , : o S -1
X Z -) [Il(31+32'33'r)5(Jl‘ml“r)i(Jermz"r)"'(33‘32'*'m1+1°)”33"31" mzjbr)!]
r ' ‘ y
(9)
These coefficients are nul unless the magnetic-quantum-number indices m,

, he re.ati
satisfy the re.ation m, " m, N m, 0

and the spin indices j satisfy the usual triangular relations.
1
The 3j-symbols are invariant under any even permutation of the columns.

For any odd permutation we have

2 01 3 ( 17273 i J2 I3 (10)
m, m, m, = ) m, m, m,
Another property of the 3j-symbols is
S P F ) PREPRE gy 3 |
v = (-) ) (11)
©m, -m, -mg m, m, m,

Wigner (Wigner-59) has introduced the very convenient concept of cova-

variant and coniravariant 3j-symbols. The metric tensor which allows one
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to raise and iower the magnetic-quantum-number indices m is defined by

mm' - j-— m _ . 'j+nj 1 12
¢ i () 5!71_»,-111' (-) 6111,-1‘11’ (12a)
1 - yitm _ o yj-m’ 121
Cmm' (-) gm, -m' () 6m, -m' ( )

The symmetry character of this tensor depends on the parity of 2j

! i !
C;in m (&)23 anlm (13a)
cd e ()l (13b)
m'm mm'

Since the tensor is not symmetric we must precise the place of the summation
index. We shall adopt the convention that to raise or to lower an index we sum
over the second index of the tensors C. For instance, the contravariant 3j-symbol

is

iy mg| oMl p g (_)js'”b Iy i3 14)
™My g I3 My My mi S T B
Throughout this appendix, we adopt the convention that repeated magnetic-
quantum-number indices are to be summed over (m = -j, ..., +j), whilst summa-

tions over j , when they occur, are always indicated.
From (9), (11) and (14) one deduces the relation
MWy mg )y (15)
p g g My Mg My
The orthogonality of the Clebsch-Gordan coefficients leads to the orthogonality

relations for the 3j-symbols

S , '
i dg 3 R A 1 § 6’“3 (16a)
. . o - A T . -y
Wy my Mg 1 Jy U 2igtl Izly = mj
I, 0, ml. m, m m! m!
3 (2j3+1)< b 3) (.’ I S B (16b)
i Ty My Mgy \ gy dg g ) my m,
Remark : The symbol : [ J 1 0 - (-)-m g (17)
m m'oO \ ’2].“ m, -m'

has the properties of the tensor anlm’ . In fact, we have

cd = \fojer [ T O) (18)
i m m' 0

For this reason the metric tensor C ! n is sometimes called the 1j-synthol.
m
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3. THE UNiTARY IRREDUCIBLE REPRESENTATIONS OF THE ROTATION GROUP

“; The homomornhism SU(2) —s SUX3).

There exisis a 2 : 1 homomorphism of the group SU(2) gnto the rotation
oy A -5 e PR . —-—p . . -
group 003, Expiicitly, if R(m, 8) is the rotation by an zngle @ around the

Sirection m (m . 1), the two matrices of the group SU(2) corresponding to this
rotztion are T U(m, 8}, with

9 . 8

—
L - > .
T : : 3
J(m, 8) = cos = - 1 gin & Jj

(ra, ) os 3 4 - isin 5 Gem (19;
where 4 is the unit 2
“rices,

‘e rotation around Ox is represented by

% 2 mairix and —'Z = (GX i 'Gy , G_) are the usual Pauli

8 o
cCoSs & -isin 7
B 2 2 _
13 5 . (20:
J{Ox, 8; 8 8 (20a)
_—1sm2 cos 5
The rotation around Oy is represented by the real matrix
cos ° gin 9
B 2 T2 ,
Oy, 6 = | p @ (20b)
+sin 5 cos 3
‘re rotation around Oz is represented by the diagonal matrix
- - .8
o . 8 2
— cos 5 - 1 8in ‘2“ e
7(0z,8) = = .8
0 Ly
0 cos 5 +ising 0 e 2
: - (20c)

From (20b) and (20c) one deduces that the mairix U («,
ding fo the rotation parametrized by the Euler angles o, .Y is

-

Ult,B Y=

Note that the matrix ré SU(2) corresponding to the rotation by an angle -

srouna Oy is

r

1l

to - ¥)

e

o

e

pe —.) .
"J(Oy‘;_n’) = lc

Cos

)

g

2

y

i
2
e

i .
“2“(°(T )

e

, ¥ ) correspon-

(-X+¥)

sin

cos -

é

2

g

2

e

{21)

(22}
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1
2 =11
L , m m .
Fhe elements of this matrix are - Mo 7 (=) 5 .o (23)
m -m

I.e. the elements of the matrix | arc identical to the components of the metric

mim'
tensor C1 m mm'!
(24)

12 Moo = Ol

The matrix rsafisfios the following properties

r? - (25a)

T -1

o= -7 =7 (25b)
The interest of the matrix [lies in the fuct that it exhibits the important pro-
perty of the group SU(2), namely that the matrices U are equivalent to their

complex conjugate U. In fact one verifies the relation

U=rur’! (26)

b) The unitary irreducible representations of SU(2).

The unitary irreducible representations of the group SU(2) are characteri-
zed by one number j (2j = non negative integer) and the dimension of the repre-

sentation D’ is 2j+1. If the elements of the matrix U are

-b a )
the matrix elements of the representation DY are (m,m' = -j, .., > +j)

3 . NE N E T N N T -r+m'—i-p- 1 - 1
[DJ(U))m _ Z ()F V(i+m)'(j m)!(j+m) ! (j-m)! JJmrtmj-rom r+m mEr o)

m' N (j-r+m)! (j-r-m)! (r+m-m)! 1!

U =(a i fa)® + b2 = 1 (27)

the summation being performed over ali possible integer values of r such that
none of the arguments of the factorials of the denominator be negative,
Let us consider three particular U matrices : U =4 (i.e., a=1, b =0),

Us=[ (i.e..,a=0,b=1) and U = rF= r—l (i.e., a=0, b=1),

I, pm m
Dy - Sm, (29a)
jm i ni j-m . m
(M) e EDUOL, = (7™ g™ (29b)
ji6flm = Tm i _T'm N Jtm . .m 2j, .jym )
[<r> ]m, BRI I L S S R (i (29¢)

We can also consider the representation of the relation (26). We obtain

Ja=m J,~m i .n i --1n'
“(U) = : © " 0¢
D ([)1'])' D”)n ])(U)”' DY(] )n (30a)
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The matrix elements of the matrix DJ(U) are

m m-m'

D™ = bl = (-) pl()

-m

! m o (30b)
The matrix elements of the matrix DJ(U)* are
At —————
. . : . B
Dlu*)™ | = [D%U)‘*]m. = D" = ()T (30c)
m Jm m -m

c) The unitary irreducible representations of the rotation group. (Rose -57)

Using Eq. (23) which gives explicitly the values of a and b as functions of
the Euler angles o , @ , { »the representations of the rotation R(o(,@, ¥) are

m -im'eX
e

' (31a)
m

Dj(‘xﬂ@’r)rrnnl - e~im0(dj((3)

with ‘
@, = Y (or VTR, 8- 2rimiem € 2rmm

m' (j-r+m)! (j-r-m)! (r+m-m')' r!

1
. i nam _ ' (31b)
The matrices d ((3)‘ , are real and they have some interesting symmetry

properties which can be directly verified on Eq. (31b)

A, = dip™ - (32)
ST, O de™ (33)
0C) R O L (D R (34)
d@" = d@™ (35)

Using (31b) one may also compute the matrix elements of d‘](@) for some

characteristicsvalues of (’f;

$0) P m = §T (36)
m

O P G L Sy (37)

| " _—

e O LT S (38)

From (37) and (29b) and (38) and (29¢) we note that

d’(-7) = () | (39a)
. T C 9 .
al(m) = 710 =) ()7 ! (39b)
From (30b), the matrix DJ(d,R ,¥ ) is related to DJ(gx,Q;, ¥) by the relation
: . . T 1
D, 3,y )™ = ()™ Dl ), (rTH" (40)

\ m' n n' n
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and we have

I)‘](a*@»'r)lzlv - (_)m‘m J)J(N;Q~Y')~m (41)

-m'

This formula can be directly verified, using (31a), the reality of the dJ's and

formula (34).
Forinteger j, m and m' can take the value 0. One has

o ™ o [ AT 5
D88, (-) \/23'4—1 V(B ) (42a)
'j O o -{ln v 4 ~j Q B ¢
DG ) 2iv1 Yy B0 (42b)

where the Y J's are the usual spherical harmonics.
m
Note that we can define the contravariant spherical harmonics by the formula :

YU e oMyl yiem (43)
j j m -m

Furthermore from (41) we have the relation

v ! = (o)™ oy (44)
m -mi
thus
vy = (<)) v (45)
J m

d) The reduction of the tensorial product of two irreducible representations
of the rotation group.

The tensorial product of two irreducible representations of the group SU(2)
is completely reducible. The reduction formula can be symbolically written
i i+
plgn? - &> D (46)
Ly -dg|
Explicitly, the matrix elements of the matrix which reduces the product are
the 3j-symbols of Wigner, and one has

. : i1 * s . o
J m J m, 8 m. m. L N j. .
1 1 2 2 ‘ 1772 L M 192
D (R) " D *R) (-f2L+ D(R) (47)
nl n2 N
L= Iy Iy M L n, n,

Using formula (30c¢) and the orthogonality property (16b) of the 3j-symbols,
one shows the following relations

j m n, L j j m m. L. j 0
D l(r) nl /,1 . 2 )D 2ip-1) 2 ! - 2 DL(R)I\IIW (471)
1 \Jl m, n, j, M'n

j m /n, M B ] n , m, M' j
plm ' [} 1 2] -ty 2o rfJua”l)Dﬁq, ! N In2 (47m)
n i Lm, n, iy 9
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The corresponding relation for the reduction of the product of two spherical
harmonics is

e

i i (23, +1)2j +1)(25+1) /3, 35 ] iy 150 :
Sy E 1 2 ( 1 92 ( 1 %2 L (48)
n n 47 n

1 2 in 0 0 0 n, n, n

which can be written, using (44)(45)

i Je (23, F2j,+1)(25+1) /5, d, O J; i, 1 -
Sz E \/ 1 2 (1 2 >(1 2 )YJ (49)
4 T . n

P My ] 00 j/\n n, j
4, THE NON-HEEMITIAN MATRICES Tl]'\l/I
L.et us consider the (2j+1;  operators
T .
T (L=0,...2j; M=-L,..., +L,) (50}

whose matrix elements in the basis | jm > of the Hilbert space %23‘4"1 are

i
[

§<3n1{1M|3n> = (jm | LMjn) {

/m L J\

JN PR 4 1 B T

where we have used the contravariant 3j-symbols of Wigner.Let us review the
properties of these matrices

\
(51
e s

jMn)

a) The 3j-symbois are real, thus the matrix elements are real.

A , 0)
b) The elements of the matrix T(O‘ are, using (17)
, m 0 j°
0),m . I B
(rh= . \ 2+l < ) S (52)
0 n . n
i 0 n
c) The matrices 'l"’(' 0) are diagonal, thus they are Hermitian, however the
. . ' . .
matrices T M # 0 are not Hermitian. Instead, using the properties of
3j-symbolis one obtains
LT AL * M L :
(T = (T = (- ) 53)

d) Using the orthogonality relation (162) of the 3j-symbols, one may also
verify the foilowing proverties

NN Wi AN 23j+1

Tr (T I = 2 §

R (5440
M N 2 L+1 '

L1 8 MM!



and, using (52)

ot C

[a R - 95 b [~

I'r (71 M) (2)+1) 6L,0 UI\I 0 (54b)

e) The matrix TI}] (with on upper index M), is related to the matrix T M
(with a lower index) by the relation

LN MM L L-M | L -
1 L C L I NI (-) I-I\"I (55)
M Lo, L* o
1 L (-) ll\'l (55")

f) If we perform a rotation of the frame of reference, the operators T M
transform according to Eq. (6)

I y L L -1
‘ ' = U(R) T ]
1 M e | M U(R) 1T M U(R™7)
and their matrix elements undergo the transformation
L om ol m Cond oy m Lom' 5, _1.n'
(TM) n 7 (T M) n = DUR) m' (r]'M) n' DR )n

Using the definition (51') of the Tll\J/I and formula (47') for the reduction of the

tensorial product of D’ , one obtains
L..m 1 L..m 1. m Lo M

(Typ) s (T =Ty, DRy
or !
L L 1. L M
TM ey T M = TMy D (R) M s (56)
i.e., for each L. , the 2L+1 operators TLI\J/I transform into each other as the

components of an irreducible tensorial operator when the reference frame
is rotated.

In appendix A6 we shall have to consider a particular case of formula(56),
namely the case where the rotation R is the rotation by an angle (-m) around
the Oy axis. Then one has

D) = plo,-mo) = [,

e R A Y o R L S

5

-1, L-M i
= ) Tom

joeL T -1 L1
rioy) (s e oy (57)
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THE MULTIPOLE PARAMETERS tM

If @isa (2j+1)x(2j+1) polarization density matrix let us consider the

Iy

quantities t defined by

M
L L WL -
) = ‘ > T 58
ty © <P Ty » Tr (¢ T, (58)
t%ﬂ = /2341 ( J ?m (58")
i M m/ * "

L . .
The t are called the multipole parameters of the density matrix ¢
They form & set cf coordinates for the density matrix () - The properties of the
density matrix can easily be expressed on these parameters.

a) From equation (52) and from Tr f? = 1 we obtain
0 0
= T ‘ =1 (59)
tO Tr ( (? I‘O)

L
b) The parameters tLO are real. but the parameters tTVI M ,4 0 are
complex. .

¢) From the hermiticity ofe and from (53) we obtain

L TTTYL .
_ > T : 60)
g Tr ({ T M‘) (60)

Lk M L

T'JT(G*TM) = (=) Tr((’)TMM)

L M L i
= st 1)
t {-) t M
d) Using the orthogonality property {(18b) of the 3j-symbols the definition
(58') may be easily inverted OCne obtains the multipole expansion of the density

matrix

23 ,
Amo_ogn 20l L o Mome L -
€7 Zaoan U Tty (62)
.=0
or, using (55')
P Z;}‘ ::]f‘ 21-+1 r[*IJ*)ln tL (62")
' Ao Fs 9 LA u )
O 2y v 2 n

e) The degree of polarization do of the system described by the density
matrix ( is defined by :

2. 2)rL 2 b 63)
ey T e - R (63)

v

\
st



The quantity T

r Q is easily calculated in terms of the multipole parameters.
Using (62) and (54

a) we obtai

2 2 - 20+1 )2
Tp? s S . ‘1 } (64)
3 =0 M--L 2j+1 M
The degree of polarization is
2 2] L 2L+1 | L |2
g - > 2. 3 tw (65)
=1 M=-_L J
or
2] 2 L 2i L )
2 241 1.2 2(21.+1) 1.2 2(21.+1 1.2
(d5)" = 20 =)+ > S (Re )7 Z]‘ Y = (mty
/ I\/I
¢ s T b BV =S R MU e 2
(65")

f) The multipole parameters tL are very interesting because their trans-
formation law under a rotation of the coordinate system is very simple. In fact,
using formula (47') for the reduction of the tensor product of repr‘esentationsm
equation (7) which expresses the transformation law of the matrix elements ?

can be written

n L j n L j " n' L j o L M
? n e, 0 s Q n' ) M (66)
i M m j M m'
or, using the definition (58') one obtains
1
L Lo L' DL(R)M (66")

M~ Vw7 'w M
i.e., for each L, the 2L+1 parameters tli/[ (M= -1, ...,+L) transform into

each other as the components of an irreducible tensor when the frame of
reference is rotated.

Thus the density operator may be expanded into a sum of irreducible tensorial
9
> or (67)
1.=0

+L
L 2L+1 > L * L
LT - (T ) 1t (67")
e 2t N

operators

The operator

: , L . A
which transforms as the representation D7 of the rotation group is called
L o
a 2 - multipole.

Because of their transformation law (66'), the muliipole parameters are
the more convenient ones for the study of angular correlation. The general
formulac for the angular distribution and for the angular distribution of polari-
zation take a more compact form when they are written with the multipole
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L . L o
parameters t However the multipole parareters tM present the practical

M
inconvenient that they represent the Hecrmitian matrix {) in & non Hermitian basis.
In fact, let us consider the (23-F1)2~ dimensional vector space of (2j+1)x {2j+1)
complex mzatrices. This vector space can be considered as a Hilbert space
%(23'-?’1)2 if we put on the complex matrices a Hermitian scalar product. !f A
and B are two (2j+1)-dimensional compiex matrices their scalar product is
defined as
<A,BY = Tr(AT B) ‘ (68)
On formula (54a) we see that the (2j+1)2 matrices TI:[;/[ form a real, ortho-

gonal basis of the space ‘Jﬁ( 2 and on formula (62) we see that the muitipoie

2j+1)
parameters tl\/[ are the complex coefficients of the expansion of the Hermitian
density matrix (0 on this non-Hermitian basis.
\
In the foilowing we shall consider the real coefficients of the expansion of
«

. 2 L
the Hermitian, trace one, density matrix {), on a set of (2j+1) -1 Hermitian

matrices.

Remark :

The multipole parameters defined by (58') or by (62) are the parameters
used by Byers and Fenster (Byers-Fenster-63), by Dalitz (Dalitz-66) and
by Jackson (Jackson-65),

Several other definitions of these parameters can be found in the litera-

ture. If we cail B. F) the parameters defined by (58'), we have the follow-

L
t

i ¢
ing relations between these parameters and the parameters defined by de Rafael
(de Rafael-66), by Kotanski and Zalewski (Kotanski-Zalewski-68) and by

Ademollo, Gatto and Preparata (Ademoilo-Gatto-Preparata-65)

L L

t M (de Rafael) =t M (B. B (69a)
L , I2T+1 L ‘
~ (Kotanski-Zalewski = \f 202 B.F ¢

tM (Kotanski-Zalewski) v 5+ tM(IS ) (69bj
Lo ATAT L ) y

t M {(Ademollo-Gatto-Preparata) = —2—J~II— 1 M (B. ) (63¢)
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6. THE REAL MULTIPOLE PARAMETERS r ]1{,] AND THETR CORRESPONDING

) WL
OBSERVABLES Q M

We look for a set of real, normalized multipole parameters such that, usec
as Fuclidean coordinates for g\, . the unpolarized state is represented by the

origin, and pure states by poinis on & unit sphere. If we define (for M >0)

Lo Je2rs1 L
ryc 5 Uy (70a)

L L

o 70L

B Y Hon)
I,l IA

70c

Y "M (70¢)

. L
(a;)° = I GV L (71)

L L
and these multipole parameters M satisfy the desired conditions.
These measurable quantities are mean values of some polarization
L .
observables QM s by means of which they can be obtained from the polariza-

tion density operator QJ

ru = <@y > s Tr@Ye) (72)

L .
According to (62), (54a) and (70) the N observables QM are represented in

our lj m > basis by the Hermitian matrices (for M>0)

QLO‘ = 212“;'1 TLO’ (73a)
Q{_JM . 11;/1 ) (’)M T{JM) (73c)
Their orthonormality relation is obtained from (54a)
I (Qli(q ’ QIM,') ) 2%:1 guﬂ gmm' o



1. A2 - 14

L
M
to (54b). They supply a basis for the space i

(with L. > 0) are traceless, according
)

N‘ 3
of our trace one density operators. Thus, in the multipole expansion of the

Remark that these N operators Q
the translated from the SN

density operators we have to add the trace. From (72) and (74) we obtain

0- 4 2] ﬁ 3

o + .
2']‘1‘1 2']+1 =1 M=-1,

i

(75)

L L
v Qg

L

4

M
are a simple generalization of the Stokes polarization vector 1—D>

These real multipole parameters r and their corresponding Hermitian

matrices Q
M —>
and the Pauli matrices 7 . In fact, for j = 1/2 and L = 1 equations (70) to

(75) yield

1"(1) - P, ., (70a')
ri - P, _ (70b")
ro= P, (70¢')
d. =|P| (71)
€
P - <:Z>= tr(‘_f.e) (72")
Q(l) = G, (73a')
Qi = T, (73b")
Q'+ T, (73c")
tr(G,.5) = 2§ (741)
0 = L(4+7.%) (751)
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Table 1.~ Representation of the observables Q,g; for § = %, 1, ‘Z‘, 2.

(a) i=3
L =1
1 e e 1 -1
1 1 1 i
% =1« -1 QU =1, . Q4 =17 .
(®) J=1
L = 1, 2
1 L ® @ 1 ® ...1 @
1. /3. . 1. /3 . 1T Ly /3 -
Q, /Z 0 Q 1/; 1 1 Q_, 11/; 1
° . | ' ® 1 ® 1 ¢
1 ® ) ® 1 @ "'1 L4
2 - -l ® ) 2 - }. . - l o
Q 7| -2 Q] 1/; 1 o -1 Q- i/; 1
H ® @ ‘1 @ _1 ¢ "1 ¢
0 . 1 e -1
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[ @ & ﬁ ®
P 4 3 ‘i/— e
Qe =,/ 7%

-1 . 1 51 . 2
® ...3 8 s
® . ) 1
¢ s Qz B 3- 1 ?

] ® 1 3 ¢ 0O
@ 41 . @

2 ", a @
Q, = o
2 ;3 IV
¢ 1
0 ¢ @ 4
° ® 5 5 1 ® _,’%/'3-. [
3 Q=¢85 - 43
& ...'i a @«
3 7 ¢ ®
07 S
w2 L1 .
-
5 . tg @ @&
Q‘B } ¥ &
4 ¢
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Qy

° ° _1 °
® e ° .....2
- o . .
2
-2 Q1
® o o] 0
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.
®
N
L 3

}/.6‘ ° 1 . °
P 1 o W] °
e ¢ <7 -~ 6
° ® . ...,/'é‘ o
- e V-. o e

s O o ® o
¢ ¢ w . o
. ° ® 1 o
e ® ® ° 1
1 * o * ®

-2

Qo =

e o = e ;/@
& ] L] —Vé‘ .
® L -.‘V_ L *
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-1 .
. =1
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(a,)

Qg.-,/ﬁgg

3 =2
L« 4

° * 4.. e ®
ez | B

Qg.l/.ﬁ-z- V3 . -

Qg -/-15-5: . e .

1 ° ° ® ®

o = . . o

° ® ) o 1

4- i . ° ® ® °
% V/;

1 ® e ® ®

4
ody=1 /7%

4 —2_
Q=i 712

4
Uy = 1 V/g

L o L]
(] - L]
*® ® @
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Part 1. APPENDIX 6

POSITIVITY OF THE DENSITY MATRICES

AND CONVEXITY OF THE POLARIZATION DOMAIN

In this appendix we consider ihe Hermitian operators on the Hilbert space
Cg{,}n of dimension n . They form a n” dimensional vector space g 5 On
n
which we can put the Euclidian scalar product (as we did in equation 1(4) ),

(Pro 0g) 7 ey (1)
So 8 9 is an Euclidian space ; the distance between the two points pl and
I - 1/2
Po 18 ]Pl‘Pzﬂ“(Pl'Pz-“Pl‘%) :
A Hermitian matrix can be written

R = Zi A P, (2)

where A . are its eigenvalues (real numbers) and P. are Hermitian pro-
1 1

jectors, i.e.,
P =P = p (3)

the multiplicity of the li eigenvalue is given by

tr Pi = rank Pi (4)

Definition. A Hermitian matrix is positive (or semi-positive) if all its
eigenvalues >“i are > 0 (or » 0).
Outside this appendix we generally use the word positive for semi—posifive.
In this more technical appendix we shall distinguish the two notions. We shall
note R>0, R>»0 for R positive, R semi-positive.
Theorem 1 , R>0 (or R>»0) <« any lx > écfﬁn s, «x]Rx >> 0 (or > 0).
Let R = 2]_ lj P

then <«<x|Rx > = Zj )'j <x[Pi'x> = Zj li <x|Pl,P1,x>= Z]_)tj <Pl.xlpix>

2
since (Pileix> = "I’jx” 2 0 . }(1 2 0 = < x'l\‘.x >2 0

(Note | x> # 0 % some P}.Ix) /0 since Z‘jp]‘ =1,s0 )‘i> 02 <x|Rx> >0).
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Conversely if for all ‘ x ) € %n , <x|Rx> >0 (or » 0) this is true for the
eigenvectors of R ; e, g. if Pil Xi> @iy , then <i|Ri) = Z’i >0 (or> 0),

hence all eigenvalues are > 0 (or » 0).

Theorem 2. If . >0, R >0, then Zo(iRi> 0 . Indeed for every

x> ecffﬁn , <x]Rix> >0 so Zidi<x|Rix> = ¢ x| zio(iRiX> > 0.

Definition. A cone G in a vector space is a domain such that if a EG,
b €GB > atb£(E.

As a corollary of theorem 2 we see that the posifive maeatrices on %n
form a cone Gn in gn2 ., which is an open set of g 9 - ‘The boundary of the
cone, 0O ('jn , is the set of semi-positive matrices which are not positive; those
matrices then have some eigenvalues zero., The rank of a matrix e'is the
dimension of its image space P%f@n . Positive matrices have rank n ; matrices
of 0§ N have rank £ hn . Let us call bk Gn (k <n) the set of semi-positive
matrices of rank k .

E)(31{1 N U ak en (%)

O<k¢n

As we saw in 1, in some experiments an upper limit r of the rank of the

polarization matrix is known. So it belongs to We denote

O<kgr akcn ’

en = Cn u c‘)@n the closure of en . It is the set of P}O . Note that if
P1>/0 and (32 2> 0, Pl ()2 ig not necessary 2 0 . However

Theorem 3 . 1f pl >/0 and P? = 0, then tr Pl pz >/ 0 . Indeed pl
can be written ”)1 = Zi ‘)“ipi = Z‘l '/‘Li}i‘; < il  where the { i> € (%Cn
form an orthonormal basis of eigenvectors of Pl and R’i > 0 . Then

r PPy 7 2 A L 1IPliD

which is > 0 by theorem 1 . More specifically, if Pl > 0, PZ 2 0,
theorem 1 shows that (P] : Pd) > 0. Indeed

tr Dy Py ° Zﬂ1 X 0, P, with P =1, A >0,

<3 > 1 P e = 1 o o 1 e 3
since Z"i ¢ Pz ; tr PZ it least one of the terms

tr P2Pi = <i|P2\i> is>» 0

g0 tr Pl P2> 0.
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Hence as a corollary, if two polarization states are orthogonal, they are both

in 0 Bn .
2 .
Consider now equations (6) to (8) of part 1 , where g?\j is the n -1 dimen-
sional subspace of 8 9 defined by the condition tr F = 1. Itis an Euclidian
n

subspace of @ 9 and the polarization domain gDn ,i.e., the set of density
n
mairices F}O , tr P = 1 is

<$n ) émmgT\T (6)

The density matrix of the unpolarized state is
1
= = 7
PO a0 1 (7)

Since the vector PO in g 9 is orthogonal to the subspace 8N of the
n

V=L o po ®

Euclidian space g 9 with
n

P

we deduce

(pop) = A p? e o
SO
L7 (pp) >y = (po. po) (9) .

Relation (9) satisfied by spin density matrices has been used in the physics
literature. It is much weaker than tr P = 1, P 2 0. We saw in Fig. 1

page 1.2 - 3, that @n is inside the sphere ‘fN-l , intersection of €N (tr P =1)

and of the unit sphere ‘fN ( (P,P) =1) of 8n2 = gN-H . Furthermore,

the domain
DN DDN = blél)n (10)
2

is the set of density matrices of pure states, i.e., rank one projector Pi= Pi

trP.=’ch.2= 1,
i i

In part I and in all applications, we will multiply the length in the N dimen-

sional Euclidian space EN by the factor\/ o] So° that the sphere cjol\ 1 of

center PO has radius one in the new 'ale.

Definition of convexity. A domain D of a real vector space é is convex if all
vectors a + @b with 0L &, O < @ , oKX+ e = 1 are elements of D when
a€b, b e D . We can also say that all points between a and b on the straight
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line joining a znd b belong to the domzin when a and b do.

Exampilie of a convex domain : the linear manifoids of gn that we also call
k-planes when their dimensionis kgn .

It is easy to check that
a) The intersection of convex domains is a convex domain.

b) The linear transformed of a convex domain is a convex domain.
¢) A convex domain is connex.

Theorem 2 shows that the cone § of positive (also the cone é of serni-
positive) mafrices in ‘Kn is convex.

From property a) and equation (6) the polarization domain g) is convex.
Since @ is in the Euclidian spaces ﬁ C 8 2 we want to make some geome-
trical remarks on convex domains of Eucildlan space & and their orthogonal
projection on 2 subspace [ . Let P be this orthogonal projection; it is the identity
on Pand P'z P. Let D be a domain of 8 ,the domain [* = PR C P is calied the

rojection of @ on P . From remark b), D convex = PR convex,of course
C = @n @C I’ . Wecan always consider an Euclidian space £ as a vector space,
after we have chosen a point 0 of §§ to be the origin of the vector space, so if
2, b€§, atb is defined. An involution K of & is an Euclidian transformation
(i.e., it preserves the distance) whose square is the identity I ing i.e. Kzf: 1
It can be shown that the fixed points of K form an Euclidian subspace ch and
K is the symmetry through Pi.e.,if P is the projection on P and x€ & one
sees (see Fig.1)

Kx = x-2(x-Px) = -x+ 2Px (11)
i.e. K = -1%+2P, (11")

(Note that ® may be reduced to a point ! ). From now on we denote by Kp the
symmetry theough P .

Definition. If Kp@ = , then P is called a symmetry p-plane for & , where

p = dim P .

Theorem 4 . If P is a symmetry plane of the convex domain D . then

C = [ where C = Sana and o= PP@

Let agT, there exists b€ such that Pb = a . Since P is a symmetry piane

K‘a b€ & and from the convexity % (b + Kxab ) 6@ and from (11)
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Q

FIG.1

Fig.1. - Point x of a Euclidian vector space, with its projection Px on the
subspace ?, and its symmetric Kx through ? Remark that
Kx = 2Px - x.
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1 . : . .
S Kb) = Pbh=a so a€C, hence ['e C and since ( c ', theretore
¢ [C . Of course, this was geometrically obvious.

The diagonal matrices of &
Lhe diag .

.

&

liet us remark that there are p-plancs P such that @n P o= PP
which are not symmetry planes of & . Such an example is obtained by the
domain A of the semi-positive diagonal matrix of trace 1 . So An C ‘@n
n .

the domain of density matrices. Let P be the n-plane of g 9 containing all

n
diagonal Hermitian matrices on %n . By definition An = Pﬂ & n- We now
remark that if P 2 0, each diagonal matrix element pii is positive. Indeed
let ]i> the vector of coordinates Sd = 601( (A =1 to n) then <1|Pli) -
= Pji>7'0 by theorem 2 . Hence P{"n gZ)n = An'

If n=1 or n=2, the n-plane of diagonal mairices is a symmetry plane
of g[)n . This is not true for n > 0 as it is shown by the two Hermitian matri-

ces A, A' with tr A = tr ' = 1, A= KUb,'{_ (i.e.,the non diagonal

elements are changed of sign). {
LY 1 1 -1 -1
1 ) ]
k= =1 2 110 ;y:pr = (-1 2 1[0 ]
112 A -1 -1 2 ]
¥ p
0 0 ] 0 0

the eigenvalues of A are é S —&_1)- (2+\[§), %(2-\]-2-), and n-3 timeg zeros, those

3 1 1 ’
of A' are 5 —5~(1+\r§)3 g(l-\[i), and n-3 times zeros and 1—\/5 <0 = )
1€ not semi-positive.

Note that the convex domain An is the regular polyhedra in ]Bnc & 9
n

0 <« A'i s 2;1 Ai = 1. Itisin E’,N (tr P = 1). 1t is the regular n-he#ron

(for n =3 : equilateral triangle, n =4 tetrahedron, etc...) whose center

. 1 . : .
is PU = — I . Its n vertices are the n diagonal rank one projectors P,
n i

(one )xl, = 1, all others are zero). The straight line Pi PO cul the n-hedron

in Qj at the center of the face opposite to the vertex P and it is perpendicu-

lar to it. (Note that (Qj)o(B — (6;6 —Sm Sie))
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the square of the distance PoPi in ZN is tr( % - Pi)2= 9—"——1-, in S'N is 1

1
n-1

Sle B

2
, o . . . ) - . .
the square of the distance POQi in EN is tr( PO Qi) ,in % N 8
finally, the scalar product in g'N of two distinct pure states is

. . n _
(ifj3), —_gtr (Pi-Po)(Pj_PO) = -

PP =0=2 (P ,P)=0.
1] 1]

1 as equation I (8) shows since

Inyolutions in 8 .

We will now study some physically interesting examples of involution in g 9 -
n

Let U(n) be the unitary group of n X n matrices on (%n . It acts on

_ as
gnz P Muf)u* = ufnlfI (12)

Since such a unitary transformation respects the scalar product on & 9
n

« -1 -1
((313(32) = tr PIPZ = truplu upzu =(uplu

it is an isometry of E 9 ° Furthermore it preserves the eigenvalues of P
n

! up, Y )

2 B .
so U(n) transforms gDn in itgelf. If u~ = 1, the transformation (12) is an

involution on g 9 ° Let us give examples of such involution
n

The B-symmetry.

For the B-symmetry, that we shall denote KB
. (j,.m)
=) o uw= @D S K (14)

n Kk n

where S](1 is the symmetry in space-time through the reaction plane (three-
plane of Pp PR - Do s the energy momentum of the beam particle A ,of the
target particie B and of the observed particle C), n is the unit (space-like)

: L2 ‘2 L 2]
vector normal to this three-plane. Since bn = 1, u = (-1) )

(see

equation A1l (25) or A1 (26)) then PW;uZ Pu'2 = P , the B-symmetry

does induce an involution on g 9 The fixed points of this involution form the
n

p-plane ® of B-symmetrcic matrices, with

1
p = 3n if n is even
(15).
1 2
p = Eﬁ(n +1) if n is odd



w

&. 9 T (16)

“® n - n g

s the set of B-svmmeiric density moivices,

Indeed, (as we shall sec in part IV) in an experiment with polarized tavget if

we observe only the Dosyrmimeiric part of the poelarization matriz, it is o posiri-

ve metrix which is thet which would have been observed if the torgel had not

been pelarized.

The set of aligpnment muirvices,

As we have seen in 1.4, if ‘R};l(k) is the 271 dimensionat Hilbert space
of polarization sinies of a particie of 5pin j and energy momenium p . the
litle group & of the "rotaiions™ and space-liike symrmetries of the Lorentz
group &5 whick leave P invarieni, acts on %n(g) through the 2j11 dimensional
irrep of the orthogonal O(3) group (inree-dimensional roiation and symmetry

group) D(J‘T}' . Therefore this group acts on g 9 by the rerresentaiion
n

. s « . o 1)
D(J"T]) ® D(J’n) % D(J”n) ® D(J" 7)) S G?['){O D(L’ 2 . This indaces the
decomposition of 8 5, into the direct sum of space

n—l
L2 (L) .
2 0o & (17
Lol L (1) ,
by = 9l & a7y

and the corresponding decomposition of PE g 9
n

. 2] (L)
P= pot 21, P (18) .

(o
. . . e )
A density matrix s en adgnment matrix if all its conponents 0
J £

for L odd ; we also sayphas only even-multipoles. The generalization to

%n = %~1 %jk £ (pk) , the Hilbert space of polarizarion siates of v par-

ticies with spin jk . energy momentum Py is straightforswaro, (See 1(111)

(Jk .«'7]}{3'
for two particieg), The irrep of O{(3) on fq is @ D an P can be
‘ 1

k
expanded in r-upie muitipoles
, ' 1. v, b
2i, e k'
p= 2z L P (19)
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(Lkl s Lkr)
P is an alignment matrix if P = 0 when 21 Lki is odd. Note

that the polarization matrix of the i-particle is
27, (0,0,...,L ,...,0)
. - 1 K k 3
J
R
so that the alignment matrix of Pl is just that obtained from the single-particle
polarizstion metrix.
We c: fine the involuti »
e can define the invoiution K(l on 5 9
2]
K = 7 -1
aP ~1.=0 ( )

when P is given by (18) and 2

(L) (21)

L
ElLkl (Lkl ) o o o g kn)

Kp=L ZL;i:o (-1) P (22)

when P ig given by (19).
Note that the fixed points of K(L form the p-plane ( of aligned maitrices, and

K_ d not cha he | h of the matri K = ;P
does not change the length of the matrices (KOVP , (J_P ) (P P )

a

We want to show that K_ leaves ﬁ)n invariant, so Q_is a symmetry

plane of o"'Dn .

Consider the involution K which transposes the matrices of
(A . n2

K 0= 0" (23)
u’{f \

Its fixed pointe form the subspace of the symmetrical matrices of & K%does
not change the eigenvalues of fhe matrices so it transforms @n in itself.

Let us call h{ the involution induced (as in 12) by

[
a = W s (2)) = M FJI Al.(53)
X ,

where )

JA j—')k., 4 ‘IX.

r )21 - (1) bk’ / A1.(50)

N L .

indeed wo = (PH¢ ¢ (uf

We remark that



indeod
o Rt 1 L
[[‘1. P,\Ll) ) - [‘\» P (f‘J)
hecause

(ht A pl A (51)

Furthermore the product of two comnuiting involutions is an involution. This i<

tne case of K K We have shown in A2, that

o I\J,

LY

[

3 a

K:
K. =« K K, (
Q Tt 3

Indeed equation A2,(57) is

[\
<

. S IV A J L, L.
K, K T = pir?) s (=17 To
Since both K,  and I%, iranstform @n into itself, this is also the cace
J
of K. -
L
To summarize, the subspace of alignment matrices is 2 synuneiry plane
of & end C = !
0 (L L
Theorem & . 1ILety and )~ , be two symmetry planes (which might be of

different dimensicn) of the convey domain @D n If

P , 26
N B, By (26)

then W' is a symmetry plane of Cv. = Vn & = P‘J 2 = FU' . (By syn-
tactic symmetry V' is a symmetry plane of 'u,.?\ & o).
Fre ' S ‘e obtai 2, for
rom (117), K‘G I ZP'G we obtain that PU' ,Pw_ ,I\,U, ,Kw_ orm a

set of commuting operators. Let ag = PU‘& . So there exists x such that

a = P»,;. X
Lo
K a =K P x =P K x€P § =1,
u- TEN A rw v
Hence {{*is a symmetry plane of J* ; it is also a symmeiry plane of & N hence
it is a symmetry plane of their intersection : l)hg()
_C__QL"_()_!'_CLQ O1 course, instesd of (26) we could have used
K K =« K K _ (26")
isus ot
. . . T ;
in the thecrem, since P.= - (1 4+ K__ ).
2 P
We note thsat KJ\, and K@’ commutie, Indeed for one pariicle states, if we
, N

im)

{ S .
shorten D (S ; into 5y we have
n



> N . i i '_.1 _1T DR T TP _1_ _1 . . T ,..‘1 .‘1
K, Ky ¢ = ooy TehhT = fIn @)@ < pinlp o
since P and KU K, [ are Hermitian matrices znd EJ = [*J_ (A1.50) ; using
. . | ) - o _
cquations (A 49) Bl D1l and Aty it pd o))t

we can transform this equation into

ioq-1 T j..j-1 i-1 T ] i T _ -1
2 Kot s DT R A A S

For r particle states

. J )n‘

pl - 2 pW i s

i
and f‘J is to be replaced by .

E r‘ .

and the proof still holds.

So theorem 5 tells us that fﬁh‘\n the domain of B-symmetric density

. I . . .
matrices. has i, the domain of aligned matrices as symmetry plane and

o
< of \ ) .
i n

: i -
also (@ is a symmetry plane of [l

From now on we will prefer the expression even polarization to alignment.

One particle-state, B-symmetry, even polarization and pure states.

As we have seen in A3, for one particle, B-symmetry imposes to ethe

conditions
-m'!
in transversity quantization Qmm' = (.)m m Qmm' s (27)
-1
in helicity quantization e = [ g r . (28)

For a pure state Q = x )<L x. Let é be the components of X

In transversity, B-symmetry is equivalent to

either 53’1 = 34“3 = §J‘5 = ... =0, (29)
or 5 - J_2=33'4=... =0 . (29")
In helicity, B-symmetry is equivalent to f"'x> = k‘x) with ,\,2 = (—)2j since
r-2 = ()21 so, explicitly
m

PE RO S (30)
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As we have just seen, to say that the polarization matrix .« has only even

polarization is equivalent to the condition

Taoobe (31)

It implies for pure states

If we multiply by g'"“both members we obtain

2i . S

- el

(-) ’X/) = /i ‘> s

SO A . Hence,
Theorem 6. For half integer spin, there are no aligned pure states, i.e.,

pure states with even polarization only.

We had noticed in A 3 that the one-particle polarization matrix can be

considered as a checker board with
- black squares if (m-m') is even (this includes the diagonal)
- white squares if (m-m"') is odd.

The Bohr symmetry implies conditions on the density matrix elements :

In transversity quantization

B-condition : . white squares have zeros

In helicity quantization
i) the black square matrix is symmetrical

through the center
B. . < o ) .
condition . ;ii) the white square matrix is antisymmetrical

through the center

" i) the black square matrix is symmetrical
through the second diagonal

Even polarization <~ , N . .
P ii) the white square matrix is antisymmetrical

through the second diagonal.

~ . . . -
Even polarization The polarization matrix is real and symmetrical

+ B-condition - through the center and the two diagonals
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ERRATUM

The definition, page A6 - 2, line 6 , should be corrected

e TN . PR
Definition. A cone 7 in a vector space with vertex at the origin is a set of

points such that a £ % and A > 0 implies Aa é \Qf .
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