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Abstract
For the above system, the radial and angular equations
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Let G be a compact Lie group and
.1 L :
L 3,0 5,020, 00 -ve), | (1)
a Yang-Mills-Higgs Lagrangian density for G, where (A,B) denotes
inner product in G-spaces, o belongs to any real representation

T(g) of G, and
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where t% and t% are the (real anti-symmetric) generators of the

adjoint t(g) and T(g) representations of G respectively. Classically
there is no restriction on V(?) except that it be G-invariant and
bounded below, but for QFT renormalizability requires that it be
a polynomial of fourth degree. Furthermore for the occurrence of
Higgs mechanism, the second degree term in V(¢, must have a negative
coefficient.1

We are interested in finite-energy (FE) solutionsz’3 in the
case when all the time-derivatives are zero. For the moment we
shall also assume that A0=0, since, as we shall see, any solution
with A0=0 can be generalized to a (dyon4) solution with Aofo. In

this case the Hamiltonian density corresponding to o is just the

negative of l: and the Hamiltonianf{ is given by

- ffm) @ x = J((%-(E,Ew%-@mbw+vmnd3x, (4)

where arrow denotes a three-vector. Our primary aim is to find FE
solutions of (4) for factored fields. However, we find it instruc-
tive to first find the conditions that are imposed by the spontan-

cous breakdown and the finite energy without factorization. First,



the spontaneous breakdown requires that (8(x),®(x)) have a finite
limit when r»«, that is
Lim ¢ (x)>c ¢(w) where (¢(w),d(w))=1 and finite c#0, (5)
r->o
where w denotes the polar angles (e,q»). From (2) we then see that

2

the gauge-field mass-matrix is just e MaB where

Mg = cf(t%,t5). (6)

Next, since finite energy requires that the integral in (4) converges,
i.e., r3}Z(x)+O as r»«, and each term in f€(x) is separately positive,
we see that (subject to reasonable assumptions of smoothness) finite
energy requires as r-ow,

a). ek(x)-3(wr L, ). do(w)=z[3+3% (w) t*]¢ (w) =0,
where (7)

3=rV.
Conversely, if (5) and (7) are satisfied rsft(x)+0, as r+~, The
physical meaning of (7b) is that, at least locally, the w-dependence
of ¢(w) can be gauged away, a result that can be written in a
perhaps more familiar form as ¢ (w)=T(g(w))$(0), g(w)e G. Further
Eq. (7b) implies

Jo = o0, (8)
where

d = -(exd)=1+B (8")
is the covariant angular momentum operators.

It turns out to be useful to consider the integrability condi-

tions for (7b) which are easily computed to be

i

£ t%

1] 0, (9)



where
e o _ - = - - .
£yt 0 =lddyl-eg i m0525058; 4 8y a5]%e; by € xdyoral
. 2
=0im r“F. .-¢.. J ,?'g . 9’
LIRS SR STIRINE 0

The field fij is the analogue on the unit sphere of the field fuv

in Minkowski space, and just as fuv=0 implies that éu can be gauged
to zero, ﬁij=0 implies that gi(w) can be gauged to zero. Similarly
just as efuv measures the failure of the Poincaré commutator [Qu’pv]
to close, gij measures the failure of the covariant angular momentum
operators to close. The importance of f?j is that the nontrivial
solutions of (7b) exist only if (9) is satisfied with nonzero f%.

We also note that

A Lo o a

rifij = 0, hence fij eijk ?kf , (10)
where

f = —(E-g+y) with L=-€55% ?iijék . (10")
Thus f(w) is a scalar field valued in the Lie Algebra g' and from (9)

% (w) t% (w) = 0, (11)
or equivalently

B _
Magf = 0. (11")

The above equation shows that f qualifies as a candidate for defin-
ing the electromagnetic direction in(; . Further it is the sole
candidate, if the mass matrix MaB has only one zero eigenvalue.

Finally by forming the inner product of (7b) with t8¢(m) we
obtain

o]

B 2 o .

(XBdi C ((b)t ai(pls (12)

which expresses the gauge field ai(w) in terms of the mass matrix

and the Higgs currents. It is also easily verified from (7b) that

the mass matrix is rotationally invariant in the sense that



IiMyg = 0 . (13)

To proceed further we must add to the FE condition (7b) the
minimality conditions for the Hamiltonian (4). In the static case
these are just the equations of motion, which may be written as

D% = 2 and QiF?j = -e(¢,t§gj¢) . (14)
The ideal program would be to solve the equations in complete
generality, but since this is too difficult, we return at this
point to our original program, which is to seek solutions of the

form

) = ety ELR)y, e AT(x) = al(w) RLE), (15)

in the Landau gauge, which in the static case reduces to

v-k =0, (16)
Eq.(15) is a natural generalization of that of 't Hooft and Polyakov,2
but here no apriori assumption is made about the form of the
angular functions ¢(w) and a(w). In particular, they are not assumed
to be spherically symmetricé.

We now insert the ansatz (15) into the equations of motion and
the gauge condition (16), and after a lengthy calculation, which
will be given in detail elsewhere, we obtain the following results:
first, the gauge condition yields the two separate conditions

5'5 =0 and r-a = 0. (17)
From the equations of motion we obtain, in addition to the FE condi-

tion (7b), the six angular equations,

. 2% = LeDE, oL (a3, ). af= 2(6,t%,9),
2
Nl , ) V- _
b). 9% =-2(e+1)¢, d). (2;[2;,2;]]=-5 25 B, dif;5=0,
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where L,%2,v,N and n are constants with

2(e+1) = nvz . (18")
The two radial equations are
r?S" = S[2(2+1)*+u’(S-1) (0S+1)1, (19a)
r?R" = (1-R) [L(L+1)R(1-€R)-nc?5%], (19b)
e = 2(2+1)/L(L+1)Nn (20)

and where the dimensionless positive constant o depends on the
precise form of the potential V(¢). If there are no third degree
terms present in V(®), then o=1. Thus when

V(o =%(¢,®)2- %2(¢,¢), o=1 and c2=u2/x.
Conversely, if (7b), (17), (18) and (19) are satisfied, the minimal-
ization conditions are automatically satisfied (at least in the
sector (15)).

Before attempting to solve (18), which we shall actually do in
this letter only for G=SU(2), we analyze them briefly for general G.
First (a) and (b) show that a(w) and ¢(w) are definite spherical
harmonics, of order L and % respectively (so that L and & are non-
negative integers). In particular, this means that we can obtain
the explicit form of ¢(w) from the following lemma which can be
proved using direct Clebsch-Gordan analysis:

Lemma: if ¢(w) is subject to the normalization condition in
(5) and satisfies (18b), then there exists a (22+1) dimensional
representation of the rotation group R such that

D (R)p(w) = (R 1w).

The above statement implies that

A A

p%(w) = ] no Y?(w), A=1,2,...K, K=dim T(g),
m

where ng are constants which satisfy the reality conditions



-A _ . . m A A A | 4m . oom
53 SR L (21)

It then follows’ in particular that 22+1<K.

Next we note from (17) that v(w) defined in (10') satisfies
[gi(w),gj(w)]=-eijk rkx(w). Then (18d) shows that at each w, the
éi(w)'s and ¥Y(w) span an SU(Z)w Lie subalgebra of’gﬂ For different
w, these SU(Z)w subalgebras are conjugated by G. The adjoint repre-
sentation of(; reduces into a direct sum of irreducible representa-
tions of these SU(Z)w with multiplicities cj(clgl) and N given by

L. (2j*2

10+ (23+2)= T e ( 3 is an integer > 2.
j=0 <

A simple interpretation of (18e) is obtained if we note from
(12) that tt can be written in the alternative form

Mas(w)af(w) = ¢ a% (w). (22)

Thus the nonvanishing gauge fields are actually eigenfields of the
mass-squared operator with the same mass-squared m2=c2n. The
constant Nn is related to the Casimir operator for the ¢-representa-
tion T(g) as will be seen below. Finally using (10) we see that
(18f) which is just the matter-free Yang-Mills equation on the unit
sphere, can be written in the much simpler form

gifo‘ =0 . (23)

From (23) it follows in particular that

5w = @) and  (fw), £w)) = k2, (24)

where « is a constant. Comparing (23) with (7b) we see that f(w)
satisfies the same equation as the Higgs field. But, in contrast

to the Higgs field, f(w) always lies in the adjoint representation.



We now turn to the specific case of G=SU(2) for which we can
solve the equations (18). For SU(2)=G, the only non-trivial little
group is U(1l) and the representations T(g) which allow this little
group are just the real (integral spin) representations. Since,
from (22), the fields ai(w) have definite non-zero mass, they are
orthogonal to U(l)w. Hence [gi(w),gj(m)], which is orthogoral to
the gi(w), must lie in U(l)w. Hence, for SU(2), [gi(w),gj(w)] must

have zero mass, and so we have

Mg VE= 0 . (25)
But then from (11),(11'),(13),(22) and (25) we have

c’n Ja? - T, gaf = M gy at =My (£F4+vP) = 0 (26)
and hence from (11) again

£ vos 2 pa? (27)

But then f% is a spherical harmonic of the same definite order L
as a?(w). Since from (24),‘£(w) also has a constant norm in the
real inner product space of the adjoint representation, the lemma
applied above to ¢ (w), is applicable also to f(w) and we obtain
in analogy to (21)

2L+1 < dimq (28)
But for SU(2), the adjoint representation is 3-dimensional. Hence
2L+1<3, and if we discard the trivial case L=0, we have L=1 and®

£= 2%, (29)
Further, since L=1 for a(w) also, we have, using (17) and (27)

a?=xeaij?j : (30)

If we now reinsert (21),(29) and (30) into the system (7b) and
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(18) we see that we have a consistent solution provided only

that the constants satisfy the conditions

vi=N=2, =1, 2n=2(2+1) (31
and the ¢ (w)-field satisfies

(L,*+t;) ¢ (w)=0. (32)

Equations (21),(29),(30),(31) and (32) constitute,therefore, the
complete set of solutions of the angular equations (7b) and (18)
for G=SU(2). These solutions differ from that of 't Hooft and
Polyakov2 only in that the field ¢(w) can have arbitrary integral
isospin t, and then only provided &=t and the spin and isopin
compensate as in (32). In particular, the magnetic charge is 4n/e
as in Ref.2, since it is determined by aijksasy aiu“ajusakuY where
u® is the unit vector in the EM direction and, as discussed above,
u¥= %= LR

Using (31) and replacing %(%2+1) by its gauge-invariant counter-

part t(t+1), the radial equations (19) can be reduced to

2
rZH" = H[t(t+1)K2+E7(H—cr)(0H+cr)], H=cS |
e = xd-n B g2y K=(1-R),  (33)

where the boundary conditions are K(0)=1, H(0)=0 and K+0, H-cr as

r+~, These equations are derivable from the Hamiltonian (4) which

now takes the form

= ‘_1_127. fo %{(rK.)Z*%(rH,,H)Z+%(K2_l)2+t(t+l) HZKZ

e
{
+ puieit udhy g, (34)

where

U(x) = (ox2+§-(1-g)x~2) (341)



Eqs.(33) reduce to the usual ones for t=1, o=1 and although
it is probable that they have regular finite energy solutions for
other values of t and o, we do not know for sure at‘present whether
they do or not. If they have, these solutions give a mass-formula
m(t)=H on account of the t-dependence in (34).

In conclusion we note that the above formalism can be extended

to include dyons by making the ansatz

A% - pedln)y (35)

0
Since Ag plays the role of a second Higgs field, which lies in the
adjoint representation and which has no potential and no inter-
action with ¢ (w) (since-K?a=fa is in the little group of ¢(w)),
one sees by analogy with ¢ that the only effect of Ag on the field
equations is to add to the Lagrangian and energy densities, a
term of the form

1
2

2

_717[%(r Jr-3) % 1522y, (36)
er
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