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SYMMETRY BREAKING BY HIGGS FIELDS

Louis Michel

Institut des Hautes Etudes Scientifiques
F~91440 Bures-sur-Yvette

These lectures study the following problem : given a G-symmetric Lagrangian
containing gauge fields and Higgs fields, what is the nature of the subgroup H of

G obtained by spontaneous symmetry breaking through the Higgs mechanism ?

We first recall briefly what is this mechanism ; we also show that the problem
we study is very similar to the symmetry breaking occuring in Landau theory of second
order phase transition. These lectures explain basic facts about orthogonal actions
of compact Lie groups and the structure of the ring of invariant polynomials. They
finally give known results on this proglem and the main open conjecture. In an
appendia, we establish some relations between a compact group action and the corres-

ponding action of the finite generalized Weyl group.

1. Spontaneous symmetry breaking in gauge field theory

A gauge field with symmetry G 1is a vector field AU(X) defined on Minkowski
space time and each vector component is valued in G , the Lie algebra of G . The

corresponding gauge invariant field is

PG = 0 - = (0 +e [A (0,4 (0] . ¢S
" 9x v 9x H s w
More generally any field (e.g. a Dirac field wa(x) , a scalar field ¢(x)) 1is valued
in the vector space E carrying the linear representation U(g) of the gauge group

G and thcrefore the linear representation a —— L(a) of the Lie algebra :

La) = = U(e*®) . [L(a),L(b)] = L(Ja,bl) (2)
6=0

(where [ a,b] is the Lie product of a,b ). The covariant derivative of the field is

e.g. for ¢

d
D ¢(x) = —— ¢(x) + e L(A (%)) ¢(x) . (3)
H ne H U
ax
If in the usual G-invariant Lagrangian density, e.g. LO(AU,wa) with zero mass field
A , derivatives are replaced by covariant derivatives, this Lagrangian density 1is

u
invariant by G(x) (the group transformation g € G 1is an arbitrary function of x).

We assume that G 1is a compact group and that the representations on the field

T
value spaces E areorthogonal (UT(g) U(g) =1 so L(a) = -L(a)). We denote by



(, ) a G-invariant orthogonal scalar product in E

Spontaneous symmetry breaking by the Higgs mechanism is obtained with the intro-
duction of the Higgs scalar field ¢(x) . The full Lagrangian density is L = Lo*'LH

with

by =~ %fDU¢<x>,D“¢(x>> - P(9(x)) “

where
P(¢(x)) 1s a G-invariant, bounded below, polynomial in ¢ . (5a)

Renormalizability of the theory requires moreover

P(¢) 1s a fourth degree polynomial. , (5b)

We moreover assume that E does not contain non-trivial G-invariant vectors.

This inpiles that

P(¢) has no linear term in ¢ (5¢)
We then write
2
P(p) = = 5-(8,9) + py(9) + p,(9). (5d)

We will later explicit the 3 rd and 4 th degree terms p3(¢) and p4(¢) . Since the
quadratic form - %§(¢,¢) is definite negative, P(¢) has a maximum at the origin
¢ =0 "L . Let %3 a value of ¢(x) at which P(¢) reaches its lower bound. From
4e, the isotropy group of ¢O (i.e. the set of g € G , U(g)¢o = ¢O) is a strict
subgroup H © G . In the Higgs mechanism, we are interested by quantum field theory
around the classical solution ¢(x) = ¢O (This constant is the vacuum expectation
value of ¢(x)). The symmetry is broken from the compact Lie group G (of dimension

d(G)) to the subgroup H < G (of dimension d(H)).

Remark that the first term in (4) contains quadratic term in AU(X) (they come

from the second term in (3)). In the direction a € H , the Lie algebra of H ,

a€H , La) ¢(x) =0 . (6)

So there are d(H) Ilinear independent gauge fields Aljon (valued in H ) which keep
this zero mass. Indeed they correspond to the preserved gauge symmetry. The directions

1 . .
of the orthogonal subspace H < G for the Cartan-Kelling metric corresponds to

massive gauge field. More precisely, the
. . 1
d(G)-d(H) dimensional subspace, {L(a) ¢O ,a€ H} (7)

is parallel to the tangent plane, at ¢O of the orbit G-¢O = {U(g) ¢O} of ¢O
The Higgs field in this direction have zero mass and could correspond to Goldstone

bosom. However, by a gauge transformation they can be reinterpreted as part of the



massive gauge field

a €HY A () A (%) + — ¢(x) . (8)
. U E}XU
Finally by expansion of P(¢) around ¢O we see that the mass matrix of the Higgs

field is in (&)
2
MH _d P(2¢) . (9)
d =
b [9=9,
it is the Hessian of the Higgs polynomial. Its kernel contains the tangent plame (7)

to the orbit. The orthogonal subspace in E correspond to

d = dim E —-(d(G)-d(H)) (10)
massive Higgs bosons. When the kernel of (9) has dimension & > d(G)-d(H) , there

are § - (d(G)-d(H)) massless Higgs bosons which arz '"pseudo-Goldstone" (see e.g.
S. Weinberg (1971)). They correspond to a nearly preserved symmetry H>H (see
below where H will be emphasized again).

To summarize : in the Higgs mechanism the gauge symmetry G is spontaneously
broken on the subgroup H , isotropy group of a minimum of the Higgs polynomial P(¢),
defined by the equations (5), on the space € carrying an orthogonal representation
of G .

The aim of these lectures is to give all relevant mathematical information known
on the nature of the subgroups of G which are isotropy group of Higgs polynomial
minima. I have already written a paper (L. Michel (1979)) on this subject. I refer

the reader to it for some details, examples or proofs.

Let us recall now some well known facts on :

2. Orthogonal action of compact groups

We first recall that the isotropy groupéof a G-orbit are conjugated. Moreover
a natural definition of equivalence on the G-orbits leads to the theorem : Two G-
orbits are equivalent (we also say "are of the same type') when their isotropy groups

are conjugated. We shall denote by [H] the class of G-subgroups conjugated to H ,

i.e.
H<G , [H]={gHg ', Vg€ G} . | (11)

Hence there is a bijective correspondance between the orbit types of the G-action
and the conjugation classes of the subgroups of G . We shall denote by [G:H] an
orbit of type " [H] . In any G-action it is convenient to call stratum the union of

all orbits of the same type. Hence all points of a stratum have conjugated isotropy

groups.



Here we are only interested by compact Lie groups G and their linear actions
on real vector spaces F . (These linear actions are therefore orthogonal. By a famous

theorem of Mostow (1957) any G smooth action can be embedded in an G orthogonal
action). The isotropy groups are closed subgroups of G and the orbits are closed

compact manifolds.

There is a natural order on the set of conjugation classes of the closed sub-
groups of compact groups *) : [H]< [H'] if there is a subgroup H € [H] which is
contained in a subgroup H' € [H'] . This implies an order on the set K of conjuga-
tion classes of isotropy groups = or equivalently of the strata — which appear on a
group action. It is a non trivial theorem.that for compact G smooth action there is
one minimal isotropy group and thé corresponding stratum is open dense (for reviews
see (R.S. Palais (1960), D. Mongommery (1964), L. Michel (1972)). It is easy to show

that the union of strata with [H] 2_[HO] is a closed set.

We will often consider the case of an orthogonal G representation on E irre-
ducible on the real (it may be reducible on the complex into the direct sum of an
irreducible complex representation and its complex conjugate). Let K be intersection
of the isotropy groups of an arbitrary orBit. The elements of K acts trivially on
the orbit and therefore on its linear span : the whoie space E ; so K 1is in the
kernel of the representation. Let k in this kernel : then it has to be in any K .
Hence the kernel K of the representation is the intersection of the isotropy groups
of any orbit of an irreducible representation. We remark that all these results apply
to finite groups which are compact Lie groups of dimension zero. In that particular
case, one shows easily that the minimal isotropy group of an orthogonal action is K ,
the kernel of the representation. In the appendix we study the following problem :

when the decomposition into orbit and strate of an orthogonal representation of a

compact Lie group can be reduced to that for a finite group.

3. Landau theory of second order phase transitions

Although the audience is mainly interested by gauge field theory, it is worth-
while to point out that everything we will learn on the Higgs mechanism of symmetry
breaking is also applicable to the Landau theory of second order phase transitions
(see e.g. L.D. Landau et. al. (1958)). Indeed this theory is really the forerunner
of the Higgs mechanism and is over forty years old. It was made by Landau to study
symmetry change in crystals, but it can be extended to all second order phase transi-
tions and even to many other type of bifurcations with symmetry change (e.g. the
Jacobi ellipsoid for rotating celestial bodies, as shown Ey G. Bertin et. al. (1976).
Essentially one studies a G-invariant function V (usually Gibbs free energf) which

depends also of external parameters (as temperature T) and the equilibrium state is

* . .. .
) 1t 1s easy to see that this is not possible for some non compact groups, e.g. the
affine group in n > 2 dimensions.



given by the minima of this function. With the usual Landau analysis (explained e.g.
in L.D. Landau et. al. (1958)), this is reduced to the study of the minima of a G-
invariant polynomial built over an irreducible G-linear representation on a real

vector space [ .

In a second order phase transition from crystal to crystal, the spontaneous
symmetry breaking is from the crystallographic group G to a subgroup Hc G . The
subgroup H contains a three dimensional lattice of translations K which is invari-
ant subgroupof G . So K will be in the intersection of all subgroups of the conju-
gation class [H] and as we have remarked in the previous subsection K 1is in the

kernel of the irreducible orthogonal representation of G in E . This implies that

i

the image G' = G/K of this representation is finite.

In recent years, many second order transitions from crystals to incommensurate
structures have been discovered and studied. Them H no longer contains a 3-
dimensional lattice of translation, and the image G' 1is not closed in the orthogonal
group of the finite dimensional space FE (all irreducible representations of a crys-
tallographic group are finite dimensional). In that case we are led to study its clo-

sure G' which is again a compact Lie group.

To summarize, the mathematical results we shall present applies to all second
order transitions when the action of the symmetry group G on the finite dimensional
real vector space [E 1is orthogonal. The image G' of the action is a subgroup of
O(E) , the orthogonal group on E . If this image is not closed, we consider its

closure that we will also denote By G' .

4. Gec.setry of orthogonal group actions

We consider a faithful orthogonal representation g +——— A(g) of the compact
group G' on the finite dimensional real vector space E . One shows that the number
of strata is finite : G.D. Mostow (1957). Given the orbit G(m) of m , there exists
a tubular neighborhood VG(m) such that for any point m' of it, there is a unique
nearest point to m' on G(m) . We call it r(m) ; the surjective map UG(m)—£—+G(m)

is an equivariant retraction :

va' € VG(m) , Vg€ G, r(a(g)-m') = a(g)-x(m') . (12)

Note that g € Gm‘ (the isotropy group of m') implies g € Gm so

vm' € V .1 <fle 1 . (13)

G(m) ’

So when [Gm] is minimal in K , the strata contains an open set. We have quoted
the stronger result in § 2 : there is a unique minimal element in K and the corres-

ponding stratum is open dense. We call it the generic stratum. The set rﬂl(m) of



points of VG(m) whose image is m , is called the local slice in m . When m is

. . . 1 . . .
in the generic stratum, the slice r ~(m) cuts every orbit 1in VG(m) in one point

only .

We denote by TG(m) and N(m) the tangent plane and the normal plane to the

orbit at m . The local slice r (m) 1is in N(m) . The set of G-orbits is denoted

E/G and is called the orbit space. It carries a natural metric

a(G(x),G(y)) = inf x'"-y',x"-y") . (14)
x'€6(x),y'€G(y)

~

Since orbits are compact this minimum does exist and one verifies that d 1is a dis-

tance. If d(x,y) is such a minimum the segment is orthogonal to both orbits G(x) ,

G(y) ; i.e.

xy < N(x) N N(y) . (15)

We call also the normal plane N(x) a global slice ; we have implicitly proven :

Lemma (1) : Any global slice N(x) cuts every orbit of G 1in F . One can then
define (e.g. L. Michel (1971)) a G-invariant smooth function f vanishing outside

a compact in VG(m) , with -1 f_f(m') < 0 on this compact and such that

f(m') = -1 « m' € G(m) . One says that the smooth functions separate the orbits. More
generally, since polynomials are dense in smooth functions one can show (cf.G. Schwarz
(1975)) that every G-invariant smooth function is a smooth function of G-invariant

polynomials. So finally, invariant polynomials separate the orbits.

We give again a precise formulation of the mathematical problem which arises
from the physical phenomena of symmetry breaking that we have described. We consider
G' —-invariant polynomials only ; from what we just stated it would be easy to extend
our study to G'-invariant smooth function. Given the orthogonal representation
gi— A(g) of G, with compact image G' , on E , the symmetry is broken down to

H where A(H) = H' 1is the isotropy group of

P , a G'-invariant polynomial, bounded below, maximum at O . (16a)

This requires that the terms of higher degree Pn(x) are of even degree mn and they

are non-negative. For technical commodity we require

pn(x) > 0 for x # 0 (16b)
and also that

F has no nonzero G'-invariant vector. (16¢)
From our geometrical study one can easily build such a polynomial with iEihléwer
bound on an arbitrary G orbit (# 0) of E . (This is done explicitly in L. Michel

(1979) ). So in order to be able to say more on the minima of P we will require



later on either or both conditions :
n = degree of P = 4 . (17a)

The orthogonal representation of G' on jE is irreducible
(17b)

on the real.

Restriction (17a) is usually made in physics, as well as for the Higgs mechanism as
for Landau theory. This leads to an important remark : although it is not difficult
to write a polynomial invariant Ey G' and not invariant by a larger closed subgroup
of the orthogonal group O(E) , this may become impossible with the restriction to
fourth degree polynomials. Obviously every mathematical property depends on the exact
invariance group G of the polynomial P ; this is the isotropy group in the action
of O(E) on the set of polynomials on E . A minimum of the G-invariant polynomial
P will have T < G as isotropy group for the action of G , H' = Hn G as isotro-
py group for the action of the image G' = G/K and the physical invariance group of

the broken symmetry will be H < G such that H' = H/K . For the dimension of E
dim(E) < 4 (18)

the list of irreducible groups G has been established in L. Michel et.al.(1981). Their
number is given in table 1
Table 1 :

Number of conjugated classes in O(E) of irreducible isotropy

groups G of fourth degree polynomials (O(E) 1is omitted !)

dim E 1 2 3 4
without 3rd degree terms 0 1 1 13 (19)
with 3rd degree terms 11 1 17

For a G-invariant polynomial P satisfying the conditions (16) we can prove

Theorem 1 : Every H of a maximal element of K 1is the isotropy group of an extre-

mum of P . (We exclude the origin of E for the definition of K).

This theorem is an easy consequence of a theorem of L. Michel (1971). We sketch
here a proof. (A variation of it is given in L. Michel (1979), p. 166) Consider the

real algebraic manifold M of equation

s G, G20 =0 (20)

on which the radial gradient of P wvanishes. From (l16a,b) it is bounded and there-

fore compact. The origin is an isolated point that we neglect. M is G-invariant and



-
b {

the G-strata on M are the intersection by M of the strata in E . Those which
correspond to maximal elements of K are closed and therefore compact. The restric-
tion of P on each connected component of these compact strata is either constant or
it has at least a maximum and a minimum. One also proves easily (see e.g. L. Michel
(1971)) that the gradient of a C smooth function is at each point tangent to the
stratum ; this implies that thé extrema of the restriction of P to the compact stra-

ta of M are extrema of the whole polynomial P . To say more on extrema of P we

study now the nature of :

5. The ring of G-invariant polynomials

We recall that G 1is compact and acts Ey an orthogonal representation A on
the real vector space € of dimension m . Let T(E) be the ring of polynomial on
E and Tn(E) be the vector space of homogenéous degree n polynomials. Its dimen-
sion is

n+m-1
) (21)

dim Th(E) = (

n

We denote by T(E)G the set of G-invariant polynomials. It is also a ring. We define
G G
T(E)” =T (E) nT(E) (22)
n n
If
¢ = dim T.(B° (23)
n n

it is given by the generating function (called Molien function or Poincaré function

in the literature).

o0

n _ _ du(g) _
nfO c t = M(t) ({det(x-—m(g)) , whereédp(g) 1 (24)

]

For a finite group G of order |G|, M(t) = ;éi zdet(i—tA(g))' (24")

See T.A. Springer (1977), R.P. Stanley (1979), L. Michel (1977) ,(and also L. Michel
(1979)) for different reviews on the subject of this section. M(t) 1is a rational

fraction which can be put on the form

v S
M) =B wy = x e %, §o=o0
D(t) =0 0
m' d. (25)
D(t) = 1 (1-t 1) m' < m
' i=1 -

(In this form N(t) and D(t) may have a common factor), which correspond to the
. G . . . .
following structure of T(E) : Every G-invariant polynomial of T(E)G is of the

form



form

v
p(x) = aio qa(el(X),-.‘,em.(X)) e (), @p(x) =1 (26)
where the gq = are arbitrary polynomials of m' wvariables, the ei(x) , 1 <i<m'

are algebraically independent polynomials of degree di . The ¢h(x) are G-invariant

polynomials of degree da. Then ¢? R ¢£ .... are other ('s of degree 260t .
¢ QQ
36a ... up to Y > 0 where
Vo
0, %) = ¢ (8,(x),....8 () . (27)

In other words, T(E)G is finitely generated and it is a free module of dimension
v+l on a ring of m' variable polynomials. When G is finite m' = m . We call
reflection an orthogonal operator on E with eigen values -1 , multiplicity 1, and

1 multiplicity m-1 . For groups G generated by reflections (Coxeter groups) vy = 0

SO

p(x) = p(el(X),...,em(X)) . (28)

More generally for a finite group, the number of reflections is

m ZNE(l)
i d. ~m- N

r(G) . :

i

i
(where Né = dN/dt) .

From (26) and (27) we can compute the gradient of a G-invariant polynomial as

m' dei v Bqa 1 -1 8¢u

F, —_ ith F. = — —Xp
;; 1(X) dx b 1(X) E (36. v qa¢ ae.kﬂx(zg)
i=1 0=0 i o 1

dp(x) _
dx

The algebraic independence of the e.l implies the linear independence of their

gradient on the generic (open dense stratum) so

Lemma 2 : If one of the Fi(X) in (29) is a non-vanishing constant the G invariant

polynomial p(x) has no extrema in the open dense stratum.

(This lemma has also been obtained independently by M. Jarig, conference on
group theory, Mexico (1980)).

1f we want to exclude more isotropy groups we must add to the conditions (16)
at least one of the condition (17). Physically, the condition (17a) limiting the
degree to 4 seems the most important. With these conditions (16) and (17a) we can
obtain the minimum of the Higgs polynomial in the generic stratum when the represen—

tation of G 1is reducible. We can show it in a simple example.

Let

n
E=® € s m = dim E , 1l <cm <m . (30)
o o a



Let (x ,x ) be an orthogonal scalar product in the space £t and
o

o
= o 1
(¢,9¢) z (¢a,¢a) s b =® o, - (30")
o o ‘
We study the Higgs polynomial.
1 2y
P(¢) = = I (¢a,¢a) -5 (4,9 , Ka > 0 . (31)
a a
Using that m < m . we find for that its invariance group is the direct product
G = x O(m ) s (32)
a=1 o
whose dimension is
n m (m -1)
dim G = I @ za . (32")
a=1

Vectors ¢ of the form ¢a = 0 except for one ¢ have maximal isotropy groups

(in E - {0}) . Indeed

G¢ = O(ml) x O(mz) X o.. X O(q}—l) X e X O(mn) . (33)

On the opposite, the vectors whose all summands x are different from the nul vec-
a

tor form the generic stratum with the minimal isotropy group 2 O(m-l) . From (31)
. =1 a
we obtailn o
dp -1 2 ,
i S ¢m((¢a’¢a)Ka uo) (34)
and
a%p 2 -1
— = ul ® (P+2P )(¢ ., ) K (35)
dé o o ¢a o o o

where Pa and P, are respectively the orthogonal projectors on Ea and ¢ . Equa-
a
(63
tion (34) shows that for an extremum

either @x= 0 or (¢a,¢a) = u2 K& . (36)

The restriction of the corresponding Hessian on E& is then

2
-———2—-— = "Uz Iu or 2”2 P¢ . (36')
d% ' E, a

(oW

.. 2 2 .
We have a minimum when d"P/ dd” > O and from 1 < my this can occur only when all
summands ¢ are nonvanishing so the minimum is in the generic stratum. We remark

that it is in agreement with Lemma 2. Indeed

3P _ 1 : ~ 2
3(e ,4 ) ~ 7K ((¢a’¢a) Ka )
Q a o




which is not constant ; the annulation of all this partial derivativesyield the extre-

ma of the generic stratum and we even showed that they are minima.

Now we will impose conditions (16) and (17) : The orthogonal action

g — Ag) = A(g—l) of G on E 1is irreducible on the real. The G-invariant

polynomial is

2
(o) = 7 (e + L a(4) - B(4,9) (342)
with
WA ) = w(@) =2 wx Ne) 3 6 £0 = w(@d) >0 (34b)
o(A(g)e) = ol(d) = AB o(A"l¢) (34c)

If S(E) 1is the vector space of symmetric operators on E , it is easy to

compute (see e.g. [2]) the existence of linear maps

F@F— "L . S(F) LE D ~ S(F) (35)

which are G-equivariant (i.e. they commute with the respective actions of G on the

domain space and the image space) and which satisfy
w(¢) = (¢,T(6 @ ¢)9) » o(¢) = (¢,D(¢)¢) . (36)

So the gradient and Hessian of P at ¢ are

g—% = (T(6 ® ¢) + wD(s) - p2D)o (37)
a%p 2

S5 = 31(9@¢) + 2u D(4) - ’I ) (38)
dé

Moreover, from 17 ;
tr D(¢) = 0 s tr T(¢ @ ¥) = A(¢,¥) . (39)

Note that the conditions for a minimum are

L2
440 , 5 =0, LLoren vl . (40)

d¢

-

If o(¢) is not identically zero, i.e. there exists a third degree G-invariant
on E , then the assumption of Theorem 1 are satisfied and P(¢) has no extrema on

the generic stratum.

If o(¢) =0 and w(9) = K(¢,¢)2 , the invariance group ¢ is o(m) ,
m dim £, T(¢ @ ¢) = (6,0) (I+2P)) , (P,

case is well known to physicists. Theorem 1 does not apply, there is only one stratum

is the orthogonal projector in ¢ ) ; this

in E - {0} , the generic one and the isotropy group of any point, and therefore of

the minima, is H = O(m-1) . The interesting case occurs when w(¢) and (¢,¢)2 are



linearly independent. The structure (26) of the ring of invariant polynomial and the
powers vy must be known in order to see if theorem 1 applies. It does applies if, in
a

the Mobius function (see 25), a > O implies 6a> 4 or does not exist.

Physicists working in high energy physics have computed the minima of many exam-
ples of polynomials (34). Physicists working in solid state physics have computed
even more examples ! We recall that K 1is the set of conjugation classes of isotropy

groups for the action of G on E - {0} . The following is known.

There are physical cases when the isotropy groups of a minimum of P(¢) does not
belong to a maximal element of K . J.-C. and P. Toledano (1980), have given such an
example for the irreducible representation of the crystallographic group 141? obtained
from the point N of the Brillouin zone and of dimension m = 4 . However, we have
emphasized that it is the symmetry group T <0(m) of the polynomial which must be
considered. In that case G is larger than the image of G . As shown inL. Michel (1979)
for the action of G on E- {0} the isotropy groups of minima belong to maximal elements

of K . Remark that there are extrema whose isotropy groups belong to smaller elements

of K

This is a general situation. In all computed examples, the isotropy groups of the
minima belong to the maximal elements of the set K defined by the action of ¢ (and
not necessarily the physical G) although there may exist extrema with smaller iso-
tropy groups. It is tempting to make the conjecture that these results are always
true, although they have been proved only for families of T actions ; for instance
when condition (A10) of the appendix is satisfied and . is a Coxeter group (i.e.
generated by reflections). This include more than the adjoint representation of simple

Lie groups ; for instance it includes the ¢ = 2 , five-dimensional representation of
0(3)

In L. Michel et. al. (1978), Mozrzymas and I used Morse theory to prove this con-
jecture for m < 3 when G is finite, so in the compact case for dim Nn < 3 when (A10) is
satisfied. Our proof could be improved by applying Morse theory to the manifold M
defined in (20). With conditions (16) and 17(a) (fourth degree polynomials) one proves
that M is homeomorphic to the sphere Sm—l . Then many cases with m = 4 could then

be proven but not all. The complete list of fourth degree four variable -polynomials

with irreducible isotropy group C in the action of 0(4) on E is given in

L. Michel et. al (1981). I brtreve—it—is—not-yetknownif—the—eonjecture-holds for

~

+he—smallest—G—~CGrhieh—tas—eight elementsy.
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Appendix

Correspondence between the orthogonal action of a compact group and the finite action

of its finite Weyl group on the generic global slice.

We explicit in this appendix some relations between linear actions of compact
groups and finite groups. Let us first recall some general and simple facts about

general actions. We assume that G acts or the set £ and that NcE (i.e. N 1is a

subset of E ).

Definition of the centralizer of N in G .

C.(N) = n G (A1)
G veEN v
it is the subgroup of G whose elements have fixed every point of N-.

Definition of the normalizer of N in G .

NG(N)={g€G, vvEN, g-vENI] (A2)

it is the subgroup of G whose elements transform N into N . It is convenient to

introduce the notation
g-N = {g-v, v €N} . (A3)

Then

g'N =N =g €N, (N) . (A4)

Theorem Al : CG(hD A NG(N) , (A reads : invariant subgroup).

Proof : Let ¢ € CG(N) , n € NG(N) ,v € N . Then

(ncn_l)‘v = n‘(c-(n_lv)) = n'(n_l\)) = Vv

When G acts on itself by inner automorphism i.e. g-h = ghg”1 if H <G (H sub-
group of G) then NG(H) is the largest subgroup of G which has H as invariant

subgroup. Hence

NG(N) < NG(CG(N)) . (A5)

We have already introduced the notation :

EC - (WeE, Vg€g, g =) . (A7)

By definition of the centralizer

CG(N)
Nct . (A8)

If we assume the equality we have the easy lemma :



CG(N)

Lemma Al : N=E = NG(N) = NG(CG(N))
We know (A5) N_(N) < N_(C_ (N)). We now prove > . Let n € N _(C (N)) and c € C_(N);
"'l G - G G - ~1 G a __1 __1 G
then ncn € CG(N) ; so for any v €N , ncn Vv =y di.,e. c*n VvV =mn V
- C . -
which means that n 1, ees ;5 this is N by assumption and therefore any n s

or any n € Né(CG(N) is also in NG(N) . This lemma can be written on a simpler

form :
NG(EH) - N, () i

In general its converse is not true. As we shall see it is trué for the orthogonal
actions of a compact group G on a real vector space E  when Nx is the global
slice (= normal plane to the orbit G(x)) at a point x of the generic stratum. As
we have seen NX is a linear subspace of E which cuts every orbit of G (theo-

rem 1) . We denote by Wx the quotient
= / 9;
W= NN /e (N . (A9)

By definition of the centralizer and the normalizer this quotient group acts effecti-
vely (i.e. without kernel) by an orthogonal representation on Nx . Each orbit of Wx
is contained in the intersection of a G-orbit by Nx . Since in the neighborhood of
x this intersection is an isolated point, Wx is discrete. We remark that CG(Nx)
and NG(NX) , from their definition, are closed, so Wx is closed hence compact and

therefore finite.

The best known example of the situation we study is the adjoint representation of
the compact Lie group G . In that case the generic global slice is a Cartan subal-

gebra and wX is the Weyl group. In that case WX is generated by reflections.

We try now to prove the converse of Lemma Al when Nx is the gloBal generic slice
of the orthogonal representation of the compact group G . The essential new fact is
that GX = CG(Nx) since the conjugate class of GX , X € generic stratum,Ais mini-
mal in the set K of conjugation classes of the isotropy groups appearing the G-
action. Note also that ECG(NX)E E®% is a linear subspace of E . Consider ijEGX
and assume first that G, = GX , 1.e. y 1is in the generic stratum. From theorem 1,
Nx cuts G(y) , the G-orbit of y at least in a point x' &nd Gx' = Gy =G

y
CG(NX) . Since isotropy groups of an orbit are conjugated when two of them are iden-

tical Gy = Gx' , the elements of G which transform x' into y must belong to the
normalizer of the isotropy group : Gy € NG(GX)(X') . With the assumption NG(MX)=
NG(GX) we obtain that vy € NX . This also show that for the generic stratum, the
‘intersection of a G orbit G(y) with Nx is the orbit of NG(GX) and therefore
of the group wx . We are left in the case vy € EGX with Gy ‘strictly larger than
Gx . Since the generic stratum is open dense we can consider all points, such as y'

G
in the intersection of E > and the generic stratum. We have shown that they are

all in Nx and by continuity this is also true for y . Hence not only we have proven:



Lemma A2 : 1f Nx is the global slice of a point x of the generic stratum of an

orthogonal action of a compact group G , then CG(NX) = Gx and

G
— x o
Ny =BT =N N)=N.() . (A10)

X

We also obtain the

Theorem A2 : When (Al10) holds for points of the generic stratum, the orbits of wx

in the slice Nx are the intersection of the G-orbits with Nx .

We have proven it for the points of the generic stratum and by continuity it ex-

tends to the closure, i.e. to the space E

From this theorem, we deduce that the ring of N (N) invariant polynomials on
NX is obtained from TG by restriction of the doma1n of each polynomial from E
to NX . Note however that different groups Gl’ G2 may have the same orbits, hence
the same invariant polynomial ring TG and the same wx ; such an example 1s given

by the adjointation of S0(3) and 0(Z) ; then WX =7, .

So, when (Al10) holds, the Higgs problem for a compact group is identical to that
for a finite group. Of course, (Al0) may not be true. We give sufficient condition

for that in L. Michel (1979). For instance
2xdim (generic orbit) < dim E = (A10) not true. (A11)

We also show in L. Michel (1979) that (Al10) does not hold when € carries a direct

sum of two equivalent G representations.
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