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ABSTRACT

These (non—degenerate) fourth degree, btounded below
polynomials, invariant by a compact or a crystallogra-
phic group &, are used to produce a spontaneous break-
ing of the symmetry G They have extrema for each
maximal 1little group which appears in the representa-
tion of G on the vector space E, but they may have
their minimum snywhere when this representation is re=-
ducible. In the opposite case such a polynomial cannot
have an extremum on the open dense subset of E whose
points have a minimal (up to a conjugation in G) little
ETCUD . Although not every maximal little group can be
the little group Gp of a minimum of P, it is known
for dim E < 3 +that Gy is a maximal little group. 1t

) has been conjectured that thisis true for any dimension
if @ 1is the effective invariance group of the polync-
mial ; the invariance group H provided by the physics
might be only a subgroup of G A counter-example,
found by J.C. and P. Toledano, 1is given to the conjec~
ture applied to H. Some sufficient conditions on the
¢ 4invariants are also given for the truth of the con-
jecture.
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INTRODUCTION

4 physical problem with a symmetry group G may have a solution s
with a smaller symmetry group H= Gs' Then, from the group invariance of
the problem, one can build with the elements of G not in H a family of
other sclutions that we call an orbit of G. Of course the whole set § of
solutions is invariant by G and can be decomposed into a disjoint union
of G orbits. If the solution chosen by nature has a symmetry group stricily

smaller than G, we speak of a broken symmetry state.

The solution s may depend on external parameters (such as the
temperature T, The pressure p,...) and the symmetry of s migh% change
suddenly for a set of erifical values TO, Dyreee of the parameters. There
is great interest to predict the nature of these symmetry changes without
sctually solving the full physical problem. This was first attempted by
Landau L in 1937, in his theory of second order phase trangitions. There

*
are several other types of mechanisms for describing spontanecus symmetry

breaking ; the Landau model, which cbtains the lower symmetry by minimizing
a G invariant fourth degree polynomial is the simplest and it is quite
successful. ZExactly the same mechanism is used in non-Abelian gauge field
theory for obtaining spontaneously broken symmetry states from a G dinva-

riant Iagrangian : this is a part of the Higgs mechanism.

For the last ten years I have been fascinated by spontaneous sym-
metry breakings. I am surely not the only one %0 have noticed that several
mechanisms seem to prefer a principle of "minimal symmetry breaking"

Eﬁef. 2b) p. 133 Th. 2 ; 2e) po 45], i.e., the preserved symmetry group H
is maximal among the possible candidate subgroups appearing in the mechanism ;

3)

the critical orbits 1 introduced with Radicati have %his property and many

high energy physicists believe that the minima of Higgs polyncnmials are on
eritical orbiis. Indeed this is often true, but 1% is time to make a precise
review of wha$ is proved and what is still a conjecture about the minima of
Higgs-Landau polynomials. I found the colloquium in the honour of Tony Visconti
t0 he an excellent cppertunity for such a review. I present it as a small

token of the admiration I have for Tony and wy gratefulness for thirty years

of friendship.

*
) T had several occasions to review the mechanisms of spontaneous symmetry
breaking : ¢f. Refs, 2a~f).



1. = GROUP ACTIONS

I first recall a few basic concepts concerning group actions. Every
mathematical collective object M (& set, a manifold, & vector space,...) as
well as every physical theory, has s group of automorphisms ; we denote it by

Aut M. An action of the group G on M is given by a homomorphism :
. f
G ——> Aut M (1)

The action is effective if Ker f, the kernel of f, is trivial [E.e.,
any two different elements g and g' of G induce on M different auto-

morphisms, f£{g) and £(g!']]. We will use generally g.m a5 a short for

f(g)m, the ftransform of meM by ge G, The 1little group Gm= {get,gem=m}
is the subgroup of G which leaves m invariant. The orbit G{m)={m'e I,
FeeG,m' =g.m} is the set of the transforms of m by the group G. Points

of the same orbit have conjugated little gZroups i

G =g6,8" (2)

Conversely, points with conjugated little groups may not be on the same
*
orbit, but, by definition, they are on the same stratum ) ; we denote by

S5(m) the stratum of m.

1
Given two G aciions G L Aut M, G z Aut M'y, a map M g M com-
muting with the two group actions is said to be eguivariant when :

VgeG f’fg)o $ = ¢, frg) (3)

If the equivariant map is an isomorphism, the two actions are equivalent

fr R (this is the usual definition of equivalence for linear representa-
tiong of @). Then one proves easily that the actions of G on two orbits
are 2guivalent if and only 1f the two crbits have the same little groups ; hence

equivalence classes of G orbits, the G orbit types, are classified by

the conjugation classes of the subgroups of & and, therefore, a stratum

Although it is not often sxpressed explicitly, the concept of siratum is
much used by physicists : e.g., in the sction of the Lorentz group on
Minkowski space, the four strata are : the space-like vectors, the light-
like vectors, the time-like vectors and the null vector.
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is the union of all orbits of the same type in an action of G on M.
One often denotes by [@:ﬁ] the type of G orbits which have H as
1little group.

Mozrzymas and I have pointed out 4) [éee also 5i] that a weaker
type of equivalence is also useful in physies ; it applies even to different
. t
groups acting on different objects i G-g AUt M and G' L Aut M' 5 the

actions f and f' are equivalent in the weak form : f~f', if there 1is

oY

an isomorphism M g M' and alsc an isomorphism Aut M 5 Aut M'  such that

tmf' = g (Inf)
(4)

["Im" is for Image ; {(4) means that the fwo groups £(¢) anda f£'(&') are
conjugated in Aut M= Aut Mi]a Indeed two weakly equivalent representations
of the groups ¢ and G' have a same set of possible Higgs-Landau polyno-

mials.

From very gereral principles of guantunm physics one can already
obtain in a G dinvariant physical theory the possible symmetry groups (sub-
groups of &) of the equilibrium etates [é.go, Ref. 6) where relevant previous
references are giveé]; applied to the EBuclidean invariance this yilelds a na-
tural classification of the mesomorphic states of matter (crystals, liguid
crystals,...) and of their symmetry defects 7). Here we are concerned only
in the casge where the guotient group Im f=0¢/Ker £ is compact ; morecver
we assume that the action is smocth enough * go that the little groups are
closed (this is the case for & continuous linear representation). Since
finite groups are compact, our assumption includes the case where Im £ 1is

a finite group.

There is a natural strict partial order relation on the set of
conjugated classes of closed subgroups of a compact group G 3 if we denote

py (H) and (H') respectively the conjugation classes of the subgroups

*) Another definition of the action of G on M ({eguivalent $o fthe defini-
tion used in the paper when M 1is an abstract set) is given by & map
wat & w satisfying #(1,m)=m, Zlg'g,m) = F(g',#(g,m)) in shors
#{g,m) = gomm. This definition is well adapted when G and M have in
common a3 mathematical structure : e.g., M 1is a smooth (: indefinitely
differentiable) manifold and G 1s a Lie group ; the smooth map J]
(between manifolds) defines a smeooth action of G on M.
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H and H' of &, we say that (H) < (E') if there is a subgroup of (H)
*
which is a strict subgroup of a given group of (H') « This induces a

partizl ordering on the subset X of conjugation classes of little ZTroups

appearin§ in the smooth action G =N Aut M with Im £ compact. One then
proves 9 that J has a minimal element and the corresponding stratum is

open dense ; we call it the generic stiratum. If there are no fixed points

there might be several maximal elements of K , i.e., several maximal

little groups, defined up to a conjugation, in the group acticn.

With these concepts we can explain what is Presently known cn ithe

extrema and the minima of Higgs-landau polynomials.

2. ~ HIGGS~LANDAU POLYNOMIATS

Definition 't Given a continuocus linear representation g = 4(g) of a
compact (or finite) group a -qp_é real m d;ménsional vector space E
with thinvarianf.;egforé- g:bAﬂ(i,§. ; quztG=?ﬁx==O) a Higgs-Lendau
polynomial is a fourth degree polynomial P(x) defined on E, G
invariant (P(A(g)x) = #(x)), bounded beloﬁ, and with its lowest

value not at the origin.

30 the lowest value of P(x) is reached at least cn one orbit of
points that we shall call the absolute minima of P, ‘and thelr little groups
are strict subgroups of G. Hence if the solution of a G symmetric problem
is given by the minimization of a Higgs-Landau polynomial, the nature of the
symmetry breaking is given by the little groups of the absolute minima., Note
that a polynomial must have at least degree four in order to produce such a

symmetry breaking mechanisnm,

In quantum field theory the limitation to fourth degree Higgs
polyncmial is generally required by the renormalizability of the theory.

The vector space E is the space of values of the multi-component spin

___—...—.-._-_————..—.—._——-—-—---_.—.—__--.——...-..-._——.——-.--_.——..—-.--.—.__—-_....—...__————.--...--—..——

Then 1% 1s not possible that = subgroup of (H') be a strict subgroup of
H din opposition to the case where & is not compact ; for instance, if
G=Aff(n), the affine group in n dimensions and if (E) and (H'j are
two conjugate classes of crystallographic groups in n dimensions (so "
and H' are not isomorphicg cne can have iwo pairs of subgroups : H,

i, € (H) ana H', H| € (H') such that H < H' and HY <H . A syste-
matic study is given for n=2 in Ref. 8), Table 4,



zerc Higgs field ; if this field is complex, one can consider separately
its real and its pure imaginary components : indeed, given a complex linear
representation g — A'(g) of ¢ on the complex vector space E', one can
consider the direect sum A4' g AT which is equivalent to a real representa-
ticn on the real vector space E whose dimension is twice the (complex)

dimension of E'.,

As we sazid these polynomials were introduced by Landsu for pre-
dicting symmetry changes in second c¢rder phase transitions in crystals. A
erystallographic space group &' 1s an infinite discrete subgroup of the
Euclidean group E(B) guch that the orbit [E(B):GE] be compact ; so &
is not compact. However, the physically interesting unitary representations
of G!', for instance those which satisfy the Lifschitz criterion 1o s COT-
respond to wave vectors % on the surface of the Brillouin zone with a
higher symmetry so the image A(G') of the representation is finite * '
The polynomial P(x) is then obtained by an expansion of the free energy
thermodynamic potential, limited usually to the fourth degree, although
that some phase transitions reguire to continue the expansion further. We
shall call generalized Landau polynomials those which satisfy the definition
of Higgs-Landau pelynomials excep® the limitation to fourth degree. In the
next section we will prove that when these polynomials have a maximum at the
crigin, they have extrema with every maximal little group appearing in the
action of G on E-{0}, It will be more difficult %o give general results
on the 1little groups of the minima of these polynomials outside the trivial
case in which E - {0} has only one stratum ** (i.e. : ¥ has only one
element) ; in the following we exclude this case by assumption, sc there 1is
the generdc open dense stratum and one or several excepticnal strata. Affer
giving, in Section 4, some results on the structure of G invariant poly-
nomials, we will prove, in Section 5, that for generalized Landau polynomials
and even for Iandau polynomials the little group of an absolute minimum can

be any element of . On the contrary, when the representation of G on

*

) A erystallographic space group G! has a translation group T~ 2 as
invariant subgroup and the quotient P=G!'/T, the point group, is iso-
morphic to a finite subgroup of 0%3). The action of P on T defines
an action of P on the duzl e which is the Brillouin zone). The
clements k & T which are or "eritical orbits" (these are defined later
in the paper) are among these higher symmetry wave vectors of gpecial
physical interest.

*#) . . .
For instance, G=0, the cyclic group of n> 2 elemenits with a
faithful, real iwo-dimensional, representation.

]
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£ ig irreducible on the real, a Higgs=Tandau polynomial cannot have an

extremum in the geperic stratum : this excludes s "maximal symmetry breaking"

for the represzentation.

1 am s4i11 unable to complete the proof or find a counter example

to my

Conjecture : If the representation of the symmetry group G of a

Hdiggs-Tandau polynomisl P(x) on E is irreducible (on the real),

its minima have Jlittie groups maximal in X (the get of conjugation

classes of little groups on E- {0}).

4)

by examples that not every maximal little group in K can be the litile

Mozrzymas and I proved it only for the dimensions m < 3. We alse showed
group of a minimum of P(x). Our proof will be recalled in Section 7.

I hope that the material of this paper will help some reader to prove or
disprove the conjecture. Meanwhile I think that this paper presents an

efficlent method for minimizing Higgs-Landau polynomials.

To coneclude this section I have to explain a very imporiant point.
Cf course, any mathematical theorem on Higgs-landau polynomials can be valid
cnly for the effective symmetry group T or the polynomial P(x). However,
this group might be larger than the group Im £ given by physics.
Indeed 1t will offen happen that the polynomials on E whose exact symme try
groﬁp iz Im £ must have a degree higher than four *). So the proof of
the conjecture for the invariance grouyp G of P(x) will not prove it for
the physical group Im f, when the latter is a strict subgroup of c.
As a matier of fact, the conjecture is false for the physical group Im f.
d.0. and P. Toledano have given to me a counter example that I explain in

Section 8.

The phy51ca% consequence of this fact has been well pointed out by |
Weinberg 10 If there is a subgroup H of the iittle group of @
which is not a subgroup of Im £, the corresponding Higegs bosons
have a small mass and are ”pseudo Goldstone bosons" so H  is an
approximate symmeiry of the theory.

L T B TN



-7 -

%, - ORBITS AND STRATA IN AN ORTHOGONAL REPRESENTATION OF A COMPACT
(OR PINITE) GROUP

Let g — A(g) be an orthogonal representation *) of ¢ on E,
and (x,x) an invariant scalar product **). The orbits G(hx) for A£O0
are all of the same type and have parallel tangent planes at the points Ax.
Tet M (x) c F (x) the vector subspaces parallel to all tangent planes,
at x, %o the orbits G(Az) and the strata §(Ax), respectively. Let
JV(X) be the orthogonsl subspace o M {x) it is the normal plane at Ax
of the orbit G{ix). TFor each x#0 there is a neighbourhcoed V_ of the
orbit G(x) such that A (x) flvx cuts G(x); at x only Eénd also any
cther orbit G(x‘) cv in one point only when x 1s in the generic
stratuﬁﬂ***). The mapx V L ¢(x) which sends N (x) n Vx on x is an
equivariant retraction 3 r(A(g x)=a(glr(xt) so ge& G 1 implies
g e Gr(xi) ¥3 i.e., for every x' ¢ V., (G } = (G ). Then it is easy
to deduce that for ail points x' & V f\Jf(x)L we have (G ) strictly
smaller than Gx s incidentally this shows that the generic stratum ig open.
Since the gradient of a G invariant function is invariant by Gx at K.

it must be in ¥ (x), i.e., the gradient of a G invariant function is

tangent 2t x  to the stratum S(x). S0 on g one-dimensional stratum the

gradient df/dx of a G invariant function 1is coliinear to x. Hence,

a generaligzed Landau polynomial with a maximum at O has an extremum on
*KXH
esch half-ray ({Ax}, A>0) of a cne-dimensional stratum )

% :
) This is not a restriction since every finite dimensional real linear
representation of a compact group is egquivalent to an orthogonal re-

presentation.
%3
) This scalar product is unique up to a factor when the real represen-

tation of G ig irreducible on the real.
H KK
) The results of this section are proved in Refs. 11a,b) for the smcoth

action of a compact group G on a finite dimensional manifold M.
This ig nct mere general than the situation of the paper ; according
to & beautiful theorem of Mostow123), when the number of strata is
finite, such an action can be embedded eqﬁlvariantly into an ortho-
onal action. Mostow had also proved that when M 1s compact
%it includes the case where M is the unit sphere of a finite dimen-
sional vector space E carrying an orthogonal representation of G,
as in this paper) the number of strata is finite. The subspace N (x)
that we define is generally called the global "slice” at x and

. W(x) o Vy is the local slice.
KHHE
/ Tet p(%) be the restriction of the polynomial P(x) to the unit

sphere (%,%)=1 {(we denote by % a unit vector). The one-dimen-
gional strata of E cut the unit sphere into isclated points ; these
points belong to critical orbits (— orbits isolated in their stratum)
Each such critical orbit is an orbit of extrema of any G invariant
functicon on the unit sphere.
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We have proved that in a neighbourhood of E- {0} of each half-ray
the conjugate class of little groups of roints cutside the half-ray ars
strictiy smaller ; this means that the conjugation clase of little groups
of a one-dimensiconal stratum is maximal in KX . The converse maey not be
true : strata corresponding to maximal elements of K may be of dimension

larger than one ; however, we will extend to them the preceding result.

We denote by g8 the eigenspace with eigenvalue 1 of A(g) and

we define for any subgroup H < ¢

H
EH: m E% , Cq = odim E

geH

(5)

The dimension CH of EH 15 sometimes called the subduction degree of H
for the representation of & on E. If H <H' £ ¢ and ¢y = Cyr»  then

H is not a 1little group of this representation. If

Al W >n , c.<c, (6)

it does not necessariiy imply that H is a little group ; however, it isg
the case when the set of subgroups of G larger than H is finite (e.g.,
¢ finite) or enumerable [e.g., Ref. 2f), Appendix 4] ; then ¢y 1is the di-

mension of the #tratum with little groups in the conjugation class (H).

Let H be a maximal little group on E- {0} ; one then shows that
ke
]:see footnote ) on p. 7]

Eiu)=U EH _ SCI)U{D} wheee 26,

H &(H)

(7)

is closed [it contains the stratum corresponding to (H) and the origié].

Iet E be the compactification of E obtained by adding the point a%t in-
finity %), that we shall denote by w. Multiplying P{x) by a convenient
smooth function vanishing outside =z small compact containing W, we transform
P(x) into a smcoth function P on E with a maximum at @ and with the
same extrema as P(x) ‘elsewhere. Since E(H is closed, it is compact

and the restriction ?[H of P 4o E(H) must have a minimum somewhere

_.-.-__——...._—._.-....____———-___.-.....-_-.--.-__.___-......___.-.......___...—.____.____—....___—__—.-u___—

* -
) The topology of E. is that of a sphere Sm ; one can realige this com-
paciification by a stereographic projection ; O and ® sare the two

poles of Sm j rays in E Dbecome meridians in S .



outside ©¢ and w if P is maximum at 0. Since the gradient of P is

tangent to E(H) it vanishes at this minimum of P g Hence, a generalized

Higps-Tandau pelynomial maximal at O has an extremum on every connected

component of a stratum corresponding to a maximal little group in H .

In Appendix A, we give some relations between the orbit and strata
structure for the orthcgonal representations of compact and finite groups.

Obviously, in the latter case WM (x)=0 and A {x)=E.

4. - ¢ INVARIANT POLYNOMIALS oN E

The polynomials on E form an infinite dimensional vector space
9‘ wihhich is alsc s ring and an algebra. The homogeneous polynomials of

degree 1n are defined by

B, tAu) = X en‘“’) (8a)

they form a vector subspace ﬁn of dimension (nﬂr?—‘[). The differential

of On(u)- is the linear form on E defined by

L > ;Dxu B,Ltu.) = E':m f\-( B“.(K-*/\-.x.) - E“(u))

A=

(8b)

1t tr _ .
The "operators qu commu te 'sz)yugn"byubxugn' One has also @

D, 0w 2 n O, tw) (8c)

Iw N
Xl
3)

n inio = multilinear form completely symmetrical in n variables Esee
also Refs. 14), TBE

By '"gpolarizaticn" one transforms a homogeneous polynomial Qn of degree

Op (4,5, ,%0) = Lo 2 “”“D"n O, (u) (9a)
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For example @

-~

B¢ = %.' [ez'u&w - g, in) - 52’613]_] (5v)

93 (e y, 2) = 31_' L 53““,4 3)-93_{94 z)- % ﬁ*tx)-%(l-ta)-— Bsm)-.%g; ._931.—_:)) {5e)

Fote that :

.éb(thw,-u,u.) = 8}1‘(&‘_) (9(1)

The action of the orthogonal group S0(m) on E leaves invariant the
scalar product (x,x). It induces an action on any Wi nt We give it
explicitly for m=2,3,4. We denote by (j), j > 0, the two-dimensional,
irreducible on the real, representations of 50(2) and by (0) its trivial
representation. We denote by {j} the 2j+1 dimensional representation of
S0(3) 5 since SO(4):(SU(2)><SU(2))/Z2 its irreducible representations can
be labelled (j,j') with 2j, 2J', j+]' non-nsgative integers. With these

notations, the representations of SO(m) on g‘n are the direct sums :

n  even n odd
% £

S0(2) on 9, &7, (2K D2, k) (10a)
% adt

soi) on 3, @ {24} ;.o 125+1] (100)

-t

——

SO(u) on ‘5.., @;i {4.¢} @;:o {aes,0443 (10¢)

Note that for m > 3 all the representations of SO(m) do not appear in
ite action on ¥ . There is a finite number of strata in the action of
O(m) on gn. Eere we are interested by those corresponding to little
groups H such that the restriction to such a subgroup of the m dimen-
sional representation of 0(m) be irreducible on the real. For '0(3)

pr Tgr ©5 Ops Y, Y, dn
Schnflies notation (Td and Oh are, respectively, the symmetry group

there are only seven such subgroups : T, T

of a regular tetrahedrcn and of a cube). For n=3 +there is only a one-
dimensional siratum of polynomisls invariant by an irreducible subgroup of

0(3). 1In a convenient co-ordinate system this polynomial can be written :

R TUR IR 4 NPUIRR N UDARG RS RN AP b e e s v
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85(1)3 32y 2, %5 nyarciance grovp T (11)

Similarly, for n=4, there is, outside the 0(3) dinvariants
h(x,x)g, only a two-dimensional stratum of peolynomials invariant by an
irreducible subgroup of 0(3) ; in the same co-ordinate system as in (11)

a representative of these polynomials can be chosen as

Z 4 4 “
B, 1) (it raatefal )= L etean) s xS (r2)

It is invariant by Oh which is obtained by adding to Td the inversion
*

-1  through the origin .
Now we consider a third degree homogeneous polynomial invariant

by a group H :

geﬂ Bstﬁ(gjx,): eaft): )\-} 631)\») (15)

If we fix x and y in the corresponding trilinear form 63(x,y,z), we
obtain a linear form in 2z 3 it must be the scalar product of z with a

vector of € which we denote X, gince it is bilinear in x and y. So

i d

B,(nut)s (xvy.2)= (*.,4vE)=(Yvx, 2) | (14)

(using the complete symmetry of the trilinear form). The correspondence @

KOY —» XyYzYyx ,E@E —~ S € (15)

defines a symmetric, in general non-assoclative, algebra on E which has

H as an automorphism group @

geht Algix,, Acg) Y= Alg)(xyy) (16)

e e e ek A ——— " . —— o R ] = P o o o e o e S A A L S G 2 e

* .
) A complete table of the invariant polynomials for 0(2) and all n is
given in Ref. 16).
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One can also define a linear cperator Dx’ linear in x, by

N
'g,b—-bxvg.zi)xy. ;6-——-—"{:15) (47)

It is a symmetrical covariant operator

- ~ ~1
D, =D, ., geH , DA:,M" deg) D, Beg) | (18)

These operators have been introduced by Biedenharn 17)

for the adjoint re-
presentation of SU(n) and for n=3 by Gell-Mann 18) ; for a systematic
study of these operators and of the v algebras, see Refs. 2b) and 14),

Remark that the trace of Dx is an H invariant linesr form on E. If the

orthogonal representation of H on E hag no invariant vector, then

trj)xzo (19)

Similarly, from each degree n homogeneous polynomials On, we can build
a multi-algebra 5@ Eim E and introduce an operator-valued map %ég E- L (E).

For instance, for n=4, one defines

Eaé—:—a-ﬁfﬁ) , T(LG%J’*TH,;; (20a)
such that
Bty xiqie): 00T 2w, Tiam)al=, 5,2 v) (20b)

this operator satisfies

Tu.g.z —r;o‘a.: T.;.z: Acg,) T, A‘S) (21)

Algrn, 4(,}34,

The simplest example of such an operator is given by

(mx)*= (, 7,3} with Tyy= 5 (6% (I+27) (22)

where Px is the orthogonal projector on x.
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Given 2 homogeneous H invariant third degree polynomial

(xvx,x)= (x,Dxx}, one can form a fourth degree polynomial

(Z’D: a)= (xy¥, x.vx)-.(t,-’:,&lr) 5 —l:'?’: 'S(J)XDU’ —f_'}),'DL-!-'vay‘) (23)

which is invariant by H><Z2(-1). For example, for O5 given in (11)

[] 7-3 Xz
3(-5 O 11

% * 0 (22)

and (x,Dix) ig the polynomial of (12). More generally, givem H invariant
polynomials QB(X) and 94(x) of degrees 3 and 4, one can form H inva-
riant homogeneous pelynomials (x,Dix) and (x,Ti,xx) of degree g+2 and
2q+2, vrespectively. Of course, there cannot be more than m which are
algebraically independent so for q = m' ‘these polynomials are algebraic

functions of those with ¢, 0 % g £ m' = m.

Given an orthogonal representation of G on the m dimensional
vector space E, we denote by g ¢ the algebra of ¢ invariant polynomials.
References 19)—22) give informaticn on the structure of & G, mainly when
¢ is finite, but it can be extended to the case & compact. The Molien

generating function M{t) yields the dimension :
[ G C‘rG‘ ¢’
boedim To , Tu=5nT (25)

of the vector space 9;: of degree n homogeneous G invariant polynomials

on E. This function M(t) can be computed by :

o0 n .
M) = 2o byt :f dpet3) (26)
L 4ot (1-tAlg)

[for finite groups IGdu(g) is to be replaced by 1G[-1 b . It is a

rational fraction *) :

.—.——_-—__-.-.-—_—.-_—_....—___...._._....——__-_....._-—_._.-_.-—_.....—__.....___.——_......___-.——__-.-.._._...—__

*
) The trcuble is that N(t) and D(t) may not necessarily be relatively
prime polynomials and it is not alwayg easy to know the form of M(t)
corresponding to the structure of g &,
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p-t S
1+ L b = Ny m’ < m (27)
m™ (1-¢*) Dt !
L=l

where m'=m for finite groups. This fraction reflects the structure of

Mt) =

9(} 1t is a W dimensional free module on an m' variable polynomial
ring, i.e., there exist among the homogeneous G invariant poilynomials
mt  of them, @i of degree dif Gand p=-1 of them, v, ©f degree 6y
such that every polynomial of ¢ is of the form :

p-t
P(x]___ QO( 91 )y am,(x)) + Z&;I \Put-o) Q“_ ({ 9,(.»)} . ,Dm, CN)) (28)

Moreover the powers and the products of the @w's are elther other ma's
pPelynomials in Gi 3 so for each Qg there is a positive integer Vo
such that :

¥

k'Pm ) = ¢ﬂ [at"}/"" 4 9»-1 “')) (29)

A reflection through the hyperplane orthogonzl to u is the
operator I-2Pu on E, where Pu is the orthogonal projector on u.
For groups G generated by reflections, N(t)=1 in Eq. (27) and more-

over when ¢ is finite (m'=m), 4if {Xi} is an orthogonal basis of £

r [asd
det ?_..e_'f.. :K-ﬂ-k_" Ekll) , r= Z,,, (et -1)

\ (30)
)%
where 1k(x)==O are the linesr eguations of the hyperplanes of the re-
flections of G, the generic stratum is given by the equation :
det J0 (31)

Jx‘,

There are sgtrata of any dimension between 1 and m ; the union of the
strata of dimension d is the get of points in £ belonging to m-d
reflection planes ; the corresponding little groups are generated by m-d

reflections. For any compact group G the generalization of (31) is the

algebraic independence of thes ! polynomials Qi(x) on the generic stratum.

R TR IR P PR YT SRREE g AR I R W8 ke e
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5. - MINIMA OF GENERALIZED LAWDAU POLYNOMTALS

Equation (28) gives the form of the mest general & invariant

polynomial on .E. TUsing (29) we find for its gradient

'M)’u)q
7t D‘:‘_) (32)

w! pet
4—?—:2 ﬁ.‘*)‘.’.!'—qﬂ N“’K— bel):. )_92 42.“__, (“Pu\_b_a_)"‘_‘_;
ix dx 8. }

The condition dB/dx=0 for an extremum at x requires either that the

m' gradients d@i/dx are not linesrly independent or that =x 1s a root

of the eguations Fi(x)::O. Remark that the algebraic independence of the

Oi on the generic stratum implies the linear independence of their gradients.
Since the Q, (0 < @ = p-1) are arbitrary, there are no conditions on the &
invariant Fi‘ Soc any G orbit on E can appear as a solution of the

equation Fi(x)zzo. For example :

1) P(x) is a Higgs-Tandau polynomial on the space E of a reducible G
representation. So we decompose F dinto a direct sum of irreducible

subspaces

X= & X, x,‘éE-q (33)

E-wol,

The partial scalar products (xa,xa) sre O invariant ; we form ZP(x}

from them

2
PC;‘-’)-‘- !I; ?"{5 K“fs‘umjxu)‘zfs)u{!) bl %‘J % ‘grlx'a‘lx‘) K-r:K?D j{g{?ﬁ-(23)

The condition of positivity of the matrix X means thal

%ﬂ} )“KA!&}.ﬁko

for any set of real numbers Aa' Then 3

AU Kiplowa,ma) - p* pa) %

= :275[ (Kdﬁ (x“"uﬂj“}*zﬂp)lﬁ +2 Kﬂtﬂ x.t)(.x.{,]



- 16 -

where Xa)(XB is the dyadic cperator defined by xd)(Xﬁy==xaEB(xB,yB).
Let X-T be the inverse matrix of K. Choosing the length of the compo-
nent vectors x, such that (xa,xd)==p2EBK;gQB implies dP/dx=0 and
d2P/dXz::2zuBKana)(XB = 0. Hence %o form a Higgs-Landau polynomizal with

a minimum at & given x we just choose Buzz(xa,xa)u and K=1.

2) The representation of G on £ dis irreducible. Since the Hessian
d2P/dx2 of any G invariant polynomial commutes with G at the origin,
in that case i1t is a multiple of I, 80 P has either & maximum or a mini-
minr at ¢. We remark that the & invarianz smooth functions on -F sepa-
rate the orbits, i.e., there is a set of such functions so that their two
sets of values are different on two different orbi$s. It has been shown 23)
that any smooth function on E, idnvariant by the compact group G, 1is a
smooth function of G invariant polynomials ; hence those also separate
the orbits, and this is also frue of the set of generators Oi, ¢, ©f the
ring Q‘G. S0 there exists a ¢ invariant polynomiel P(x) which vanishes
on a given orxrbit and is positive elsewhere. We bulld explicitly such a
polynomial when G is finite ; let the orbit be the set of points
{§a}, 1= o < k. We define B(x)::ﬂéf:1 (x—%a,x—éa) 5 when m > 2, B(x} is
minimum at the origin but P(x)=3(x)(:1/3 B(x)2 - bB(x) + 4/5 b2) with

b=B(0) is maximum at O and takes i1ts lowest value on the orbit {5@}.

6. - COMPUTATION OF THE MINIMA OF A HIGGS-LANDAU POLYNOMIAL

Since any linear combination of degree n homcgeneous G inva-
riant polynomials is again one of them, we can write the mcet general Higgs-

Landau polynomial, when the & representation is irreducible :

]
Pioy = L2om" + mwin] « & s - % tom) (372)

with

y 2 x)< N
1o A(!,L)z+ctb\)lﬁ)>o ; Wirx) s A Wx) # ()", A} =N & (x)

(37b)



- 17 -

*)

The gradient and the Hesslan of P are

AP _[a Ty +pm D, tOn9-#)1)a | (38)
Ax

AP 2 34T, v2pp D At =pr1 1 e 2 atee) T (39)

& x*

where Tx <’ Dx and Px have been defined in Ssction 4. We exclude the
?

degenerate case @=p =0, Tnen ®(x) and/or o(x) are algebraically in-

dependent from {x,x} on the generic stratum, SO their gradients Tx =7
H

Dxx::xvx and x are linearly independent. Hence, when the repregentation

of ¢ on E idis irreducible, a Higgs-Landau pelvynomial has no extrema on

the (open dense) generic stratum.

A very important case is the absence of third degree invariants ;
this is required in Dandau theory for the existence of a second order phase

transition. Then Egs. (37)}-(39) can be simply written :

* Lt & "r — ER - o
Ptx]:%wtw)—-%tl;ﬂﬂ / :ig:l.Tz,x M)x p ﬁ—;?;: > LI “ I J MJL?@)? (40)

We recall that the invariance group of the physical theory might be only =
subgroup of the invariance group % of w{x) ; of course, any stated mathe-
matical result is relative To [ only. Consider the case where the G
invariant polynomials Oi represented by the denominator of the Molien

function M{t), are given by :

g2t Wi, Tﬂj:" %) {so Wy ("):(IJI) ) (41)

Then dP/dx=0 implies that dthq/dx:2%2(‘1'1 )x, so with Eg. (29) the
gradient of all ¢ invariant polynomials are collinear to x at the extrema

of P(x) ; hence the extrema of an even Hirgs-Landau polypeomisl are on one

dimensional strata, i.e., have maximal little groups, when the generstors

Oq(x) of 9 @ are of the form (x,Ti_;x), gz 1. This is a sufficient
b

condition for the truth of our conjecture. 4 particular case of this suf-
ficient condition is that the denominator .D(t) of the Molien function be @

*
) Since the Heseian at the origin, (d2P/dx2)(O), is a symmetric operator
commut%ng with G, it must be a multiple of the identity I 3 indeed i%
is -u°I =and P(0) is a maximum of P.
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(1-t%)(1-t%). & similar sufficient condition is D(t) = (1-52)(1-%7) as is
the case for the adjoint representation of sU(3) [épplications in Ref. 5[]
and the representation j=2 of 50(3) [applications in Ref. 2ei].

We conclude this section by some remarks on the operators Tx v
3
For the azction of G on E the definition (202), (20b) tells that o
is a fensor operator of the variance e ® ¢ 5 it is reducible. One can

define

Esl =L, @ Ey& (42)

the direct sum of the antisymmetric and the symme tric parts of the tensor

product. E E CKer T since T ::Ty 5 @nd correspondingly Im T < {set
¥

of symmetric linear operators) (Ti y::Tx y)' When the representation of
¥ ’
¢ on E is irreducible, EyE has a unique invariant, the tensor
Ei eiéﬁei where {ei} is an orthonormal basis of E. The & equivariance

requires

. ¢l (43g)

1]

lel. e, ®e") = Eu Te..,e
and it is easy to compute that

o?,T,,V& = (My)t
(43b)

It would be worth studying systematically these tensor operators.
For instance, by considering the polynomial P(x) defined in (40), we have
proved :

Theorem : If (X’Tx xx) > 0 for x#£0, +there exists an elgenvector y,
- 3

T _vy=uw2y such that BT-pEI = 0,
NN

In Appendix B, we give an example of application of this methecd
for computing the minima of Higgs-Landau polynomials : we deal with the
general case when dim E=3% ; it also corresponds to G=SU(4) and E

carries its adjoint represenitation, as we will show in Appendix A.

T IMRUREID A 0 AT IR PN BRI RIS PR B S0 1 L e e W0 1 s e L ks s e e s 51t 1o et - s eoee s o
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7. - APPLICATION OF THE MORSE THEORY

Up tc now, all the results we have oblained apply to the extrema
a2t x£Z0 of P(x), a Higgs-Lendau polynomial ; indeed it is not easy to
distinguish between minima 3 dP/dx =0 and d2P/dx2 > 0 and other types
of extrema (saddle points) * . We consider here only the case in which the
orthogonal representation of G on E is irreducible on the real ; so
P(x) igs maximum (see footnote on p. 17) at the origin x=0. This is also
true of the degree 4 polynomial in A, P(Ax) for any x#£0 ; since such a
polynomial has no other maximum this is also true of P(x). When we com-
pactify E, as in the end of Section 3, the smooth function %(x) has
therefore exactly two maxima on Jiszsm, at the two poles of the m dimen-

sional stereographic sphere.

The Morse theory deals with the nature of the extrema of functions
defined on a compact topological space. It is true that it deals only with
Morse functions, i.e., functions whose extrema are not degenerate :
det(d2P/dx2)#(3 : this is not the case for G invariant functicns when
the G orbit of an extremum has dimenmsion > 0., But an extension of the
theory to a G eguivariant Morse theory has been made by Wasserman 24).

If we consider only the case Im £ Zfinite **), then for an open dense domain

of its coefficients a landau polynomial is a Morse function.

We just recall here the application of the Morse thecry made in

Ref. 4). Indeed it proves our conjedture for m 2 3. Let e be the

number of extrems of (the Morse function) P{x) with k positive eigen-
values j SO 4 is the number of minima and S is the number of maxima.

We have shown at the beginning of this section that

) It is easy %o show that a degree 3, G invariant polynomial which has
not a minimum at x=90, has nc minima when there is no one-dimensional
¢ invariant subspace of E (so m>1). Indeed from (19) and from
{(39), with A=o=0, one obtains for the trace of the Hessian at any
extremun —uZm < 0, so the Hesslan cannct be a positive operator.

**) In Appendix A, one explains when the action of a compact Iie group can
be translated in terms of the action of a finite group.
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The Morse relations are for a m dimensional manifold

20 fer 0 ¢ C<m

29 £-k b =
ko T (G- k! =0 for fzm (452)

and for the sphere Sm
b,=0 cxcgpt b, = b, =1 (45b)

Let n be the number of pointe of the smallest G orbit ; from (45) and
{(44), we obtain

Cozn Cyz v

7 (46)

Moreover the total number of extrema of B(x) satisfy

Lidd m
c. £ 3 1

Zk.‘.o k (27)
since dP/dx=0 1is a system of m equations of degree 3.

We refer to Ref. 4) for the cases m=1 and m=2 ; here we
study the case m=3%. Then, as we have seen in Section 4, for an open
dense subdomain of its coefficients, the general Higges-Landau polynomial
is invariant by E:Td the symmetry group of the regular tetrshedron ;
it is generated by reflections so =211 the little groups have also this
property. We summarize the relevant properties of this action in Table I.

Then Egs. (44) to (47) imply

Co2 4 , (24 Grh ,¢3°2

) (48)

and they have five possible types of solutions :

= 4 , 6 , 4+4 4 , 416
C‘: 9 ’ 12, 12 3 12 P 12
€, &, 44, 6, 646, 4 (49)
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As we show in Appendix B, all these possible solutions do occur. We also
explain there how these results can be applied to the sdjoint representation
of SU(4).

Through Eq. (49}, Morse theory predicts, for m=3, that minims
of Higgs-Landau polyncmials can occur oniy on orbits with maximal little

groups ; the strata are of dimension T). This happens alsc 1o

(CBV’GZV
be true for saddle points of type ++-. There might be extrems on the two-
dimensional stratum (CS) ; they are all saddle points of Itype +--. Finally
we verify our prediction (for any m) of the absence of extrema in the ge-

neric stratum.

Por crystals, cne considers mainly even TLandau polynomials j; for
m=3, E::Oh, the symmetry group of the cube. I% is a group generated by
reflections : besides the six reflections generating Td’ there are three
reflections through the three symmetry planes parallel tc two opposite faces

of the cube. Relevant properties of this acticn are given in Table II.

The only solutions of BEgs., (44) to (247) are :

(o= 6§ , = 8o € , =12 (50)

/

-

The litile groups of 211 extrems are maximal little groups as we predicted
in Section 6 for even Higgs-Tandau polynomials when all invariants are ge-
nerated by those of Eq. (41). Remark, however, that some maximal little

groups (here sz) cannot be those of minima.

.

8. - THE TOLEDANCS' COUNTER-EXAMPLE

In this section we consider the simplest case, most commonly used
* ]
in solid state physics of even, degree four ), Landau polynomial on E
‘ \
with & finite irreducible symmetry group &. Then Egs. (40) describe com-

pletely the situation. Even so, there seems 10 be a great confusion in the
' ST

_..._—__.-..-._—..._.-.....-.-..—————__--.——_-———__..-.-—_-.-——--—.._-....._-—_—__._.-_-—____ -

*) Sc we exclude explicitly the use of degree & Landau potentials which are,
for instance, necessary when g tri-critical point appears, due to the
change of sign of the coefficient of the term of degree 4, Remark that
in this case, after the second order phase transition to the less ordered
phase, going away from the crigin of E, the influence of the degree 6
term must be felt and there may appear a shift of the minimum to a lesser
symmetry stratum. This would be only an apparent vioclation of the con-
jecture since it does not apply to degree & polynomials.
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relevant solid state literature. To aveid the computation of minima (most
often made by a cumbersome method) criteria have been proposed for selecting
a 1list of candidate subgroups H< G ontoc which the sgmmetry can be broken.
The least selective one is the criterion of Birman 25 3 indeed it is
essentially our Eq. (6) and for finite groups it is therefore the selcction
of all little groups in the acticn of ¢ on €. This first selection gene-
rally has to be made and Birman's method is usually the most efficient for
doing it. The most restrictive and recent. criterion in Ascher's 26) maxi-
mality principle : it is essentially our conjecture *) but applied to the
Physical symmetry group G. As we pointed out, fhe effective symmetry

group % of the Landau polynomizl might be strictly larger and our conjec-
ture applies to Lt cnly. J.C. and P, Toledano have a realistic counter—
example tc this maximality principle applied to &, which is not a counter-
example 10 cur conjecture applied to E. To propagandize this yet unpubiished
Tecledanos'™ work we sketch it here. At the same time it provides an illustra-

tion for our computational technigues.

Let T; be the three Pauli matrices. The sei

ACu)= {21, 27, 27, 20 (51)

F ]

of eight matrices form a faithful representation (generated by reflections)

of the group C The "4x4 orthogenal real matrices

4v*©

(01) {AD) A B € AG)

I o 0 B (52)
generate an irreducible (on the real) representation of the 128 element
group :

7~
G = (C'Hr'x[a\r) CJZL (53)

*) In 25 little groups (or lsotropy groups, stabvilizers,... which are sy-
nonymous in the mathematical 1iterature5 are introduced implicitly by
Egq. (6) with the restriction that the set of & subgroups larger than
H are finite.
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which is the semi-direct product defined by the =zction of the non-trivial

element of Z2 :
C The Molien function 1is

*

X G
.

4 4v

Mt = (R
(=t¥) (A=) (-t

The most general degree 4,

3

o)

el
of, w

W= ;E
L
wls alexteny ex) 20,

The positivity condition on w

Wiz Naeb= f“s"’ ;

Then
xt o o o by
Tul 0 x5 0 o '_r‘zf 4 RV
£, % X% =
’ 6 o T3 0 ! 3 °
¢ 0 ©° x§ 0
o A%
2 %
e o m -
3 a2y 2o, PR
L l-q I q 2' .lq Ky o

¢ invariant polynomial is a linear combination

F A A A FA k
W a2 (X v, xu)zo)w‘%z,(acf’ﬂi')[xffzf)z»o

defines the domain

u‘deZO’ m1+u&zo)

it exchanges the two factors of the direct product

(54)

(55a)
(550}
*)
oty ¥2ky 20 }
(56)
PR PR o fo]
%
b & a (/]
Xy 23y
AN x
374 * (572)
ETE
XAy
fol
(57¢)

P = P . o 22— =}

+*
) Although it is not essential to our argument, we have not proved that
for an open dense subdomain of (56) the effective group of invariance

of ® is not strictly larger than T.
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Remark that

3 .

! () Z
Al = (&, )
§L=‘ ta) (583)
S0
S ——iu
25 = L (T2%,)
tet £y 3 (58b)

Looking for the eigenspaces with the elgenvalue 1 of the A(g)'s, cne finds
the structure of X » the set of conjugation classes of little groups = the
set of strata. Jrz has four maximal elements ; each one corresponds to a
little group H; of minima of P(x} of (40). Table III specifies the
little groups Hi’ & typical wvector of the correspoading orbit of minima
and the corresponding sub-domain :Oi of coefficients. Note that

Uibiz"‘b and there are nc other minima of P(x).

J.C. and P. Toledano have congidered the unigque real irreducible
6
4
ponding to the point N of the Brillouin zome : the little point group is

R
representation of the space group 141 = for the wave~vector k corres-

trivial and the representation of the space group obtained by induction has

a four-dimensional, 32 element image G which is generated by the matrices

1 o Ty 0 (0 «n
L3 EY) Y e

I% is a subgroup of & defined in (52) and (53). Its Molien function is

(60)

f+3t6 + 3 t8 + 't
M ‘t) = z X 7
(-3} (1-t")° (1-¢%)
so it has the same three-dimensional

vector space of degree 4 invariasnt

homogeneous polynomials as . The (HA) %IB)
partially ordered set K of conjuga- (HWHE)
tion classes of little groups of G t\‘[‘/

is given by this diagram. Cne has ()

the isomorphism szZ & 1] “HB

pa A
ZzﬁHCNHDNHE. The two groups of (HC) are generated by ¢ and -¢ ;

each other class contains four subgroups obtained by :

e LD N IR VLT NI T Y T OE A SRR P P
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HA=GDH" )HS:GnHQ_.) HD:C’ng )H[.,:G'/]H,r (61)

where Hi’ i=1,2,3,4, is the conjugate class of little groups (subgroups
of E) of the orbit of minima in the domain I)i ; these groups are given
in Table III. Since any G invarient Landau polynomial is invariant by E,
the subgroups of &, iittle groups of minima are the intersection by & of
H,. Only H, and Hy (domain J51 and 502) are maximal little groups
of ¢ 3 those of the classes H and HE are not, as the preceding diagram

D
shows. They cdrrespond to the domains 253 and 1)4.

9. - CONCLUSION

Although the Higgs mechanism in gauge theories and the Landau
theory of second order phase transiticons apply to different domains of physics,
they are based on the same methematical formalism : minimization of 2 G in-
variant polynomial of degree 4, with G respectively a compaci Lie group and
a Tinite group. In Appendix A we study the relations between these iwo types
of group actions and show that they can be strictly related in some cases.
Obvicusly, any mathematical theorem on the nature of the symmetry breaking can
be based only on the effective symmetry group G of the polynomial although
the symmetry group G introduced by the physics might be strictly smaller.
The conjecture that the little groups of minima are maximal among the little
groups of the T action has only been partially proved while a counter-exanm-

ple is given to the usual similar conjecture with respect to G.

In high energy physics, any grand unification scheme regquires a
final symmetry breaking tc a relatively small subgroup IEU(B)CXU(1[]. This
can be accomplished only with several irreducible Higgs multiplets used suc-

cessively or simultaneously.
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APPENDIY A ~ LINEAR ACTION OF COMPACT LIE GROUPS

We recall in Section 2 that every finite dimensional representation
of a compact Lie group is equivalent to & unitary representation and it can
also be considered as a real, therefore orthogonal, representation g—*A(g)
on the real vector space E. This defines a representation a-+4(g) of the
(real) Iie algebra 9. of G. Indeed every ael  defines a one-parameter

subgroup g(0) of G :

_ G0e 2 d Ace®)] (4.1)
gee)= e, Lim= 25 §=0

It 1s easy to verify that

=L Ca,b
L)z abte) , Liatb)z Loy +Lec6) [Lea), Le6)) = L capt) (5.2)

where a  denotes the Lie algebra law, By differentiation of A(g)&(g)T==I,

we find
L) = -Lta) (4.3)

The Lie algebra Q%k of the 1little group Gx’ X & E, 1s characterized by

g,x_'-z{a.eg-, Liaf x= 0} (4.4)

In Section 3, we have defined M (x) the vector subspace of & such that

in the affine space of E

e Min) = T (Cm) 45

iz the tangent plane at x %o the orbit G(x) ; here LﬁL(x) is the set of

vectors

,_/I/L(:c):{'—fav)"-/vq'eg’j (A.G)
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Then the global slice {defined in Section 3) is

N(L)= .Mu.)‘l' ={yet, Vaeg , Ly, Leaj 2} 0} (4.7)
Note that (A.3) implies that x & M{x).

From the Buclidean metric on E, one defines a metric on the orbit
space (generally denoted by E/G) : the distance between the two orbits (x)
and G(y) is

i (Giy, Guy) = Tnf  dexty)

'ei i (4.8}
ebin) 4 & bly)

This is the minimum of the distance between all pairs of points, one on each
orbit. Since the orbits are compact this minimum does exist ; moreover, if
a(x',y') 4is such a minimum, we obtain equivalent pairs of minima Alg)x',
Alg)y' from the group action. The line carrying any such a pair is ortho-
gonal %o both orbits, hence it is in the intersection of the slices
N(a(z)x') ana N (a(g)y'). 3By choosing g such that x=2a(g)x', we

have proved :
Temma A.1 : Any global slice oV (x) cuts every orbit of & on E.

Consider now a generic slice, i.e., the slice of a point x of the
generic stratum (corre5ponding $0 the minimal 1ittle group). As we saw in
Section 3, there 1s a neighbourhood Vx such that each point of fo\v¢r(x)
has the same little group Gx and is on a different orbit. By linearization

we deduce that C_ leaves fixed every point of WN{x), i.e.

Veel, | A@| =1, (4.9)
Nex)
the representation A& of G restricted to Gx is trivial on <Af(x).
Consider the subgroup @x of G which transforms JV(x) into itself ;
G = ax (4 reads Minvariant subgroup') ; indeed for every g e &x and
every y e H(x), 806 algy-alg)y=n(gile )y, i.e., ole)=o(glaleale)™.
Hence the quotient group Wx::ax/Gx acts effectively on JV(x) ;3 since points

of Wx orbits are isclated in Kxf} JV(x), Wx is a discrete group.
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We want tc study when the action of Wx on the generic slice A/ (x)
has the same decomposition into orbits and strata that the action of G on
£ has, i.e., when the orbits and sirata of Wx on N(x) are the inter-
section by W (x) of the orbits and strata of G on E. This will not be
the case if the tangent plane to the orbit G(y), y e M{x), cuts along 2
line the slice JV(x) ; this is the case if the next eguation holds [}ee
Egs. (4.6} and (A.7]] :

Vaee G, [y, Liarx)=o ,3beg Wby, La=x)=o (4.10)

With the use of {A.2) we obtain the egquivalent relations :

VaeGg ,3beg (g o) x)z0 (¢, Liw) Lit)x)=0 {A.17)

S0 the vector y of the m dimensional space E is a sclution of a system
of d+d4' 1linear equation where d and 4! are respectively the dimension of
the & orbits of the point x and L(b)x. There exists always non-trivial

solutions when d+d' < m, JHence we have proved the lemma

Lemma A,2 : The generic slice cuts a2t least one § orbit along a line
if the dimension d of the generic orbit satisfies

24 < dim L.

Thig applies to the irreducible representations of SO(B) with €23 since
d¢=aim(s0{3))=3 and m=2%+1, Of course, the same phenomenon may occur

with weaker dimension conditions. Let us give an example : £ carries two
coples of the same representation & of &. Note that Yy @& xe JV(X()y) H

indeed

Yoeg , (gex, bayxol(my)=(y,Limx)tlx,la)y) =0 (4.12)
as a consequence of (4.%). One can always find a ¢ & 9. such that —L(c)2

has an eigenvector, with positive eigenvalue, in the generic stratum :

Z . . .
L) a~Fu 50 6 ol ; yx Loz o (4.13)

and we define y by (A.13). Then
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50 (x@y) outs the G orbit of y®x along a curve tangent to the di-
rection L(c)y@L(c)x. For instance, if & carries fwice the adjecint re-
presentaticn of &, E= ‘}@5,, when G 1is semi-simple 9’3{@3;:0 so the
dimension d of the generic orbit is d=4dim & and in that case 2d=4dim E.
Such an exsmple is realized by the action of S80(3) on the non-relativistic
phase space of three distinct particles in their rest system ; the phase space

has the topology S5¢ 56: twice the adjoint representation of 50(3).

Vow we look for sufficient conditions that the orbits of Wx be

the intersection by ./V(x) of the G orbits. We shall give two of them :

a) N (x) =EGX the subspace of vectors invariant by Gx (A.14a)
b) Gx-—.NG(GX), the normalizer of G _ in G. (A.14D)

We recall that NG(GX) is the largest subgroup of G which has G as in-

variant subgroup. Note also that a) ig a converse of (A.9).
Temma A.3 : Conditions a) and b, are equivalent.

Take g e NG(Gx), S0 a(G}{)A(g):A(g)A(GJ{) applied %o any y €A (x) shows
that A(Ng((}x))/lf(x) c B9, mrom a) it shows that NG(GX) < (“;x and the
equality holds by the definition of the normalizer. Conversely, all pcints
of a generic orbit with the same little group Gx form an orbit of the
normalizer NG(G:{) and by topological completion, since the generic stratum

is open dense, from A(NG(GX))JV(x)sz(x), one obtains EGX=</V(x).

Theorem & : IT a) or b) holds, for any x of the generle stratum, the
orbits of W_ ave the intersection by WA (x) of the &

crbits.

That for any ve & (x), Wx(y)c.‘ N (x) N G(y) is evident. Consider first
y in the generic stratum ; then Gy= G, so Hy)p A {x) is an orbit of
the normalizer NG(GX) and by b) it is an orbit of Wx. By topological

completicn this is alsc true for the Yy e Jl[(x) not in the generic stratum.
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This "good situation" vecurs for the representations &= 1, €=2
of S0(3) and for the adjoint representations of the semi-simple compact

Lie groups. Then

La)x = ap {A.15)

so N {x)= Qk. The generic global slice is called "Cartan sub-algebra® ;
1t is an Abelian Lie algebra ; its dimension is czlled the rank of #. The
corresponding group Wx is called the Weyl group of ¢ ; it is generated by
reflections on Q?x=gﬂf(x). Remark that

(Afg)'ff' L.i’u) LUL;,} Al%)") = (A(‘})c_] L[g'] L(o‘) A[@})L)

and (a(g)x,a,b) defire respectively a non-degenerate Riemannian metric and
a symplectic structure on any orbit of the adjoint representation of the semi-

simple compact Lie group G. 8o every G orbit has even dimension.

Polynomials on ‘Af(x) can be considered as polynomials on £,
which are constant or wM(x)= A{x)'. So in this "good situation" the G
invariant polynomials on E are given by the Wx invariant polynomials on
JV(x) ¢ the study of Higgs polynomials is then completely equivalent to the
study of Landau polynomials.

To end this Appendix, we consider the case of the adjoint repre-
sentation of 8U(n). The vector space of the Lie algebra can be resliged

by the nxn Hermitian traceless matrices with the Euclidean scalar product

' <
Xe=x |, lrx=svo, (ﬂﬂdizﬁx (A.16)

The Lie algebra and the v algebra laws are [éee Ref, 14) for detailé] :
. .= 12 (n (4.17)
IA"&:-:;[J.,-B;‘.): Yax 5 Xyt T('x‘é*?”) rh‘(ﬁc, )

The 8U(n) inveriant polynomials are polynomials in (x,Di-Ex) 2<q<n.
A Cartan subalgebra is realized by the dizgenal matrices so its dimension

iz r=n-1. The Weyl group is ;fn’ the group of permutations of the n

S M e e e
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eigenvalues of these diagonal matrices satisfying (A.16). The different
strata on E  are defined by equality relations smong the eigenvalues of
the matrices ; the generic stratum is mede of the matrices with all eigen-

values distinct.

For any direction of an idempotent of the algebra

tw,w)=1, wyu = (a.18)
there is a wvector &u extremal for any Higgs polynomial. Equation (£.18)
requires that u has only two distinct elgenvalues ; we denote by p and

g their multiplicities : p+g=n and by Ip and I the orthogonal pro-

jectors on the corresponding eigenspace. Then solutions of (£.18) are

29 _\Fp 1
u’?q’ ani’ qnlﬁ ""u"il’
The spectrum of DL;qu ig easily cbteined from (A.17)

eigenvalues : rl;‘ P—i’:\ (q4-p) V"i_'f‘r:_- -J—i_"_’ a-t

4 2rq
multiplicity ¢ | p%l P 2p9
eigenvectors : Wy, ao (9;0 Q ;&)

PA (o't}) O;c) (b‘*"o

(a and ¢ are Hermitean traceless pxp and ¢xq matrices, respectively ;

b dis an arbitrary pxq matrix).

In Appendix B, we treat in detail the case SU(4). Indeed the rank
is 3 and the action of the Weyl group JP4 is equivalent to that of the group
Td on the three-dimensional Fuclidean space. Afterwards we sketch the genera-
lization to any SU{n). We note in this case that the extrema correspond to ma-
trices x with 2 or 3 distinct eigenvalues since they must satisfy a third
degree eguation. This excludes many strata. Indeed the little groups of the
adjoint representation of SU{n) are of the form S(U(pq)xU(pz)x...xU(pk))
where n 1s the sum of the positive integers Dy, p12:p22 ...2:pk ; when
p,=1 the little group is simply U(p1)x..oxU(pk_1). The minimum little
group, that of the generic stratum is given by p;=17T. Sc, when n>4, not
only the generic stratum, but many cthers do not carry exirema. I have also
proved that only the maximal little groups (those 1little groups with p1+p2::n)

are those of minima.
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APPENDIX B - HIGGS-LANDAU POLYNOMIALS IN THREE VARIABLES

For an irreducible group action, we have shown that any Higgs-Iandau
polynomial in three dimensions is of the form of Eq. (37) where (x,x)::Og(x) =
= Ez=1x§, o(x)=:93(x) of Eq. {11), w(x)::©4(x) of Bg. (12). This is also
true, as we have shown in Appendix A, for the 8SU(4) invariant polynomizls on
the 15 dimensional adjoint representation ; they depend only on the three va-

riables of a Cartan subalgebra.

Since for some vectors x, w(x)= 0, we must have A>(. By a

rescaling :

oL I Y >0
jr — / EF — fg ) Ei.—* #~ (B.1)
the polynomial becomes
Plx)= § (on) 4§ layn,ovm) v 3 B Cvin) 4 pmn) (B.2)

The parameter u has the dimension of x and gives the scale of the pheno-
menon (e.g., the unit mass for the mass breaking). When x#£0, the degree

four term is‘always positive if and only if

D =x>-3 {B.3)

Using {(B.2), Egs. {38) and (39) become

dP o o xyxyx 4 pp Ayx +T0ORI= pP

o (B.4a)
::[% (Q-D: -+ vau} -t rsﬁ\ Dx + ((X_,-I.) ""2)1]-’& . (Ba4b)
p : -
1(1__?- = 2D+ xDy .+ 2 po D, +Lxon) ~ pBIT 4 2 a0 o (B.5)
b

2 . . . . .
From (18), ter ig an invariant quadratic form in x, 8o it must

be proportional to (x,x) ; & direct computation from (24) gives @
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£, D2

P A

= .‘é(z,‘m) (B.6)

Using (19) we find

br P | (2x)(5ex) =3 p?

(2.7)
¢Lill
If a is an idempotent unit vecior of the v algebra
(b, )= aya =4 (B.8)
) e s R gF
the vector &z 1is an extremum of P 1if it satisfies Ez(ia)::o
2 2 B.
(1+01?) 3% e S ppn) = oo (8.9)

znd the nature of this extremum is given by the sign of the eigenvalues of

Ant

.é:f- () = lm,fz D:: + (‘Xl]}'t-l— 2(1//'-;) D, +U‘l—f,.,z)j' +z‘§"‘Pﬂ‘ (B.10)

We remarkX that a i1s an eigenvector with the eigenvalue :

3(1ex2) I e 2 ppg -t = (142 T IR (B.17)

Thig eigenvalue is indeed positive since the polynomial in 5, P(éa) has a

rinimum for §=§  solution of (B.9) Eso, from (B.3) T]2ST/3].

For an cpen dense domsin of & s L.e., for B#£0, the symmetry
group of this polynomial is Td. This is the symmetry group of a regular
tetrahedron ; it is generated by six reflecticns through the symmetry planes
of equaticn 3@::0 ; each reflection plane contains an edge of the teira-
hedron and cuts the opposite edge in its middle. Hote that Eq. (30)

iz in this case
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6 .
f.' det )_o%" = TTW b= Cagnay ) (2 =ny ) (A7-x,") (B.12)
* r

If we normalize the tetrahedron such that it is inscribed in the unit sphere,

its vertices are giwven by

- -1
to sl -1: 5% ¢ ) sPL L
- — - - - ) <
E% I B ) R 3\ 1 (8.13)

The centres of the faces are at —S(Q)/B and the middles of the edges are

et 1823, wim

0 1 (B.14)

The one-dimensional siratz are at the intersections of the symmetry planes ;

at the intersection of

three of them for the stratum {hs(a)}, little group C four element crbits,

v’

two of them for the stratum {hq(h)}, little group C,,s six element orbits.

From the covariance (16) of the v algebra, these vectors satisfy
Eq. (B.8) with the value of 1n respectively 1,43 and O

-t . -
svs-ﬁs ; v ¢=0o (B.15)
When a=gq, from (B.i0) and (B.15) §2=p.2, i.e.

(x)

"the six + ug form an orbit of extremz" {B.16)

The corresponding value of the polynemial P isg

i
Plpq) = - % (B.17)

4 direct computation yields for the eigenvectors and the elgenvalues of the

Hessian



S e e 2 o ..
| OLLP(P‘Q) eu,-éas_n wil.(«—.u.j z,"{s EX /3
P-z' E.;z Grgen wetiors ,1 e rt-) (B.?S)
with
o]
L2 BT
& |t (B.19a)
S0 the q(k) are minima when
1 z
>0 , & ~4p” >0 (B.190)

Note that r(i) are unit vectors normsl to the symmetry planes containing

g 3 they are respectively the only (up to a factor) cdd vectors for the cor-
responding plane reflection, so they are eigenvectors of D and therefore
of the Hessian (dzP/dxz)(pq). *

Similarly, if we denote by W(k), k=1,2,%, unit normal vectors 1o
the three syummetry planes contalning s-= s<0), we must have svw(k) =xw(k)
with x the same for all three vectors since the little group CBV of s
exchanges thew ; indeed a direct computation ylelds X = —1/2\/-_. By lineari-

zation of the w(k) cne obtains

(w,s}=0 = SVW=‘5};W (B.20)

So the eigenvectors of the Hessian (dzP/dxz)(Es) are s and any orthogonal
w ; we can deduce then the Hessian eigenvalues from (B.7) and (B.11).
A 2. z2 . z 2
Sx.’@crfum "{'—-f-(‘fs)f- ""5 [1+§) s Civiee, ? f2.+!-")—2./- J’ (B.21)
Au¥ 3

The values of £ at the extrema are the solutions of (B.9) with 712=—1_j- :

Mo -5
= 6, 6 = p+EVI+p? SR A e=*1
5. e LS =7° ¢ ;sz_g_;a_( ; (B.22)
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Note that
1
-~ 6. -1 % 2 v e .
- = oy "‘5‘- - Ll E 2 S =
fe ag ! ' £ ¢ ™ e (5.23)
£
At the extrema the Hessian spectrum becomes
Z
2
SPe'“r"‘M“"’”LaE—Z(}&s) = { S bwce 23R 622'—‘?'}
Kodn® / T (B.24a)

This Hessian is a positive operator when

£=1 ¢ =X €=-1 > =
ﬁ m / {5 m (B.24b)

*)

The value of the polynomial at these minima is

P, 5)= ~ ’.".’.q m
£ 4 3+ (B.25)

tn the Figure we have drawn (broken lines) the curves of (B.19b) and (B.24b)

2

2 1 ) o
f= A G (B.26)

U6+ =)

They divide the plane o,B in eight regions, 4,B,C,D,E,D',C',B', each one
corresponding to a different set of extrems j Their corresponding Morse indices
are given in Table IV. The Morse theory implies the existence of twelve cther
extrema of type ++- in B,C,D,B!',C',D', We have proved generally that these
extrema are not in the generic stratum ; so we can look for them in the symme-
try planes, for instance that spanned by g and r(+). The unit vectors of

this plane are

W= gqw¢ + roee Gl d

e e e e e e o 1 T i o L L e e e e Ok ot o o A bk ) e o . S (. o A . o o

* -
) There is a misprint in 3q. (4.21) of Ref. 15). The expression of Vyip,
gshould be divided by four, as in Eg. (A.24} which is obtained from
Eq. (4.32) for the particular case p =0.
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The general relation

Ve 'D:’ -~ D =z () I-7,, ) (B.28)

Xy

simplifies the computation of the Hessian in the basis g, r(+), r(_)

s 301 gt =pt g ¥ (v 0ot 105) o
;-Qz_f__ (§u) = |og(Femmerepps) J1eg e pomtpepplots o (5.29)
o>
o © FE- 12 ) Bpefinnt -
These new exitrema are obtained when
L ypt>o My:\’w_ Mbp;'i')‘*—&"?ﬁ?'
-ap ’ wtwtpt) 7 ol Ltp3¥) (B.30a)
E': :Elfiiﬁ— - -2 4¢ru.d 4¢?An{3 2+ *?
A e Al kol ) {B.30b)

Then one obtains easily

‘ s L(c-rﬁ-]]
.- ~ ﬁtéa4“)+QﬁL(5'+'€) detH = -yt 2 A%-2p . )
L’LH - K(‘d-idt) ’ ( ﬁ)‘ ‘*LLQ'?Q) (3_31)

S0 92-4E22>()£? tr H> 0 and det H< 0. This shows that the extremum Eu;

when it exists, 1s of type ++-.

When there are two orbits of minima, the stable state is described
by the lowest minima ; this information is given in Table IV. The curves in
the plane &, B, along which the polynomial takes the same value on these
two orbits of minima, are curves of first order phase ftransiftions. They are
the so0lid lines of the Figure. Their eguations are obtained from (B.19b),
(B.25) and (B.23)

2, ot ' A
K<0, =0 , %D ;ﬁéji—*U:? &> pla (b+%) = (8+34) (B.32)
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The Morse index of an extremum with non-degenerated Hessian [i.e.,

2 2 .
cet(d°P/dx") 0] is the number of its negative eigenvalues. From Table IV
we see that all possible sets of values of o

Cqs cy found in (49) do cccur

O?
in this example.

The Appendix could be generalized to any irreducible group repre-
sentation with compact or finite image when there is a unigque, up to a factor,
cubic Invariant (which defines the + algebra) and two linearly independent
guartic invariants : (x,x)2 and  (x,x,xyx). Then the most general Higgs-
Landau polynomial is given by (B.2). I haﬁe not been able to prove in that
case that all the minima are idempotents of the v algebra. I have proved
it in the example of the adjoint representation of sU(n), generalizing the
case n=4 treated here. Then the minima are in strata with maximal Llittle
groups. Moreover, when B #0, the invariance grcup of the polynomial is
exactly SU(n) since the (x,Di'Zx) invariants generate all invariants.
Depending on the values of o and B all the directions of idempotents can

become those of minima. For instance :

for =0 or B=0, 0<0, p or g=1, Ilittle group U(n-T),
for B=0, @>0 for even n, p=g=n/2, little group s{U{n/2)xu{n/2)),

for odd n, |p-a|l=1, little group S(U{n+1/2)xu{n-1/2)).

A B IR ARSI W ke s e BB TR 1 I Db e n + e



Dimension of strata 1 i 2 % (generic)
Little groups O}v C2v Cs 1

No of points in an crbit 4 6 12 24

Types of orbit V,F B e

V=vertex, F=centre of face, E=middie of edge, of the regular
tetranedron (up to a positive dilation).

Table I - Action of T on its three-dimensiocnal vector repre-
sentation.

Dimension of strata 1 1 1 2 2 %
i '

ILittle groups C4v 03v sz Cs CS 1

No of points in an orbkit ) 8 12 24 24 48

Types of orbi% B

V= vertex, F=centre of face, E=middle of edge, of the cube
(up %o a dilation}.

Table II - Action of O on its three-dimensional vector repre-
sentation.
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Orbit Extrema| 4 B c D E o ct B!
6 +p q 1 0 0 o] 1 2 2 2
4 §+s 2 2 2 0 0 O o) 2
4 §_s o Q 2 2 2 2 0 0
12 £ §r 1 . 1 1 1 1
r t 1 1
A B1 B2 C D1 D2 E D C1 C s B
Lowest minima
£ s +k q §+s £ s

Table IV - Morse index of extrema and phases for the plane o, 8.
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FLGURE CAPTION

The domain L : @ > =3 in the plane of the parsmeters «,B, of the
Higgs-Landau polynomial (B.2) is divided into subdomains 4,B,,3,,C,D.,D,,
E,D‘,G;,Cé,B', each one corresponding to a different set of extrema, as
explained in Table IV. The equations of the broken line and sclid line
curves are given, respectively, in (B.26) and (B.32). The solid line
curves indicate first order phase transitions. The three phases correspond

to three different families of minima :

§,8 for C‘2U D! UEUDZ, +Eq for D,IUCUBa, § s for B1U AUB'UCé.
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