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ABSTRACT

As a useful mathematical tool for the study of Higgs polynomials in grand wmification
theories we give several geometrical properties of the simplest and “most useful” repre-
sentations of semi-simple compact Lie groups. These representations fulfil Theorem 3.
They are low dimensional, they have a meridian section and their ring of invariant poly-
nomials is given by that of a finite group (the generalized Weyl group). Although most of
these properties are implicit in the huge but difficult mathematical literature on algebraic
group actions, the proofs given here are elementary and probably new.

For the study of the “great unification of fundamental interactions” physicists need
some properties of the linear actions of compact Lie groups which are not explicitly
found in the mathematical literature of the last twenty years, although they do exist.
Indeed they are proven for algebraic groups, and compact Lie groups are algebraic
groups on the real field (remark that often these mathematical papers assume the
field to be algebraically closed: this excludes the field of real numbers, so by careful
reading one has to decide if the results extend to the latter case). Direct proofs for
compact groups are more geometric and simpler. They are given here, because most
of them do not seem to be written down. They may help physicists.

1 The Orbit and Strate of Orthogonal Representations of Compact Lie
Groups

In physics we also consider complex (unitary) linear representations of a compact
Lie group G on a finite dimensional Hilbert space ¥. However, by doubling its dimen-
sion, one can consider X as a real vector space £, which then carries a real orthogonal
representation of G. From now on we simply write “a representation of G” for “a real
orthogonal linear representation of a compact Lie group G”.

In such representations, the isotropy groups and the orbits are closed and therefore
compact. (This is not true in general for algebraic groups; it is one important cause
for the simplicity of the proofs given here.) We denote by (H) a conjugation class of
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closed subgroups of G. The isotropy groups of a G-orbit form a conjugation class (H).
Orbits with same conjugation class (H) of isotropy groups are of the same type; their
union is called a stratum. The partial ordering by inclusion on the set of the closed
G-subgroups, induces a partial ordering on the set of conjugation classes {(H)} and
therefore on the subset K of isotropy group conjugation classes (~ to that of strata)
which occurs in a representation of G.

Let G- z be the orbit of z and N, its normal linear manifold at z; it passes through
the origin and it is a subspace of £.

Lemma 1. Any normal subspace N, to an orbit G-z cuts any other orbit. Indeed,
if G-y is any other orbit, the minimum of the function d(z’,y’), distance between
' €G-z, y € G-y exists since G-z and G - y are compact; and the straight line
z'y’ is orthogonal to both orbit G - z and G - y at 2’ and y' respectively. By a group
element which transforms 2’ in z, y’ is transformed into y” so N, contains " € G - z.

Lemma 2. Given any z € £, there is a tubular neighbourhood V, of G - z such
that y € V, = (G,) < (G.)-

Indeed there exists V, such that for any y € V, there is a unigee point z' = r(y) €
GG - 2 which is the nearest point of the orbit. Since the group action preserve the
distance, for any g € G, g-r(y) = r(g-y). If g € G, the isotropy group of y, it implies
g€ Gryy 30 (G) < (Ga).

The equality occurs if y € S(z), the stratum of z (i.e. the set of points with
isotropy group € (G.)). So if (G, ) is minimal in K (defined above), S(z) contains a
neighbourhood of z. Finite groups are compact Lie Groups of dimension zero. For
these groups, Lemma 1 is trivial (N, = £); from lemma 2 we obtain for the closure
S(z) of the stratum S(z) of z

S(:L‘) = UHG(G::) EH,

where £ is the set of points y invariant by H (i.e. H > G,); it is a subspace of £. So
if (G.) is minimal S(z) = £, i.e. the kernel of the representation is the minimal little
group and the corresponding stratum is open dense. For a general compact group G,

the corresponding situation is given by theorem due to'.

Theorem 1 (Montgomery and Yang). In a representation of G, there is a unique
minimal class (H) € K, the corresponding stratum is open dense. We will call this
stratum, the generic stratum and also qualify by “generic” its isotropy groups and
orbits (they are often qualified by “principal” in the math. literature). Moreover, N,
the normal at z to the generic orbit G- z is called the global slice at z.



The orthogonal representation of G on € defines a linear representation a — L(a)
of the Lie algebra § of G, by antisymmetric operators: (z,L(a)y) = —(L(a)z,y) i.e.
L(a)” = —L(a). In the particular case of the adjoint representation £ = g, L(a) is
denoted by Ad(a); it is defined by Ad(a)b = a A b where A is the Lie algebra law on
G.

For any representation, the tangent plane at z to the orbit G - z is given by z +
T.(G - z), this subspace being defined by

T.(G-z)={L(a)z, Va€g}= N . (1)

The set §. = {a € G,L(a)z = 0} is the Lie algebra of G, the isotropy group of
z. The restriction of the representation of G to G, leaves invariant each of the two
orthogonal spaces N, and T, (G- z). The representation of G, on T.(G- z) is obtained
by the restriction of the adjoint &G action, on the subspace g1 C G. The stratum
S(z) is also a manifold. Let z + T,(S(z)) its tangent plane at z. The representation
of G, on the subspace N, N T.(S(z)) is trivial (as a direct application of Lemma
2). If S(z) is the generic stratum, N, C T,(S(z)) = €. So we know completely the
representation of the generic isotropy group on € (see e.g.? ). For semi-simple Lie
algebra, —tr(L(a)?) is an invariant orthogonal scalar product of the representation.
For simple Lie algebra, it is proportional to -tr(Ada)2 > 0, the Cartan-Killing metric.
Indeed, if it were not the case one could find A such that —[(tr L(a)?)—A tr(Ada)’] > 0
and vanishes on a subspace of § only and it is then easy to prove that it would be an
ideal of §. So we can prove the

Theorem 2. For a representation of a simple compact Lie group G, when the value
of A = tr(L(a))?/tr(Ada)? is > 1, = 1, < 1, the generic isotropy group is respectively
finite, Lie Abelian, Lie non Abelian. Assume s € G, the generic isotropy Lie Algebra.
Then, from our previous study

—trL(s)? = —tr(Ads |1 )? = —[tr(Ads)? — tr (Ads |g,)7

s0 A = tr L(8)?/tr(Ads)? < 1. The case A = 1 correspond to Ads |g,=0; Vs € §u,
i.e. G, Abelian. Finally § > 1 requires §, = 0.

This is the compact version of a theorem in®. See also P. Houston* for a proof.

In a neighbourhood of z, the slice N, cuts every orbit in one point. This is not
true globally, first the G-orbits cut the slice N, in several points; moreover, when one
goes further away from z on N,, one orbit or a family of them may even not stay
transverse to N,. We will study sufficient conditions for this to happen. There is
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a more interesting situation which might occur. The slice N, is orthogonal to every
orbit. We then say that it is a meridian seciion. A simple example is given by
the action on R? of SO(2), i.e. the group of rotations around an axis O,. A plane
containing O, is a slice; it is also a meridian section; indeed, it cuts any generic orbit
(a circle of axis O,) orthogonally at two points and the non generic orbits are the
points of O,.

It is easy to find sufficient conditions for the absence of meridian section when
dimG > 0. We recall first the equation of a slice N, where S(z) is the generic
stratum (indeed the tangent plane to the orbit is given in (1))

YEN,, Vaeg (yL(a)z)=0. (2)

Lemma 3. If d = dimension of a generic orbit < 1/2dim & = n/2, a slice is not a
meridian section.

Indeed it is sufficient to find y € N, such that the tangent plane T,(G-y) cuts N,
i.e.

be§, Vaeg (L(b)y,L(a)z)=0. (3)

The set of Equations (2) and (3) is equivalent to:
Va € G(y,L(a)z) =0, (y,L(a)L(b)z)=0.

This system of 2d linear equations in the n components of y have solutions # 0 if
2d < n. Since d < dim G, we have the weaker:

Corollary 2. There are no meridian sections when 2dim §<dim€ =n.

When G is semi-simple, there is only a finite number of orthogonal representations
of dimension smaller than 2dimG. For a given G this number is rather limited:
see e.g. the tables of McKay and Patera® and we can list the representation which
might have a meridian section (Lemma 3 is stricter and allows some eliminations).
We can now study sufficient conditions for the existence of a meridian section. We
first introduce some notation. As we have shown G, acts trivially on N, so it is the
centralizer of N,. We denote by § (N.) the stabilizer of N, i.e. the largest subgroup
of G which transforms N, in itself. It is easy to check that G, is an invariant subgroup
of §(N;) and we denote the quotient W, = $(N,)/G.; we will explain later why we
call it the generalized Weyl group. Note that if W, is not trivial, it acts effectively on
N.. Since in a neighbourhood of z, every & orbit is cut by N, into a unique point,
W, has to be a discrete group, so, as a continuous image of a closed compact group,



it is finite. We denote by £%= the subspace of £ whose points are invariant by G,
and we have seen that N, C £%. We denote by Ng(G,) the normalizer of G, into
G i.g. the largest G-subgroup which has G, as invariant subgroup.

Theorem 3. If z is a generic point of the representation of G in €, the following
conditions are equivalent
a) N, = €%,

c) the representation of G, in 7,(G - z) (i.e. the restriction of the adjoint representa-

tion of G to G, for the space Gy C §) does not contain the trivial representation.

They imply the existence of a meridian section.
¢ = a). Indeed c) implies that £% N T,(G - z) = 0; since T,(G - 2) is an invariant

subspace of the orthogonal representation of G, so £ C Tg(G - 2)* = N,.
We have also seen N, C £% so N, = £Ca,

a = b).By definition of Ng(G.). §(N.) < No(G,) since G, is an invariant subgroup
of §(N.). Let n € Ng(G,) and ¢ € G, so n~'en € G,. Given any y € N,,
n~lcny = y so cny € ny, i.e. ny € £, From a, ny € N, son € S(N,) and
Ng(G.) < S(N.).

b = c). The orbit Ng(G.). =z is the set of points of the G orbit G - z which have
G. as isotropy group and by b, they are in N,. So there are no point in
N} =T,(G- z) invariant by G,.

These equivalent conditions show that the slice N, is a meridian section. Indeed at
any point y € N. N S(z), G, = G, so from ¢ there are no points (outside the origin)
invariant by G, in T,(G - y); hence T,(G - y)* = £Cv = £% = N, and N, = N,. In
other words, for any y € N, N S(z) (dense in N,), the G orbit G-y is L to N,.

Corollary 8. When the equivalent conditions a, b, ¢ are satisfied, the orbits and
strata of the orthogonal representation of W, on N, are the intersections by N, of the
orbits and strata of G on €£.

From Theorem 3 this is true for N, N S(z) dense in N,. For the other points of N,
apply the arguments of Lemma 2 both to the action of G on € and W, on N,. As a
direct consequence of the correspondence established in Corollary 3 we obtain:

"&mnary 4. When the equivalent conditions a, b, ¢ are satisfied, the rings PC(€)
of G-invariant polynomials on £ and P%=(N,), the W, invariant polynomials on N,
are isomorphic.

It is important to note that the equivalent conditions a, b, ¢ are sufficient for the
existence of a meridian section, but they are not necessary. Indeed, they are not
satisfied for the simple example of the 3 dimensional representation of SO(2) on R?
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that we have chosen for the existence of a meridian section. The well known example
for the validity of the a & b 4 ¢ condition is the adjoint representation & = g for
semi simple Lie groups. In that case §, is a Cartan subalgebra i.e. a maximal Abelian
subalgebra of §. (Note that N, = §..) Hence there are no trivial representation of
G. on G; and condition ¢ is fulfilled. For the adjoint representation W, was called
the Weyl group. It is generated by reflection and therefore®, the ring of invariant
polynomial P%=(N,) is a polynomial ring, i.e. the set of polynomials with r variables
(r = dim §, = rank of the group (7) and these variables are themselves r invariant
homogeneous polynomials of well defined degree (determined by Coxeter; they are
equal to by + 1 where the b,’s are the Betti numbers of the simply connected G). The
representations of G on £, such that P9(£) is a polynomial ring, have been determined
for algebraic groups by’ for irreducible representations and independently by® and®
for reducible representations.

Looking at these lists, it seems that these representations satisfy a & b < ¢, so the
generalized Weyl group is generated by reflections and its invariants (and therefore the
G invariants on £) are completely known. But I have not yet been able to establish
a theorem on that point.

In any case, Theorem 3 and its corollary give a powerful way for the representations
which satisfy conditions a <> b < ¢ to find the ring of invariant polynomials. Indeed
this problem is more easy to solve for finite groups (for reviews see for instance!®!.

The study of the corresponding Higgs polynomial and their minimization is then
greatly simplified (see e.g.'?).
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