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O. Introduction.

Let me begin this first lecture of the school by an historical

(1]

reference - E.P. Wigner was working as an engineer in a Budapest
leather factory when at 24 he received an invitation to become assistant
of the new theoretical physics professor (Becker) in Berlin. When he
arrived, the assistant position was not vet established and he was
advised, while waiting, to work with Dr. Weissenberg, a known crystal-
lographer, who told him : "There is a miracle . Why in a crystal atoms
are most often on a symmetry axis or on a symmetry plane. Why ?". The
day after, Wigner tried to give him an answer : "On a symmetry axis or

a symmetry plan the potential is more likely to have an extremum'.

Ll you seem to be right, but one needs an clegant proof” anc

-
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In his interview Wigner adds : "Then I started with the idea to write a
book on group theory'.
You will not find this subject treated in the famous Wigner

o

book "7, which appeared soon after (1931), or in most books on physical
u

p theory. So 1 will deal with it in these lectures

These lectures are The first pars

(Sections 1 to 5 ) will actions, illustrated



matical study of spontaneous symmetry breaking (Section 6 ). The last
three sections give the results of recent, mostly unpublished work to
which I am collaborating, in three domains : 1) basic concepts of
crystallography (useful for the lectures on modulated crystals),

2) renormalisation group application to Landau theory, 3) a Spin 10

grand unification scheme (sections 8,9,10).

1. Group actions. Orbits and Strata. Examples.

You all know what is a group G . If H < G (< reads "subgroup')
it is interesting to consider the cosets gIH s g2H , etc, of H . We
denote by [G:H] the set of these cosets., If G 1is finite and has

{

|G| elements, the number of cosets is |G|/|H] . If G and H are Lie

groups, then [G:H] 1is a manifold whose dimension is

dim G - dim H . (1)

il

dim[G:H]

i

If for every g € G, gH = Hg , we note H4AG and say that H is an
invariant subgroup of G . Then there is a natural group law on the set
[G:H] , given by g H-g,H = 8,8,-H . This group is denoted by G/H and

it 1s called the quotient group of G by H .

All the books on group theory and quantum mechanics study the
linear representations of a group G on a vector space E . Such a
representation is a homomorphism G 5 GL(E) of G in the general
linear group on E . The group GL(E) 1is the automorphism group
Aut E of FE . The set of elements of G which are represented by the
identity on E form the kernel of f , ker f4G and G/ker f ~ Im f ,
the image of f , which is < GL(E) . In quantum physics, E 1is the
Hilbert space of state vectors, and we need to consider only unitary G
representations, i.e. Im £ < U(E) , where U(E) = Aut E , the automor-

phism group of the Hilbert space.

But symmetry groups may also enter into physics through an action
on a mathematical structure M (e.g. a manifold) which is defined by

the group homomorphism G £ Aut M . The action is effective if ker f ={1].




Given two G actions G,f,M and Gf'M' , by definition an equi-
. 6 . e . .
vriant map M * M' | satisfies the commutative diagram 1 for every ele-
ment of G .
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Diagram 1

Definition. The two actions are equivalent when 6 is a bijective map
(and therefore an isomorphism between M and M'). When M 1is a vector
space or a Hilbert space, this definition of equivalence coincides with

the usual one for G-linear representations.

When a physical system has a symmetry group G , all functions
describing physical properties of this system must be G-invariant or
G-covariant. But these conditions depend only on the image Im f . So
a weaker definition of equivalence is often useful in physics, as

J. Mozrzymas and I showed {31,

Definition. Two actions G,f,M and G',f',M' are weakly equivalent

if there is an isomorphism M §~M’ such that the corresponding auto-
morphism Aut M 9i’éat M' identifies the two images :

8%( Im f) = (Im f') . For instance when M =M' , Im f and Im f' are
conjugate subgroups of Aut M . The two non trivial inequivalent repre-
sentations of ZS (the cyclic group with 3 elements) or the two 3-di-
mensional inequivalent representations of SU(3) are weakly equivalent-
Weak equivalence of actions (which is even defined for two different

Broups) will appear as a natural and important concept in the study

made below of spontaneous symmetry breaking in phase transitions.

To simplify notations, we will often use g.m instead of flgm ,
the transform of m by g . The set of all transforms of m 1is denoted

by G.m and is called the G orbit of m . The little group Gm



(mathematiciens often say the isotropy group) is the set of all elements
of G such that g.m = m . Note that Gg.m = gGg~1 so the little
groups of an orbit form a conjugation class of G subgroups, that we
denote by {Gm} . When the actions of G on two orbits are equivalent,
it is easy to prove that these orbits have the same conjugate class

[H] of little groups. They are said to be of the same type. The sets of
cosets [G:H] with the G action g.xH = gxH 1is a prototype of this
type of orbits. By definition,a stratum is the union of all orbits of
the same type; equivalently m' € S(m) , the stratum of m , when Gn’

i

and Gm are conjugate,

The decomposition of a group action into strata yields a primary
important information, very relevant physically. For instance : 1) in
the linear representation action of the Lorentz group on Minkowski space
there are three other strata outside the origin (unique fixed point) :
their elements are respectively the time-like, space-like and light-like
vectors. Let us choose four other examples : 2) The symmetry group of
an axially symmetric ellipsoid (as a simplified model of the earth) is
th , generated by C_ , the group of rotations around the axis con-
taining the two poles, the rotation by 7 around axes in the equatorial
plane (with C_ , they generate the group D ) and finitly the symme-
try h through the equatorial plane. (Note that this figures has a sym-
metry center; when taken as origin ~I € ﬁmh> . There are three strata :
the two poles (i.e. a two-point orbit), the equator (one connected orbit)
and the rest, an open dense set in which the orbits are the pair of
parallel circles with the same North and South latitude. 3) Consider
the n dimensional hypercube, centered at the origin. Its 2" vertices
have coordinates E1s€gae e e with 55 = 1 3 the center of its In
faces are at the tops of *+ the unit vectors of the coordinate axes.
Its symmetry group is generated by the diagonal matrices with 1 as
elements: (they form an Abelian greup‘ mfzf} and the permutation group

S

Sn of the coordinate axes. This 2".n! element group is denotes Sn
in the classification by Coxeter of the finite groups generated by
reflections. Chemists, physicists and crystallographers also use the
notations : when n = 2 , ng or 2mm , the element group of symmetry

>




of the square, and when n = 3 | Gh or m3m , the 48 element group of
symmetry of the cube. Outside the origin, the 2 dimensional linear
action of sz containing three strata, the 2 coordinate axes, the two
diagonal axes and the rest. The three dimensional representation of Oh
contains strata given in table 1. As we see the strata correspond to

the symmetry elements.

Table 1. Strata of the 3 dimensional representation of Gh. The little

group and its number of elements are given at the end of the lines.

(0) the origin 0, ,48
(1) the 8 axes containing the vertices -(0) C3v’ 6
(2) the 12 axes containing the center of edges —(0) sz, 2
(3) the 6 axes containing the center of faces =-(0) Cév’ 4
(4) the 3 symmetry planes (coordinate planes) —(0) — (2) =(3) C, > 2
(5) the 6 other symmetry planes —(0) =(1) =(2) -(3) C; » 2
(6) the rest, open dense 1,1

4) In the action of the 230 crystallographic groups on the 3-dimensio-
nal space, the strata are tabulated in the international Tables for

§ {Z&}.

Crystallography under the name "Wyckoff positions For each space
group, there is a finite number of them. There is only one of dimension
3, and one can check that it is open dense. 5) In an n dimensional
real vector space R" a lattice is a closed subgroup A generated by
n basis (i.e. linearly independent vectors of R" . The general linear
group GL{n,R) transforms any basis into any basis, so the set [ of
lattice is the orbit [GL(n,R) : GL(n,Z)] . Indeed the little group

of a lattice transforms the set of lattice points (i.e. vectors with
integral coordinates) into itself. Note that GL(n,Z) = Aut z" . The
orthogonal subgroup O0(n) < GL(n,R) respects the space metric. The
strata of its action on [ correspond to crystallographic systems, the
torresponding little groups ?E are called the holohedries of the lat-
tices. For n = 3 there are (*) 7 crystallographic systems

(*) These crystallographic systems were listed by Weiss in 1815. This
S8tratum definition corresponds to the "French systems" in ref [4].
Strangely enough the International Tables have adopted an unnatural
definition.



Systems Triclinic , Momoclinic, Orthorhombic , Tetragonal , Trigonal
Tri s Mon , Ort s Tet . Trg

p T=¢C, , 2/m=c, 3m =D

H ; s mmm = DZh s 4/mmm = D

n 4h? id ?

Hexagonal , Cubic
Hex Cub

6/mmm = D , m3m =0

6h h

For n = 2 there are 4 crystallographic systems. We will prove it from
a natural description of the space of 2 dimensional lattices as an orbit

space. (See below).

In all these examples, the number of strata is finite. This will

be the case in most physics problems.

2. Orbit Space. Examples.

In the action of G on M the set of orbits we denoted by M|G
the set of orbits and by M{G the set of strata and by 7,0 the cano-

nical surjective maps

T
M Ml —=>> uMlc (2)
In the five examples of the preceding section we have studied “?é .
Let us now study the orbit space.
1) The scalar product S = (a,a) 1is a real number and it is an inva-

riant of the Lorentz group. To any value of (a,a) corresponds a unique
orbit except (a,a) = 0 which is both the length of light-like vectors
and the 0O vector. So if we consider the Minkowski space minus the
origin, the orbit space is R and the three strata are defined by

S>0,8=0, 8<0.

2) The orbit space is O < 8 < 7w/2 where 6 1is the absolute value of

. 7 . 7
the latitude; the three strata are 6 =0, § = 5 0 <8< 5 -




3) The orbit space is one of the convex connected cones formed by the

symmetry hyperplanes ex : for n = 2 , X, 20, X, "X, >0, for n> 2,

x, 20, x,=x, >0, x X, >0 ..., X "X 4 >0 . It is called a Weyl

1 2

chamber.

1 3

4) The orbit space for the translation group 2" est R" Ezn ; it has

the topology of a torus (Sl)n (where Sk is the k dimensional
sphere). It is what the crystallographer calls a Wigner Satz cell with
its opposite faces identified. The action of G on R" defines an
action of the point group P = G/Zn on the torus R" §Zn . We leave to
the reader the determination of the orbit space in general. It is not

a manifold except in the case where there is one stratum only : this
occurs for respectively 2 and 13 crystallographic groups for n = 2

and 3 . Then RH§G is a flat Riemann manifold with G as first homo-

topy group.

5) We will study the action of the group O0(n) x R , including the
dilations for the case n = 2 . Indeed the symmetry of a lattice is in-
dependent from its scale. We choose as first generator a of the lat-

(%),

tice, one of the shortest vectors ; by a dilation and rotation we

Figure 1

(*) Beware that this is not always possible for =n > 5. I am grateful
to Henry Bacry for advice and discussions on Fig. 1
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bring it to the unit vector of the x axis. Then we can look for the

> . . .
second generator b in a vertical band of width 1, for instance

- %~< x < % and also require its component y to be > O (since
- z 5 7 o 2 . [ R .
b €2 =5 € 2° , btma € 2°) , moreover since |b| > la] , the point

B , top of the vector 0B , must be outside the open unit circle cen-
tered in O . Finally, if the abscissa of B 1is negative, by the re-—
flection through the y —axis, we change its sign. So the orbit space
is the hatched domain yQHy' . The (open dense) inside represents the
diclinic system, PH = {1,~1} = Ci or 1 . The boundary minus Q, H
represents the orthorhombic system PH = sz or Zmm , § the quadra-
tic system P = Cgw = 4mm and H the hexagonal system P,. = C y °F

H H
6émm . The corresponding study for n = 3 has been done in [5] .

Let us add another example : 6) Consider the decay of a particle
of energy momentum P into three particles of energy momenta p;

i =1,2,3 . The phase space M 1is defined by the relations :
(2,p) = M (p ) =m> , P =1 (3)
=X o PPy i =7 B

The little group G of P in the Lorentz group is isomorphic to 0(3)
(generally the initial particle is considered at rest; it is not rele-
vant). It acts on M . The orbit space M|G 1is the Dalitz plot. There
are two strata, the interior, when the 3pi’s span a 2-plane, and the

boundary, when the 3pi’s are colinear.

3. Action on subsets and substructures. Examples.

" . £ , .
The acticn © 3 Aut M of € on M defines an action of G on
the gset P{M) of subsets of M . Given such a subsetr X oM one de-

fines the centralizer in G of X as
C.(X) = N G (4)
it is the largest G-subgroup which leaves fixed every element of X .

Similarly one defines the stabilizer in G of X as the largest G

subgroup which transforms X in itself. We denote it by SC{X} . It is




easy to prove that CG(X}a SG(X} . We shall denote the quotient
kG(K} = SG(X}JCG(X} 5

it acts effectively on X . If G is a compact semi-simple group, its
Lie algebra G has an orthogonal scalar product, the Cartan Killing
form. The adjoint representation of G 1is the natural linear represen-
tation on G(as a vector space). If X 1is a Cartan subalgebra, i.e. a
maximal Abelian subalgebra (they are all conjugate by G) , then WG{X}

is the Weyl group; it is a Coxeter group.

Note a fundamental relation satisfies by centralizers in any group

action
CG(UiMi) =N CG(Mi)

Exercise. Prove that for linear representations of finite groups or
enumerable groups (i.e. crystallographic groups), interactions of little
groups are little groups. (This is not true for other groups in gene—
rall!). The proof is an appendix A of [6] . It is also useful to
introduce the traditional notation M® for the set of elements of M

invariant by G . Similarly

H<e , Mi= n M8 .

gEH

4. Partial ordering of the strata. Compact group actions.

There is a partial ordering, by inclusion, on {< G} , the set of
subgroups of G . When G is compact (this includes finite), it defines
a partial order (by inclusion up to a conjugation) on the set of conju~
gation classes of closed subgroups of € . This is also true for crystal-
lographic groups or for the conjugate classes of finite subgroups of an

arbitrary group. This induces a partial ordering on the set of strata.

If the action of G 1is continuous, ME is closed, so is M as

an intersection of closed sets. U KH is the union of all strata with
HE [H]
little group conjugate class > [H] . For finite groups, as a finite
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union of closed sets, it is closed, so the strata for maximal isotropy
groups are closed. This extends to compact group action. Similarly, it

[3a]

is easy to prove that for a finite group action, there i1s a unique

minimal conjugate class of little groups (Kerf itself); the correspond-

LA

ing stratum 1s open dense. We call it "generic". This is also true for

smooth compact group actions (7] . We verify these two properties on
examples 2,3,5,6; they are also true for 4, but not true for 1 : The
Lorentz group is not compact. For smooth compact group action G on a
finite dimensional differentiable manifold M , with a finite number of
strata (e.g. this is the case when M 1is compact), Mostow (8] proved
that there exists a smooth injective equivariant Map M 8 E into a

real vector space E of finite dimension, carrying a linear orthogonal

representation of G . So the case of linear action is pretty general !

5. Action on a group. Action of G on itself.

We consider the actions on G preserving its group law. They are
defined by K H Aut G and most properties of the action depend only on
Imf< Aut G . Consider the particular case G = K ; then, for the
"natural' action of G on itself, Im f =In Aut G , the group of inner
automorphisms. One proves that In Aut G A Aut G and one defines
Qut G = Aut G/InAut G . Obviously Ker £ = C(G) , the center of G . The
orbit Gex = {gxyﬁl, ¥g € G} is called the conjugation class and the
isotropy group Gx is the centraliser of x . The corresponding action
of G on the set {< G} of its subgroups, defines for each H < G ,
the centralizer CG(E} and the stabilizer KS{E} ¢ the latterisg also
called the normalizer : it is the largest subgroup of G which has
H as invariant subgroup. Since both H and ﬁgiﬁ} are invariant sub-~
groups of §§{H} , this is also the case of S,ﬂgiﬁ} and one finds

(proof left to the reader) that there is an injective homomorphism

§g{§)

Esﬁg H

The G orbit of H 1is the conjugation class of subgroups €H§$ that

> Out H (7

we have already studied. There is also a natural action of Aut G on
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G . The action of G on the orbits {G:Hl} and {G:Hz} when the sub-
groups H1 and H2 belong to the same orbit of Aut G are quasi-equi-
valent but may be non equivalent.

Given an action Q Ee Aut G one forms the semi~direct product

G 7 Q defined by the group law
(81590 (gysq,) = (gl.f(ql){gz},qlqz) (8)

When f 1is the trivial homomorphism, the law (8) is that of the direct
product. More generally one calls extension E of Q by C a_group
such that G A E and the action by E inner automorphisms E b3 Aut G
factorizes : f = fos where s is defined by E 38/ = Q . Two exten—
sions E and E' are equivalent if there is a commutative diagram

E
y
G 7.

¥

1
}\\\SQ E Aut G

Diagram 2

22

(then r is isomorphism and there is a natural group law on the set of
equivalence classes of extension. This group is denoted by H?(Q,G)
and it is called the second cohomology group of Q with value in G .

(9]

(For lectures in physics Summer School, see e.g. where the original
mathematical literature is quoted and explained). The semi-direct pro-
duct represents the unit of the cohomology group. When G 1is not Abe-
lian, there is a natural action G 3 Aut C(G} on its center, and the

set of equivalence classes of extension of Q by G is isomorphic to

2 oc
Hy,£(Q,C(6))

Examples of semi~direct products are the Euclidean groups
s ] . D n .
E(n) = R" = 0(n) and the affine group Aff{n) = R % GL(n,R)

6. Spontaneous symmetry breaking. Example of Landau,

When a physical problem has a symmetry group G , a solution is
not necessarily G-invariant. If H is its isotropy group, then one

can build an orbit [G:H] of solutions. The set S of solutions of
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the problem is G invariant. As a general example assume that S 1is d
a set of stable states of the system and they depend on one (or seve-
ral) G invariant parameters } (e.g. temperature, time...,). For some
value of X the state representative function s()) may change of
strata on S ; then the symmetry of the physical system changes. If

(&)

it decreases , one says the symmetry 1is spontaneously broken.

There are half a dozen of mathematical schemes used for describing
symmetry breaking in physics. We describe here the most common one,
and the only one used in the other lectures. A system of equationsfor
a G-symmetric physical problem is a smooth G-equivariant map ¢
between two functional spaces Fl’ FZ , carrying a linear representa-
tion of G . Moreover, we assume that it depends differentiably on

parameters A . Assume that at la we know a unique solution

u c Fl of the problem, i.e.

@{uo,ko) = Q (9)

If the Frechet derivative

d@u
5]

du

TS S ———_——_

(v) = Lim = (3Cu_* v,2 )=6(u_,2 ) (10)

E>o

Vv € Fl

is inversible in a neighbourhood of %O , by the implicit function
theorem, we can compute a G-invariant solution u(}) satisfying
#{u,r) = 0 . 1If, for the value Ri of X , the linear operator

dé i
@L{ d u

&

[l

has a non trivial kernel, there is a bifurcation and Ker

¢
du
is the tangent plane to the set of possible solutions which appear;
it is stable by G and carries a linear representation of thi
group. It is in general irreducible (otherwise we have an "accidental

wetry G will be broken into one of the
d¢
u
-

- . . . < vt o1 ’
isotropic groups of the representation on Ker AR Which one?

degeneracy"). At Ac , the sym

(*) If the transformation is reversible, e.g. phase transitions in
thermodynamics, it increases one way and decreases the other way.
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be seen in the example of the Landau theory of second order phase
transition which will be treated by several lecturers, mainly Prof.

P. Toledano. In this theory Fl is a space of physical functions

(e.g. electron density, etc...) defined on the crystal and ¢ is the
set of derivative of a thermodynamic potential, e.g. Gibbs Free energy
V , when the parameters X are the temperature, the pressure etc.

The orthogonal irreducible (on the real) representation of a crystallo-

graphic group G are finite dimensional. Let E be the orthogonal
d¢
u

vector space Ker

» carrier of an irrep of G . The simplest mode—
lization of the restriction VEE on this kernel has been proposed by
Landau nearly fifty years ago : it is a G-invariant degree four poly-

nomial bounded below :
x € E V(x) = p&(x) + a(T) (x,x) (1D

where P, is a strictly positive homogeneous G-invariant quartic poly-
nomial, (x,x) 1is the invariant orthogonal scalar product and a(T)
is a function of temperature whose value has the same sign as T*?C
When the physical signification of x is clear, it is called the
order parameter; its number of component is dim E . The physically
stable states are represented by the minima of V as a function of T.
The symmetry is broken into their isotropy group. The potential V(x)
in (11) has no third degree term. As Landau pointed out, this is neces-—
sary for avoiding a first order transition (with a jump at T = ?€
from one minimum to another one). However, such generalized potential
is useful for the study of the symmetry change in weak 1st order tran-
itions. As we will see later (see also lecture of Prof. Ruegg) Higgs

bPotentials are of a similar naturé.

7. Minima of a G-invariant potential.

It is time to prove Prof. Wigner's answer. We first recall that
the Euclidean group E(3) 1is the semi-direct product of the orthogonal

group O0(3) by the translation group RE
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P —

E(3) = RS % 0(3) .

A crystallographic group G 1is a discrete closed subgroup of

-

E(3) containing a translation lattice ~ 23 . The little group Gx of
any point x 1is finite. Indeed E(B)X ~ 0(3) so GX = 0(3) n ¢and

the intersection of a compact and a discrete closed subgroup of E(3) .
is a finite subgroup. This is also true of the point group GEZS. But {
P is a subgroup of G , and then an isotropy group Px only when G

is a semi-direct product (crystallographers say "symmorphic').

The gradient of a G-invariant potential at x 1is invariant by
Gx . So it vanishes at a symmetry center; it is along a symmetry axis
or in a symmetry plane. Consider a symmetry axis which does not carry
symmetry centers or a symmetry plane which does not contain higher
symmetry elements. Due to its periodicity, a continuous function
reaches maxima and minima on these symmetry elements; on these points
its gradient vanishes, so they are extrema for the full function. As
we will see later, Morse theory can give some conditions for the loca-

lisation of the minima.

In the case of a smooth compact (and in particularly finite) group
action on a manifold M (linear representations are a special case)

6]

there are classical theorems easy to prove (see e.g. , appendix C
and references there). For any x € M , there is a neighbourhood VX
such that for all vy € v, {Gy}ai {Gx}‘ As a corollary a G equiva-

riant differentiable tangent vector field is tangent to ite stratum.

In a linear representation, smooth G-invariant functions are
smooth functions of G-invariant polynomials whose ring is finitely
generated. So one can establish invariant equations for localizing the

[10] for

zero of G equivariant vector fields. This has been done in
the representations of all closed subgroups of 0(3); one sees easily
that it is "easier" to have zero on symmetry elements (i.e. non generic

strata).

A degree four polynomial on E (such as a Landau or Higgs poly-
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nomial) bounded below and maximum at the origin O , has two radial
minima on each straight line containing O . Let M be the set of
these radial minima. It is a smooth manifold, homotopic to a sphere

(and with O as symmetry center if there are no 3rd degree terms). It

11 .
has extrema on every closed strata on M (see e.g. [11] and earlier

quoted references); hence every maximal conjugation class of entropy

groups 1is that of extrema. To obtain conditions on minima one can apply

{38}, {11}‘ One can also prove that for irreducible

The Morse theory
(111 [12]

representations there are no extrema in the generic stratum
What can be said about the lowest minima. It has been conject-

ured that they occur only with maximal isotropy groups {13}. This has

no meaning. Indeed, one has to make the following distinctions. Given
the image G of the symmetry group, one chooses a Landau polynomial

: . G . ;
with a quartic term Py € Pa where P 18 the vector space of quartic

4
polynomials in n wvariables; dim P& = (nz3) and we define

. G . . .
= dim P& . One has to consider the centralizer in 0O(n) ,

v
G
gﬂ(n)(Pg) > G . Finally any mathematical theorem or conjecture can be
formulated only in term of the exact isotropy group O(n) =C>¢0

[11], T14]

p
(see . However, counter-examples have recently been %ound

ﬁﬁ}, to the conjecture that the isotropy group of the absolute minimum
of a Landau potential on E , is a maximal isotropy group on E of the
isotropy group in 0(n) , (i.e. G = O(n)P ) of the Landau potential.
Professor Ruegg will give in his lectures 4 a similar counter—example

for a Higgs potential published in [16] and another example has been

found in {1?}!

The Wigner problem for a crystal can be transformed into a problem
of action of the finite point group P on the torus Rz§23 , the
orbit space of the translation group (indeed, a triply periodic funct-
ion is defined by its values on this torus) and the Morse theory is

also applicable.

8. Basic Concepts in Crystallography.

This section is based on an unpublished manuscript with Prof. Jan

Mozrzymas. It is a direct application of the concepts of group action.
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It will help the participants of these school not acquainted with
crystallography to follow some of the lectures. In §1, example 5 we
defined the lattices and classed them into crystallographic systems.
All other definitions we will give here are independent of the dimen-
sion n ; we givé them here for n = 3 . The isotropy groups of the

lattices belonging to a crystallographic system from a conjugation

class {PH} of 0(n) . The conjugation classes < that of the holo-

hedries PH are called geometric classes. There are 32 in n =3
dimensions. Most macroscopic properties of the crystal are classified
according to these classes. A group P of one of these classes is
called the point group of the crystal. Its action in the lattice is an
injective homomorphism P >§~> GL(3,Z) = Aut 23 . However, the equiva-
lence chosen is neither the usual one, nor the weak one; indeed the
point group is given as an 0(3) subgroup (up to a conjugation). For
instance the holohedry group On = m3m of the cubic system has an
automorphism which exchanges the conjugation class of the 6 plane sym-
metry with that of the rotations by 7 around axes forming the middle
of the edges. Such 'mon geometric' automorphisms are not considered.
So for crystallographers,two actions f,f' of the point group P are
equivalent if the images Im f and Im f' are conjugated in GL(3,72).
So the 73 conjugation classes of finite subgroups of GL(3,Z) corres—
pond to all possible actions of the 32 geometric classes. They are
called arithmetic classes. To the seven holohedries correspond 14 arith-
metic classes; they are exactly the Bravais classes (the 1850 defini-
tion of Bravais was different!). For each of the 73 arithmetic classes
one has to solve an extension problem. The equivalence of extensions
defined by diagram 2 is too fine for the crystallographers. The norma-

. . - . . . 3
lizer (Im £) acts on P and alsc on the lattice Z° , 8o

NeL(3,2) e
it acts on the cohomology group EgiP,Z ) . To each orbit of the norma—
lizer is corresponding one crystallographic class. There are 219 of
them for n = 3 . One shows that this equivalence corresponds exactly
to the following : two crystallographic space groups (i.e. closed dig~
crete subgroups of E(3) containing a lattice 23} belong to the

same mathematical crystallographic class if they are conjugated by an

element of the affine group Aff(3) . It is a remarkable theorem of
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(18]

conjugated in Aff(n) . The equivalence definition used in crystallo-

Bieberbach that isomorphic space groups (in n dimensions) are
graphy is slightly stricter. Indeed, although the interatomic distan-
ces in a crystal phase change with temperature, the symmetry is consi-
dered the same. However, since temperature changes are continuous, two
crystallographic space groups belong to the same physical crystallo-
graphic class if they are conjugated by an element of the connected
affine group Aff*(n} = R" x CL+{n,R) , where GL+(n,R) is the group
of linear transformation with positive determinant. For n = 3 , 11
mathematical classes split into a pair of "enantiomorphic" physical
classes, so there are 230 of the latter. Other basic references to n

dimensional crystallography are [19] and {28}.

9. Renormalization of the Landau theory of second order phase transi-

tion.

As you will hear in other lectures, Landau theory of second order
phase tramsition in crystals is rather successful for explaining sym-
metry changes. However, it fails completely for giving the critical
exponents. So as soon as the Wilson renormalisation with ¢ = 4-d
(d is the space dimension) expansion was proposed, it was used for Lan-
dau theory by adding to the potential U of equation (11) a kinetic
energy term. Here I will simply give a general but abstract formulation
of the so-called renormalisation group technique and explain the main

{2}}§ [22] and in collaboration

. s no s o L24]
and alsc with P, Toledanoc and Brézin .

results of some of my recent papers

(23]

with J.C. Toledano
The right hand side of the renormalization group equation

égi%}

kI
oA

)
o
[

Ry

(g(r))

Sy

is a vector field £ defined on the vector space P, of quartic
Polynomials. A fixed point g satisfies B(z) =0 . As we have noted
in §7, the quartic part P, of the Landau potential depends only on
the image G < 0(n) of the representation of the symmetry group. Hence

weakly equivalent representations yield the same potential. The expres—
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sion of Py depends on the orthonormal basis chosen for the n dimensio-
nal representation space. However, physics must not depend on this

choice of basis, so the vector field B must be 0(n) equivariant,

and the critical exponents are O0(n) invariants. As a consequence,

the trajectory by equation (12) of any g € Pi (the subspace of
G-invariant quartic polynomials) stays in this subspace and stops at

a fixed point g € ?f . It is stable if

& ® 670 (13)
4
If this condition is satisfied, and E > 0 then the effective
Landau potential is obtained from (11) by replacing P, by E . One
interprets the non satisfaction of (13) by a lack of second order
phase transition. The vector field B has been computed in {25}. Some
successful predictions based on this scheme were made.

(P. Toledano's lectures are more critical). The recent results were

obtained
. . . [25] . .
(1) At the approximation computed in , the vector field B 1is
a gradient.
(ii) If it exists, the stable fixed point g is unique (521} comple~

ted in [24}) and

(iii) its isotropy group O(n)_ 1is equal to its normalizer in 0O(n)
g
. c s -G . . .
(iv) If the stabilizer Sg(q){?4> does not leave invariant a quartic

polynomial, there are no stable fixed points.

T L e T

Property (i) depends essentially on the approximation. One can
hope it is not the case for (ii). Property (iii) is a consequence of
(ii) and (iv) is a simple corollary of (iii). Remark that (iii) is

-~

very restrictive. For n = 2,3,4 the number of closed strict subgroups

of 0(n) which satisfies it are respectively 0,1,3 .

[22]

In there are some remarks for arbitrary n
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*
10. A Spin 10 grand unification theory )

Let me first remind a few facts about simple compact Lie algebras
G and groups G and their representation. A Cartan subalgebra of
such a G 1is a maximal Abelian subalgebra (it corresponds phycically
to a complete system of commuting observables); they are all conjugated.

Their common dimension & 1is the rank of the algebra. For £ = 5 or

ki
£ > 9 there are 4 such algebras( }, labelled by their Dynkin diagrams.
For instance for £ =5 :
As Bs Cs Ps
0-0~-0-0-0 0~-0-0-0=0 0-0-0-0=0 D*O—O::g (14)
Su(6) Spin(11) Sp(10) Spin(10)

(Sp is for symplectic).

‘To a simple compact Lie algebra G corresponds a unique simply connect-
ed compact Lie group G . Its irreducible representations are labelled
by a set of 2 non negative integers placed at the vertices of the

~ Dynkin diagram. The center of the group G is :

A for S8U(L+1) = A Z, for Spin(22+1) = B (15)

i+1 P 2 2

1 for sp(22) =¢ Z, for Spin(4k+2) =

2 : -
g v 2y Z_ for sza(&k}mDZR

Dorsir %
The other groups G with the same Lie algebra G are quotient

-4 o

G/F of G by a finite subgroup of the center. So its irreducible

Tepresentations form a subset of those of G . More generally a compact

Lie group H is of the form :

%ﬂ“’
{(*) See also O'Raifeartaigh and Ruegg lectures.

{**%) For other dimensions one has to add the five exceptional Lie alge-
bras : Gzagégﬁé,ﬁ?,ﬁg . The series B,C are defined for & > 2 and
D for 2 4 . Moreover, we have the group isomorphisms

SUC2) = spin(3), su2) x su(2) = Spin(4),Spin(5) = Sp(4), SU(4)=Spin(6).
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H=wF N=UMx0d_ ), Fofinite <CM  (16)

i

i.e. N 1is the direct product of k Abelian U(1) and j simply
connected compact simple groups and F 1is a finite subgroup of the
center of N . The irreps of H are the tensor products of those of
the factors of N for which F 1is represented trivially. Example :

1{.6}’ {93}} r

(e.g. see

Su{n) x U(1)

Z
n

z?{(eiazk!ﬁzﬁ,gwﬁlkfn} , 0<k<mnl (17)

g L
U(n) ’ Sﬁ

so the irreps of U(n) are labelled by the integers

n~1
ai_z 0, a)58y50005a oM with kiz kak+m Z 0mod n (18)
For SU(2) the tradition is to use the spin t = %'a , where a is
the Dynkin label and 2t+l = a+l the dimension of the irreducible

representation. It is also interesting to replace (17) by

50{(n) * R

2wi/n
7 > / i

Un) = Z generated by (e H,a) (19)

because SU(n) *x R is the universal covering of U(n) and we wish

to emphasize that o 1is an arbitrary real number, so there is no
natural scale for the value of the real parameter; there is the rela-
tion (18) for quantum numbers. This relation is satisfied for the
standard unified electroweak theory and for what we believe are exactly
preserved gauge symmetry interactions, i.e. electrochromodynamics,

see table 2. The gauge groups of these theories are respectively U(2)
and U(3) . Any symmetry group G of a grand unified theory (GUT)
must contain U{(2) and U(3) as subgroups; since the electromagnetic
gauge is common to both, these subgroups have an intersection

U{1) and they generate a subgroup

SU{3) x su(z) = u(l)
ﬁg(i)

sS(U(3) x u(2)) (20)

where £ , the generator of Zé is

cHpe— L caxe oo o
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- (e2ﬁi/31 e~2ﬁi(5{3)>

-1

3 "2 (20

where H = S(U(3) x U(2)) 1is the group of matrices :
H={CHD) , u€UB) , v EUQ) , (detu)(det v) = 1} (21)

This group H of rank 4 is a maximal subgroup of SU(5) ?ng étzis

an isotropy group of the SU(5) adjoint representation 0-0-0-0 of
dimension 24. So SU(5) 1is the smallest possible GUT symmetry

group and this model was proposed ten years ago [26]. It has very good
features, but one rather inelegant : the 15 fermion states of one hori~
zontal family (12 = 3 colors % 2 spin states x 2 quark states wu,d +

2 for electron +1 for neutrinos) are in a reducible representation
0001 0l1o¢

0-0-0-0 ® 0-0-0-0 of dimension 5+10 of SU(5)

~Table 2. Multiplet of particles; gq is the electric charge.

~ U(2) symmetry:representation t,y with 2t+y = Omod 2 ; q = tz+ l~y

2
o 1 1 1 z
irrep 1,0 + 0,0 'é" A= “é— s 1 0,2 0,~2 j,z" At
particle Ww z° v, E. Tt - Hi
Y PP 1R (1L | SR regs:
'§(3} symmetryirepresentation CE’CE’X 3 ¢1+2c2+x z 0 mod ; = %

,0,2 , 1,0,-1 , 0,1,-2 , o0,1,1

u d 5 d

SU(S) symmetry, Erfep a,a,a;a, reduces on H into ai,cz;zt,m with
> - — it}
ﬁzégﬁz =m mod 3, 2t Smwod 2, gq = t, * g

irrep 5 : (0,0,0,1) = (0,1;0,2) + (0,0;1,-3)

{ﬁLE Vs
irrep 10 : (0,1,0,0) = (0,1;0,-4) + (0,0;0,6) + (1,0;1,1)

o, +
(W) L u tdy



However, if the recent possible observations of neutrino oscil-
lations (in Bugey and CERN) or of a neutrino mass (in Moscow) are con-
firmed, the neutrino must also have two states, so each fermion family
require a 16 dimensional representation. It is a hard problem to find
a G which contains the exact number of families (presently believed
to be three); provisorily the simplet extension of SU(5) symmetry is

up to Spin(10) , the covering of SO(10), which has two complex con—

000 000
jugate irreducible spinor representations O*Q~Giig é and O~D~0ﬁ:§ ?
of dimension 16. This is well known among high energy physicists.

010

The adjoint representation 0*0“0<:g g is of dimension 45; so this

is the number of gauge bosons. In which representation should the

Higgs scalar be in order to break the symmetry on the subgroup H of
equation (21) ? I am working on this unsolved problem with Omer Kaymak—
calan(*), K.C. Wali, L. O'Raifeartaigh, W.D. McGlinn. I sketch here

the method for solving it. On the ground of physical elegance we consi-
der only representations of small dimension d (say d < 100). They

are
irrep (00000), (10000), (20000), (01000), (00010), (00001)

d 1 10 54 45 16 16
S a%/’/O a,
where (3132,33,aa,35) labels the representation O““O*“G-\\\O a
To obtain the observed breaking on H , one has to choose a reducible
representation. The isotropy subgroups of a direct sum of inequivalent
irreps are the intersections of the isotropy groups of the irreps. A
more efficient method to compute the isotropy subgroups of the direct
sum of irreps carried by the space E = E, + E, 1is to look for the

1 z

isotropy subgroups of EE and study their action and corresponding

isotropy subgroups on 52 .

Results added in April when these notes have been writtem : H

is an isotropy subgroup of the representation 45 + 54 , and corres-

(*) This gifted young physicist died of illness in Syracuse, N.Y. (USA)

two days after I was giving this lecture.
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ponding to the absolute minimal of a Higgs potential (depending on 11
parameters). However, there are two distinct conjugate classes of

Spin 10 subgroups isomorphic to H . One obtains the wrong class :

this [H] 1is not < [SU(5)] . The right class [H] appears as isotro-
Py subgroups of the representations :a) 54 + 16 + 16 , b) 45 + 16 +16.
In case a), the minimum of the Higgs potential covers an infinity of
orbits and there are pseudo Goldstone bosons. The case b) gives a good
solution of the problem. This solution has already been found in {27},
{28}. It is quite elegant. Indeed it uses only two types of representa-
tiens. The adjoint one for the spin 1 gauge bosons and spin 0 Higgs
bosons. The Spinor representations for the Fermions (quarks and leptons)

and the rest of the Higgs bosons. So this model presents some remnants

of a supersymmetry.
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