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Abstract

Linear representations of groups is a particular case of group action which is well known
to physicists. The aim of these two lectures is to give the basic concepts for general group
action.

In section | we consider the action of (abstract) groups on sets. In section 2 we study
the homogeneous spaces of a given group. Section 3 is devoted to continuous actions of
topological groups on topological spaces. The last section gives some results on the im-
portant particular case of smooth action of compact Lie groups on manifolds. For lack
of time, no physical applications are given, but some references are provided.
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I. GROUP ACTION ON SETS

1.1. Definitions

Let 2(E) be the group of permutations of the elements of a set E. Each action of
a group G on E is given by a group homomorphism

G — 2(E). (1)

Often, instead of f (g) [x], we shall simply denote by g.x the transform of x € E by
gea.
An action of G on E can also be given by a map

Gx E-*,F . (2)
which satisfies
®(e, x) = x @(gy, D(g,, x)) = D(g,9,, X). (2)

Indeed, x~"rs ®(g, x) is a permutation of E whose inverse is Pg-1and g~ ¢
is the homomorphism f in (1).

Let us introduce some vocabulary.

G acts effectively on E if Kerf = {e} (trivial) <> g # e implies g.x # x for some
xeE.

G acts freely on E if g # e implies g.x # x for all x e E.

G acts transitively on E if for all x, ye E, Jg€G such that y = g.x. In this case
E is called a homogeneous space of G.

The set of fixed points, which we denote by ES, is defined by

ES = {x€eE, YgeG, g.x = x).

Of course, if E¢ = E, G acts trivially on E(<> Ker f = G).
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1.2. Natural Transfer of Actions

Given G actions [, ..., f,onsets E,, ..., E,, then there are well-defined “natural”
actions of G on the sets one can form from the E;:
(a) G acts on E, x E,

g (xy,x3) = (g.X1,9.%3). (3)

(b) Let Maps(E,, E,) be the set of maps from E, to E,. Then for any
0e Maps(E,, E,)and g € G, the transform ¢.0 must satisfy the commutative diagram

of maps

g-68
E, > E»
f](g) fz(g) Diagram 1
E > E
1 9 2
Thus it is defined by
(g.0)(x,) = g.(0(g~".x,)). (3)

(c) If G acts on disjoint (ie. E; n E; = (%) sets, its natural action on the union
u;E; is obvious.

1.3. Equivariant and Equivalent G-Actions

Given G, we define the “morphisms™ between its actions and, as a particular case,
the isomorphisms, and consider isomorphic actions as equivalent. The action of
G on E, is equivariant to the action of G on E, if Maps (E,, E,)? is not empty, i.e.
if there exists 0 Maps (E,, E,) invariant (such that g.0 = 0) for any ge G. Then
Diagram 2 of maps is commutative for all ge G:

f,( g) fz( g ) Diagram 2

> E,

8

fr(g)°0 = 0°f(g). 4)
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We say that 0 is an equivariant map. If furthermore 0 is a bijective map (i.e. one-to-
one and onto) the two actions of G are isomorphic. We shall also say that E, and
E, are isomorphic G-spaces.

1.4. Little Group  Isotropy Group  Stabilizer of me E

This is the set {ge G,.g.m =m}. It is a subgroup of G which we denote by G,

1.5. The Orbit of e E
This is the set {g.m, ge G}. We denote it by G.m. We shall denote by i, the

map G —¥=— E , (g) = g.m: Orbit of m = Image of ,,. When the group acts
transitively there is only one orbit.

Lemma
If m" and m are on the same orbit, their little groups are conjugate.
More precisely: If

m = g.m, then G = G,y " %)

1.6. Strata

If two points m" and m have conjugate little groups, they need not be on the same
orbit. By definition they are on the same strarum. When the group acts freely, there
is only one stratum (Y me E, G,, = {e}). When EC is not empty it is a stratum. We
denote the stratum of m by S(m).

1.7. Orbit Space

Being on the same orbit is an equivalence relation between the elements of E.
Thus E is partitioned into orbits. The set of orbits is called the orbit space. It is usually
denoted by E/G. We shall use r for the canonical map E "> E/G = n(E).

1.8. Space of Strata

Having conjugate little groups is an equivalence relation for the elements of E.
Thus E is partitioned into strata. We denote by o the canonical map of E into the
space of strata. This map factorizes:

g = ToT. (6)
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E — T 5 E/G

T Diagram 3

o(E)

1.9. Examples

(a) SO(2) action on S, (The 2-dimensional sphere)

| pole

ﬁ parallel
[

Figure 1

The orbits are the parallel circles (little group = {1}) and the two poles (= fixed
point, little group = SO(2)). So there are two strata.

(a') SO(2) x Z, action on S,. The group of (a) is enlarged with the symmetry
through the center 0. There are no fixed points. There are now three strata:

(i) the generic one, open, dense: each orbit consists of the two parallels with
the same N and S latitude.

(i) one with one orbit: the 2 poles (little group SO(2)).

(i11) one with one orbit: the equator (the little group has two elements).

(a”) SO(2) action on P,. The real projective plane: action obtained by the equi-
variant map S, — P, which identifies points symmetric through 0. 3 strata, images
of the 3 strata of (a’) (not of (a)).

(b) SU(3) action on S;. The unit sphere of the adjoint representation (= octet
space). Note that SU(3) does not act effectively, but the adjoint group SU(3)/Z,
does. Same image as (a) but the 2 poles are four-dimensional orbits (little group
U(2)) and the generic stratum has 6-dimensional orbits (little group U, x U,).

(b") Aut(SU(3)/Z;) action on S,. SU(3) or SU(3)/Z, has only one class of outer
automorphism (it corresponds in physics to charge conjugation). This example
is similar to (a’); the “equator™ becomes the 6-dimensional orbit of the “roots™ of
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the Lie algebra. The poles are replaced by the 4-dimensional set of “pseudo-roots”
(= roots of the symmetric algebra whose structure constants are the d;jp of Gell-
Mann); see L. Michel and L. A. Radicati, Ann. Phys., 66, 758 (1971).

(¢) Action of GL(n,C) on £ (.#,). Let #, be the n-dimensional complex vector
space, #( .#,) the set of linear operators (= n x n complex matrices) on #,: that
is an n*-dimensional vector space. The invertible operators of #(.#,) form a group,
the general linear complex group in n dimensions: GL (n, C). This group acts (linearly)
on the vector space ¥ ( #,) according to the law

geGL(n,C), L(#,)3 x ~> gxg*

(where * is the Hermitian conjugation of matrices). We leave as an exercise the study
of the strata. We note that the Hermitian operators x = x*, which form a real vector
space &, of dimension n?, are transformed into themselves. We also leave as an exer-
cise the study of the action of GL(n, C) on &,.. We just point out that the strictly
positive (Hermitian) matrices x form one orbit which contains the unit matrix /,
whose little group is U (n), the group of unitary matrices of rank n (i.e.n x nmatrices).
Another interesting action is x ~~ gxg !

(¢') Action of SL(n,C) on £ (#,), and &,. = Hermitian of ZL(A,). The group
SL(n, C) is the subgroup of GL(n, C) formed by the matrices of determinant unity.

(d) Action of the connected Lorentz group on space—time. This action is well known
to the audience. The orbit space is given by Figure 2a. There are four strata, the origin
0, the light cone — O, its inside, its outside. This action is identical to that studied
in (¢') for n = 2:action of SL(2,C) on &,. = £ The center Z, of SL(2, C)acts trivially
and the quotient group SL(2,C)/Z,, which acts effectively, is isomorphic to the
connected Lorentz group. :

time- like
vectors

space - like
vectors

Figure 2a

The strictly positive and strictly negative matrices form the stratum of time-like
vectors. The corresponding little groups are conjugates of SU (2).

(d’) Action of the complete group & on space—time. The same four strata, but the
orbit space is reduced to that of Figure 2b. Note that the little group Z(p) of a
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time-like vector p is conjugate to O(3), the three-dimensional orthogonal group,
which is the little group for the time axis.

time - like vectors

space - like vectors

Figure 2b

(e) Action of the connected Poincaré group of space—time. The group generated
by the translations and the connected Lorentz group transformations is the con-
nected Poincaré group. The space—time is one orbit of this group. The stabilizer of
any point 0 is the Lorentz group leaving 0 fixed.

(f) Action of Z(p), the little group of p on three-particle phase space p = p, +
+ p, + ps. As we have seen in (d'), £ (p) is conjugate to O(3). There are two strata:
The generic stratum S; p,, p,, p; are linearly independent, the 2-element little group
is generated by the symmetry through the plane defined by p,, p,, p;. The excep-
tional stratum S’ : when p,, p,, p; are linearly dependent; the little group is conjugate
to O(2). The orbit space is the Dalitz plot; n(S’) is its boundary.

We leave the case when two (or three) particles are identical to be handled as
an exercise.

(g) Any group G acts on itself (= its set of points) by different actions:

(i) by left translations x ~> gx, so G acts freely and transitively on itself.

(ii) by conjugation x ~> gxg~!. In this case the orbits are the conjugation
classes. This action of G on itself is by automorphisms: G—— Aut G,
where Ker f is the center of G (it is also the stratum of fixed points) and
image of f is the group of inner automorphisms.

(g') H, subgroup of G acts on G by left translation. The orbits are the right cosets
of H. There is only one stratum and H acts freely on G.

1.10. Exercises

(i) If G does not act effectively on E, then Ker ‘/‘=ﬂ G,. It is the largest in-

me E
variant subgroup contained in any little group G,,.
(i1) If H is a subgroup of G, the action of G on E defines an action of H on E. If,
furthermore, H is an invariant subgroup of G, this defines an action of G on the orbit
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space E/H and also of the quotient group G/H on the orbit space E/H. Note that
ny: E—""— E/H defined by the action of H on E is an equivariant map of G actions.
The reader has already twice applied this exercise in very simple cases: to pass
from example (a’) to (a”), where G = SO(2) x Z,,H=2,, E=S, E/H=P,;
and in (d), G = SL(2,C), H is its center Z, which acts trivially on space—time.

2. HOMOGENEOUS SPACES OF (ABSTRACT) GROUPS
2.1. Classification of G-Homogeneous Spaces

Given a subgroup H of G, the relation a~'be H(<>beaH) is an equivalence
relation, the equivalence classes are the left cosets of H, and we will denote the quotient
space (= coset space) by [G:H].

By left translation G acts on [G:H] 59 H ~=» gaH. This action is transitive, so
[G:H] is an orbit of G: the little group of He [G: H] is H itself.

Let E be a G-homogeneous space with little-group conjugate to H,> me E, G,, =
= H.Letm = g,.m = g,.m; then g5 'g, € H, so g, and g, are in the same left coset
of H, ie. g,H = g,H. The correspondence ¢g.m -~ gH is therefore a map
E—>[G:H];

it is equivariant: g,0(g,.m) = g,9,H = 0(g9,9,.m);

it is one-to-one: O(gym) = 0(g, m)<=g,H = g,H <>g; 'g, e H<g5 'gym = m,
Le. gym = g,m;

it is onto: every gH is the image of a g.m.

So the G-homogeneous space E is isomorphic to the “standard” G-homogeneous
space [ G : H] with G-action by translation. It is easy to see that [G : H]and [G : gHg ™ ']
are isomorphic G-homogeneous spaces. Hence we have proved the

Theorem :
There is a natural bijective map between the classes of isomorphic G-homogeneous
spaces and the classes of conjugate subgroups of G.

A class of isomorphic G-homogeneous spaces is also called a type of G-orbits.

2.2. Partial Order on the Set (/; of Types of G-Orbits

We denote by (H) the class of subgroups of G conjugate to H.

With the inclusion (H, = H,), the subgroups of a group form a lattice. The classes
of conjugate subgroups also form a lattice. This lattice structure can also be applied
to the set (g, but it is done in the usual language by reversing the order: the larger
a subgroup H of G, the smaller is the orbit [G: H]; indeed, for finite groups (Card
H) . (Card [G:H]) = Card G.

In an action of G on E, a stratum is the union of all orbits of the same type. So the
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stratum space (see Section 1.8) o (E) can be identified with a subset of ¢/;. One can
therefore speak of maximal or minimal strata. For example, if there are fixed points,
they form the unique minimal stratum.

2.3. Morphisms of Homogeneous Spaces. Imprimitivity
E,—E,
is an equivariant map from E, to E,. 0 is always surjective (= onto). If it is not
injective (= one-to-one) (H,) = (H,), e.g
0~'(H,) = [H,:H] = [G:H,].

If H, is a maximal proper subgroup of G (i.e. H, € H < G implies.for the subgroup
H either H = H, or H = G), the action of G on E, is said to be imprimitive. If (H,)
is strictly smaller than (H,), H, a maximal subgroup, the inverse images 0~ ' (m,)
of elements of E, are called imprimitivity classes of E,.

Example: The connected Lorentz group action on a light cone (without summit).
The generatrices are imprimitivity classes. The little groups are isomorphic to E(2),
the 2-dimensional Euclidean group. They are not maximal in Lorentz, the maximal
group TR(2) is isomorphic to E(2) and dilations

b
( TR, = {triangular matrices(g . ) inSL(2,C) } )
a

The set of points at infinity for the light cone (or any—real or imaginary—mass
hyperboloid = asymptotia...) can be identified with the orbit [#: TR(2)]; it is
homeomorphic to the sphere S,.

2.4. Remark on the Isomorphy of G-Spaces and G-Orbits
a
G s—e———— G

f Diagram 4

P(E)

Let 2 € Aut G. If f of Diagram 4 defines an action of G on E, fo- « defines another
action. Are the two actions equivalent? The answer is yes if « is an inner automorphism
of G: let ae G be an element which realizes «, i.e.

1

YgeG aga™' = x(g). (7)
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Then f (a) is an equivariant map on E which establishes the equivalence of the two
actions. Indeed, for any g € G, using (7) and the fact that f is a group homorphism:

f(a(g))ef(a) = flaga™") o f (a) = f(a)> f (g) (8)

If « is not an inner automorphism of G, it may happen that the two G-actions are

inequivalent although they produce on E the same orbits and the same strata. But

some orbits may be nonisomorphic G-homogeneous spaces. Indeed, consider the

case when E is one orbit, isomorphic to [G: H] for the action f. For the action

feo, itis isomorphic to [G:a”'(H)]. If «~ ' (H) and H are not conjugate in G, these

two homogeneous spaces are nonisomorphic. Indeed, there is no ¢ e 2 (E) such that
+

VgeG  f(a(g)) oo = @of(g). 9)

Let me E such that G,, = H for the action f. Its little group for the action Sfeais
a” ' (H). If there is a ¢ satisfying (9), apply both sides of this equation to m for all
he H; we obtain:

of (a(h)) (m) = p(m),

so that H is also the little group of ¢ (m). Since points on the same orbit have con-
jugate little groups, H has to be conjugate to o~ ! (H), the little group of m; this is
absurd.

2.5. Physical Application

Generalization of the McGlinn Theorem. McGlinn (Phys. Rev. Lett. 12, 467
(1964)) proved that if G = S.P (i.e. VgeG can be decomposed uniquely into a
product g = sp,s€ S, pe P) where P is the Poincaré group (P = T.L) and S a semi-
simple Lie group, and if Vse S,VIe L, sl = Is, then G = S x P, the direct product.
Michel (Phys. Rev., 137B, 405 (1965)) extended this result to the case when S can
also be an arbitrary simple group or direct product of simple groups, under the
weaker hypothesis: there is a p, e P, po ¢ T such that Yse S, s !p,se P. As we saw
in Section 2.1, G acts on [G: P], the set of G-left cosets of P, by the action:
sP LY gsP.The hypothesis posP = sP shows that p, acts trivially, so that p, € K =
= Kerf = G. And K n P is an invariant subgroup of P which contains p,. It must be
P itself, so that P < K;ie YseS,VpeP,s 'pse P so P is an invariant subgroup
of G, and there is a homomorphism S —%-» Aut P/P = R. Since S is a product of
simple groups (or a semisimple Lie group), ¢ is trivial and G is isomorphic to the
direct product S x P. Hint: G = §' x P,§ = sq(s~ ') where sps™t = q(s)pg(s™ ),
and q: E—'> Inner Aut P = P.
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3. CONTINUOUS ACTION OF A TOPOLOGICAL GROUP ¢
ON A TOPOLOGICAL SPACE X

3.1. Introductory Remarks

If E has a mathematical structure, it has a group of automorphisms Aut E for
this structure. The elements of Aut E have various names, e.g.:

E Name of elements of Aut E
set permutation = bijective map
ordered set order preserving map
topological space homeomorphism
metric space isometry
vector space invertible linear operator
complex Hilbert space unitary operator
real Hilbert space orthogonal operator
differentiable manifold diffeomorphism

and so on.

One considers only the actions of G given by the group homomorphisms
G > Aut E.

Example: If E is a vector space, f is a linear representation of G. One should
distinguish the different structures on the same set, for example:

If E is the space—time vector space, i.e. the space of energy momenta, the vector
zero must be invariant and the group which preserves the Minkowski scalar product
is the Lorentz group. If E is the affine space—time (i.e. of x and t coordinate), then
translation belongs also to Aut E, which is the full Poincaré group. If the space—time
E is defined just as a set with the partial order relation due to causality:

X<y<ey-—xeV?,

the inside of the future light cone, it is then quite remarkable that (without linear and
even topological structure for E) Aut E is the orthochronous Poincaré group with
the dilations added (E. C. Zeeman, J. Math. Phys., 5, 490 (1964)).

This point of view is too general for our purpose, because we wish also to take
into account a richer structure on the group G than that of the group law. For instance,
G can be a topological group; then we do not want to consider as possible actions
of G on the topological space X all homomorphisms of G into the group of homeo-
morphisms of X. We shall use the alternative way (eqns. (2) and (2')) of defining
the action of G and require, for example, that the map ® preserve the structure on
G and X.
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3.2. Definition and General Remarks

A continuous action of a topological group G on a topological space X is de-

fined by a continuous map
G x X -2, X
which satisfies (2').

If G is a topological group, the homogeneous space [G: H]is a topological space
with the quotient topology: i.e. the open sets of [ G : H] are all the subsets S of (G:H]
such that p~'(S) is an open set of G, where p is the canonical map G " [G: H].
By definition, the topology on [G: H] is the finest one such that p be continuous,

Consider the continuous actions G x X — - X. On any orbit G. x(xe X), one
has to distinguish two topologies: That of the homogeneous space [G: G, ] and that
of topological subspace G.x = X (the open sets of G.x are then the intersections
of G.x and open sets of X).

If the canonical bijective map [G: G, ]~4> G(x) is not continuous (i.e. if the
topology of [G: G, ] is not equal to or finer than that of G.x), then the G-action is
not continuous.

The orbit space X/G is also a topological space with the quotient topology,
defined by the canonical map n: X —*> X/G.

Exercise
Let K = H < G, K an invariant subgroup of G. Then [G: K] is also a topological
group G/K and [G:H] is homeomorphic to [G/K : H/K].

3.3. Basic Facts on Continuous Group Action

®(g,.) = ¢, is a homeomorphism of X.
®(.,x) =, is a continuous map from G to X.
Let L be a subset of G, S a subset of X, LS = {[.5,le L, seS}.

G X L S LS
a) topological topological arbitrary open open
b) Hausdorff Hausdorff compact compact compact
c) Hausdorff Hausdorff compact closed closed
d) compact Hausdorff closed closed closed.

Note 1. Definition of X, Hausdorff: ¥V x.ye X, 3 open neighborhood of x, I,
and open neighborhood V, of y, V, n V. = &. Moreover, to be compact or to have
compact subsets. X must be Hausdorff. Remark: a point of a Hausdorff space is
a closed set.

PR,
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Proofs

(a) ®, = homeomorphism — [.§ open, L.§ = w open sets = open set.
leG

(b) L.S is the continuous image of a compact set, product of two compact sets.

(c) Choose sets g, in L,s, in S,g,s, > x € LS (closure of LS) L compact <=3 a
subset g, in L,g, — [, lims, = limg; '(g,s,) = ["', xe S since § closed, so xe LS
and LS = LS.

(d) L closed in G compact = L. compact = (c).

Then for L= G,S = {x} (one-point set, which is closed, LS = G.x, an orbit,
so in case (d) the orbits are closed). They are also compact, since G . x = . (G), the
continuous image of a compact set. s

In the general case (a), if S open, G.S = n~'(n(S)) open, hence 7n(S) open (by
definition of the quotient topology), so that m is an open map. In case (d), S closed =
= G.S = n~ ' (n(S)) closed, so that 7 is then also a closed map.

3.4. Particular Case when G Is Locally Compact and Compact and X Is
Metrizable

A locally compact group G has a left-invariant Haar measure dg. If, furthermore,
G is compact, then dg (which is also right-invariant) can be normalized by

f dg = 1. _ : (10)
G

Let A(x, y) be a distance in X. It can be averaged by the Haar measure of the compact
G into

~

Alx,y) = J Algx, gy) dg. (11)
G

This is a G-invariant metric on X and it yields the same topology as A. The orbit
space X/G is also metrizable, with the metric:
d(n(G.x),n(G.y)) =  Min A(X,y). (12)
x'eG.x; yeG.y
The orbit space X/G is indeed a generalization of the meridian section of an SO(2)-
invariant domain in our 3-dimensional space.

3.5. Physical Applications. Crystallography

Our space & as an affine space has for its automorphism group IL(3, R), the in-
homogeneous general linear group in 3 dimensions; it is the semidirect product
of the translations T by GL(3, R). We denote by GL* (3, R) the subgroup of index 2
of GL(3,R) formed by the 3 x 3 real matrices of positive determinant; we denote
by IL" (3. R) the semidirect product T A GL' (3, R).
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The Euclidean group E(3) is a subgroup of IL(3, R). A crystal is represented as a
space lattice C of £, and the crystal symmetry group is the subgroup K < E(3)
which transforms C into itself. An equivalent but more abstract definition of the
crystallographic groups K is: a discrete subgroup of £(3) such that the homogeneous
space [E (3):K] is compact. Two crystallographic groups K, and K, are considered
as equivalent if they are isomorphic and their actions on & are equivalent. However,
in order to distinguish between left and right, crystallographers have restricted
the equivalence map 0 of diagram 2 to be in [L* (3, R) and not in IL(3, R). So there
are 230 classes of equivalent crystallographic groups in 3 dimensions; among them
I'l pairs are isomorphic: they are conjugate in IL(3, R) but not in IL" (3, R). In 2
dimensions there are 17 classes of crystallographic groups. It was one of the famous
Hilbert problems to know if the number of crystallographic classes is finite for any
dimension n. The positive answer was given by Bieberbach in 1911.

4. SMOOTH ACTION OF A COMPACT LIE GROUP G
ON A C”-MANIFOLD M

Smooth = C” = infinitely differentiable.

Then G and M are both (smooth) manifolds and the map defining the action
G x M —®» M, which satisfies (2'). is a morphism (= smooth map) of smooth
manifolds.

4.1. General Results

Let A(x, y) be a Riemann metric on M. By averaging with the Haar measure of
G one obtains a G-invariant Riemann metric and, as we have seen, M /G is metrizable.
Ifin V,,, neighborhood of m, we choose geodesic coordinates, G,, transforms geodesics
through m into geodesics through m, so G,, acts linearly in V,,

However, there are stronger results:

(i) R. C. Palais (Amer. J. Math., 92, 748 (1970)): C' (= continuous action) = C*
action when M is compact.

(i) Myers and Steenrod (Ann. Math., 40, 400 (1939)): G acts isometrically = G
acts differentially.

For C'-action: Mostow proved (Ann. Math., 65, 513 and 432 (1957)) Theorem 1:
If M is compact, the number of strata is finite. Theorem 2: If the number of strata
is finite, the G-action on M is equivariant, by an injective map, to a linear (orthogonal)
representation of G on a finite dimensional vector space.

(i) Palais (1961): When M is compact, the number N (G, M) of nonisomorphic
G-actions on M is at most countable, and there exists a k such that on the k-dimen-
sional sphere S,. N(G, S,) is infinite (countable).
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(iv) Montgomery and Yang (1961) have proved for C*-action that there is a
stratum which is open dense. More precisely, let M, . be the set of me M such that
dim G,, = r, number of connected components of G,, = ¢. Any connected component
of M, . is in one stratum only. The open dense stratum is M, it is the maximal
stratum (i.e. the little group is the minimal one among all little groups which appear
in the G-action on M; see Section 2.2). Let t <r_,. Then

U M,
is closed and its dimension is <n —r , +t—1=n-2.

References for (iii) and (iv) can be found in the review paper of D. Montgomery,
“Compact Groups of Transformations”, p.- 43 of Differential Analysis, Bombay
Colloquium (1964). A good reading for an introduction to the subject is Palais,
“The Classification of G-Spaces”, Memoirs Amer. Math. Soc., No. 36 (1960).

(v) Consider the set .# of real-valued, G-invariant smooth functions on
M (VgeG ¥YmeM, f(g.m) = f(m)). We call an orbit @ critical if for all f €7,
me O = (df),, = 0. Then (L. Michel, C. R. Acad. Sc., Paris, 272, 433 (1971)):

Theorem 1

An orbit is critical if and only if it is isolated in its stratum. (Le., any connected
component of this orbit is a connected component of its stratum). If a stratum has
a finite number of orbits, it is closed and all its orbits are critical.

The importance of this theorem for physical problems blending an invariance
by G and a variational principle is obvious. This theorem is a generalization of the
intuitive result: A C! real even function f (x) of the real numbers R, f(x) = f (—Xx),
satisfies df /dx|,-, = 0.

We shall introduce some essential tools for the proof of this theorem.

4.2. The Equivariant Retraction

Let d(x, y) be the G-invariant Riemann metric on M. Let Q be a G-invariant sub-
manifold of M. There exists a neighborhood V, such that
xeVp, Infd(x,y)
ye@
is well defined and unique. We denote by r,(x) the point of Q for which this minimum
is reached: this point is the foot of the geodesic passing through x and normal to
Q. Since it is defined in terms of the metric and G acts isometrically, the retraction
Vo —%— Q is equivariant, i.e.
VgeG Do rg =rgo®,. (13)
Applying this equation to x, we see for ge G, that
geG,=>geG (14)

rQoxy”
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So. if Q is the orbit G.m.
eV =G, =G, (15)

that is, for any me M, there is a neighborhood V¥, such that for any xe V,, the little
group G is equal or smaller (ie. G, = G, up to a conjugation). The submanifold
ro " (m) is called the (local) slice at m. We denote it by N(m). In geodesic coordinates
it is a linear manifold. As a particular case of (15),

xeN(m =G, =G, (16)
The set of points of N(m) such that G, = G, will be denoted by F(m):

F(m) = N(m)%. (17)
Equation (16) implies:
S(m) N N(m) = F(m). (18)

If F(m) = m, this is true also for all m e G.m and we shall say that the orbit G(m)
is isolated in its stratum S(m).

4.3. The Local Action of G,

As we have seen, in a geodesic coordinate system G,, acts linearly on a neighbor-
hood ¥, of m, by an orthogonal (= real unitary) representation. So it leaves invariant
a Euclidean scalar product (corresponding to the invariant metric) and the repre-
sentation space decomposes into the direct sum of orthogonal subspaces.

V, = T.(G.m) @ N(m) (19)
tangent plane to slice
the orbit
= T,(G.m) ® F(m) & K (m) (19)

v

tangent plane to
the stratum

(N (m), linear manifold is identical to T.(G,)" = T, (M) in the tangent plane of M
at m).

The linear representation of G,, on T,,(G.m) depends only on G (It is the restric-
tion of the adjoint representation of G to G,,, for the subspace of the Lie algebra |
to 4, for the Cartan-Killing metric).

The representation on F(m) is trivial.

The representation on K (m) does not contain the trivial representation.

For m'e S(m), G,, ~ G, and the representation is equivalent. So (19) and (19')
depends only on the stratum (at least S(m) is connected).
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4.4. Theorem on Critical Orbits of G-Invariant Functions

We now sketch the proof of Theorem 1. Let f € 7, ie [ is a G-invariant real-
valued smooth function on M. Its differential at m, df,,, is in the cotangent plane to
M at m. With the Euclidean local metric at m we use the dual notion, the gradient
of fat m. The G-invariance of f implies that

(grad f), € T,,(G.m)* = N(m) (20)
and it has to be invariant under G,, so that
(grad f),, € F(m) & N(m). (21)
Hence if G.m is isolated in its stratum,
Vfe7, Yme G(m), (grad f),, = 0.

This proves the “if” of Theorem 1.

Conversely, if F(m) has points other than m, ie. dim F(m) > 0 (since F(m) Is a
linear manifold!), then one can explicitly build in ¥, an invariant smooth function
on M with compact support on F(m) and a nonvanishing gradient (which is in
F(m) at m).

4.5. G-Invariant Gradient Vector Fields

Note that for any fe 7. (grad f), € T,(S(m)), the tangent plane to the stratum
of m.

Therefore f and f] som, its restriction to the stratum S (m), have the same gradient.
Consider a minimal stratum (in the order defined in Section 2.2). Such a stratum is
closed. If M is compact, a closed stratum S(m) is compact so it has a finite number
of (closed, compact) connected components. Let S,(m) be that of m. Either
So(m) = G.m, and the orbit is isolated in its stratum, or the points of S,(m) belong
to an infinite number of orbits. Then on the compact So(m), for any f €%, f|som
reaches its maximum and its minimum on orbits on which its gradient vanishes.
Since [ has same gradient, we have (Michel, loc. cit.)*

Theorem 2
If S(m) is compact and has an infinite number of orbits, every fe.# has at least
grad f = 0 on two different orbits of S(m).

* As an application of this to Example 19(N). every O(3)-invariant smooth function on the 3-particle
phase space Q has at least two extrema, on the boundary of Q. This is the case for smooth functions
f defined on the Dalitz plot. Then f,n is defined on Q.
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However, these orbits generally depend on f. One can give more results on extrema
of f'e # with an equivariant Morse theory (see A. G. Wassermann, Topology, 8,
127 (1969)).

4.6. G-Invariant Vector Fields

It is easy to generalize to any G-invariant vector fields what we have done for
gradient fields.

Decompose the vector field into two L components, one normal to T, (G.m),
hence in F(m), the other in T,.(G.m).

If dim F(m) = 0, and if the representation of G,, on T,(G(m)) does not contain
the trivial one, then all G-invariant vector fields vanish on G(m). If T,,(G (m)) contains
a trivial representation of G,,, but the Euler characteristic of G(m) is # 0, then each
G-invariant vector field has to vanish on some orbit of G(m).

4.7. Physical Applications

The directions of breaking of the hadronic internal symmetry by the electro-
magnetic, semileptonic and nonleptonic weak, and CP-violating interactions are
on four critical orbits of the adjoint action of (SU(3) x SU(3)) A (I, C,P,CP) on
the unit sphere S, 5. In this action there are twelve strata, and five critical orbits (each
one forms a stratum). For lack of time we just refer to: L. Michel and L. A. Radicati,
Ann. Phys., 66, 758 (1971). Let us end these two lectures by a question: what is the
use of the fifth critical orbit?




