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I. Introduction

The Landau theory of continuous phase transitions [1] defines a free energy
which is a polynomial expansion of the order parameter components, truncated
to the fourth degree, and invariant by the symmetry group of the more symmetric
phase. At each temperature, the absolute minimum of this expansion provides the
stable state of the system. Allowing for all possible values of the expansion’s coeffi-
cients, one finds, in general, that several phases with different symmetries can be
stable, some of which can be related to the more symmetric phase through a second
order transition. Hence, knowing the Landau expansion permits a determination
of a phase diagram for the system.

Though there is a great variety of physically distinct order parameters, the
- possible forms of their truncated expansions are very limited. For instance, two
fourth degree expansions (one « isotropic » and one « cubic ») describe all the conti-
nuous transitions possessing a three-components order parameter. The reason
underlying this simplicity is that the truncated expansion has an own symmetry
which is usually much higher than that of the considered system.

Beyond the validity of the Landau theory, the form of the fourth degree expansxon
keeps an important role in the determination of the critical behaviour of the system
in the vicinity of its transition point. This form is identical to that of the homogeneous
part of the hamiltonian considered in the renormalization group theory of the
critical behaviour. In this theory a set of critical exponents is associated to a stable
fixed point belonging to an abstract space spanned by the coefficients of the former
expansion. The location, and stability of these points are determined by recursion
relations whose form is deduced from that of the Landau expansion. However, it
has been shown [2] that for systems with short range forces, whenever the number
of components of the order parameter is less than four, this precise form is unimpor-
tant : one finds a stable fixed point corresponding to the part of the free energy
with O(n) symmetry. For n > 4 the anisotropic terms of the expansion become
relevant and the nature and stability of the fixed points are expected to depend
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closely on the form of the order parameter expansion. Examples examined up to
now [3, 4] have shown two types of situations. Either an « anisotropic » fixed point
exists giving rise to a new set of critical exponents, or, more frequently, all fixed
points are unstable. The latter circumstance has been conjectured [4] to correspond
to the occurrence of a first order transition.

At present the form of all possible fourth degree expansions is only known [5, 6]
for n < 3. For higher dimensions an enumeration has recently been performed [7]
in the restricted framework of the order parameters relative to continuous transi-
tions between strictly crystalline phases (i.e. not modulated). For this case one
finds 13 different expansions for n = 4, five expansions for n = 6, and three expan-
sions for n = 8. This list does not exhaust all possibilities. In particular it does not
contain the expansions arising from all the space-group irreducible representations
but only from those complying with the restrictive « Lifschitz criterion » [7]. Besides,
order parameters pertaining to other physical systems than structural transitions
were not considered.

In the present paper, a complete enumeration of possible Landau expansions is
derived for n = 4. As mentioned above, this is the smallest dimension expected to
give non-trivial results for the critical behaviour. Besides, though the method used
is, in principle, valid for any value of n, its application relies on the knowledge of
a list of subgroups of O(n), as well as on the form of the irreducible representations
of SO(n). Both were readily available for n < 4 and not for higher dimensions.

II. Landau polynomials and subgroups of O(n)

In the Landau theory, the order parameter spans a representation I” of the high-
symmetry phase which has the property to be irreducible on the real [8]. It can be
reducible on the complex and it equals then the sum of two complex conjugate irre-
ducible representations. I' being orthogonal (real and unitary), its image G (i.e.
the set of its distinct matrices) acting in the vector space V., spanned by the n-compo-
nents of the order parameter is isomorphous to a subgroup of the full orthogonal
group O(n). The matrices represent the transformation of the coordinates under
the action of G, and their set coincides with the so-called « vector representation » [8]
of this group. Like I', the image G is irreducible on the real. This condition puts a
restriction on the subgroups of O(n) which are likely to represent the symmetry
of an irreducible order parameter. Such subgroups can be called «irreducible ».
Thus, in three dimensions the only irreducible subgroups of O(3) are the invariance
groups of the regular tetrahedron (T, T,), the cube ( T, 0, 0,) and the icosahedron
(Y, Y,) [Schoenflies notation].

The Landau free-energy F is a sum of homogeneous polynomials of successive
degrees of the order parameter components, invariant by the matrices of I' and
consequently G-invariant. The pth degree contribution to F is a linear combination,
with arbitrary coefficients, of G-invariant, linearly independent polynomials. The
pth degree homogeneous polynomials of the coordinates generate a vector space
of dimension C?, ,_,, denoted [V'?] which spans the symmetrized pth power of V.
In this space, the G-invariant polynomials generate a subspace E.

Because a given degree is singled out in the infinite expansion, it can happen that
several groups G = O(n) have in common the same space E¢. One of these groups,
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denoted G, will contain all the others. It is the largest subgroup of O(n) leaving
invariant every vector of EY. We call it the centralizer of the set of vector spann-
ing b" Physically, G, is the symmetry group common to the entire set of degree-p
contrxbutlons to a Landau expansion, based on the polynomials of E;, and having
arbitrary coefficients. On the other hand, it can happen that G, is not the highest
symmetry group of any specified vector « of the EZ space. The invariance groups
will be a family of groups G; verifying G, = G, < 0 (n) : G}, is the little group of a
in the usual sense [9] (*).

For any irreducible G there is no linear (degree one) invariant, and there is one
degree-two invariant. In a real basis (x;) of V,, this invariant has the form () x7).
Its little group is O(n). For higher degrees the number and form of the invariants
spanning EJ depend on G,

When dealing with continuous transitions, the free energy is the sum of the qua-
dratic term, with O(n) symmetry and of a quartic term corresponding to EJ. As
a consequence, the enumeration of possible Landau expansions with arbitrary coeffi-
cients will consist in finding the various irreducible centralizers G, and their E{ spaces.
For each choice of the coefficients, the complete symmetry group of the expansion
will be one of the G little groups. This investigation can be extended to expansions
which contain a degree-three invariant. In a similar way, the enumeration of their
possible forms will be related to the groups G5 and G of degree-three polynomials.

An important point to notice is that these enumerations can be performed up to
a conjugation in O(n). Actually, each group G has an infinite number (except SO(n))
of conjugate groups. Their respective E f have the same dimensions, and the Landau
polynomials associated with them are physically equivalent as they are transformed
from eachother by a mere change of reference frame in the V/, space of the order para-
meter components.

III. Determination of the centralizers and little groups of degree-p polynomials in O (n)

Let C,(G) be the dimension of EY. Every vector of this space being G-invariant,
[V}] spans a reducible representation of G, which contains C,(G) times the trivial
representation of this group. C,(G) is called the subduction number [10] of G in [V]].
The procedure of determining the irreducible centralizers G, is then the following [9,
12] :

1) Compute C,(G) for each irreducible subgroup of O(n), up to a conjugation.

ii) If C,(G) > C,(G’) for any G" = G, then G is one of the G, centralizers, since
this establishes that any larger group than G has a subspace of invariant vectors
smaller than E. o Conversely if C(G) = C,(G’), G is obviously not the centralizer
of E° as this space is invariant b}, the larger group G'.

In order to determine the G, little groups, we can notice that they possess the
following properties :

) G"' > G, 2 G, and C,(G) < C,(G;) < C,(G,). (The equality corresponds to
G,=G,)

_]J) UE(; — E(;

(*) G, is the intersection of the G,.
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Condition j) means that G is the centralizer of a subspace E¢* of E¢ and that it
therefore belongs to the set of G, groups first determined, up to a conjugation in
O(n). Condition jj) expresses, in conformity with the definition of G, that any vector
of EJ belongs to the invariance subspace of a higher symmetry group. As pointed out
previously [11], this condition cannot be fulfilled if « takes a discrete number of values
since only a continuous set of subspaces E” can fill a space E ¢ with a higher dimen-
sion. Hence, the search of the G, will consist in considering an infinite set (*) of
conjugate subgroups of a G,, having G, as a common subgroup, and check condi-
tion jj).

Finally, the polynomials let invariant by the G, must be determined in a given
basis of ¥, (or in given setting of these groups among conjugated subgroups). This
can be done using well established techniques [5, 8,9, 11]. Such a procedure has prev-
iously been applied to O(2) and O(3). The results are recalled on table I [6, 11, 12].

TABLE [

Groups G, and G} of degree-p polynomials (p = 3, 4) in O(n) (n = 2,3). C,(G,) is the
number of anisotropic invariants. When G, # G, each invariant by G, has a symmetry
group coinciding with a conjugate of G,. In O(2) one mirror plane is along x and the polar
coordinates are used to express the invariants. In O(3) the axes are those of the cube. The
little group O(n) and its invariants p? and p* which are common to all the Landau expansions
must be added to the table.

n p G, G, C,(G,) Invariants

2 3 C, Cs, 2 p*cos36;p3sin3f
2 3 Cs, C,, 1 p>cos 30

2 4 C, C,, 2 p*cos40;p*sindo
2 4 C,, C,, 1 p*cos40

3 3 T, T, 1 xXyz

3 4 0, 0, 1 x* + oyt 424

IV. Irreducible centralizers and little groups in O(4)

Let us first apply the preceding method to the determination of the G, and G,
groups in SO(4). This preliminary step makes more convenient the deduction of
the subduction numbers as their computation uses the irreducible representations
of SO(4) which have a simple form.

a) Subgroups and irreducible representations of SO(4)

SO(4) is the homomorphic image of the product SU(2) x SU(2), while SO(3)x S0O(3)
is the homomorphic image of SO(4). On the other hand, S U(2) is isomorphic to the
group of quaternions with unit moduli [13]. More precisely an element of SO(4)
can be constructed from a set of two 3-dimensional rotations. Let 0, u,/0,, u,)
be this set (axes u, angles 0,). Each rotation corresponds to two distincts elements of

: .0, ;
SU(2) represented by the quaternions + ¢, = + (sm—z—' ‘U, Cos 5’) The former

(*) The conjugation is performed by the elements of the normalizer [12] of EF.
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set then gives rise to two distinct elements of SO(4) which are denoted + S = + (¢,.¢,).
If the current vector in V, is associated to the quaternion (x, y, z; 1) = (U ; 1), the
action of S is expressed by :

SU:n=gqU;t)g;! (1)

where the multiplication between quaternions is [13] :
(A;a)(B;b) = (aB + bA + A, B;ab — AB). (2)
The form of the irreducible representations of SO(4) as well as the construction and

notation of its subgroups are based on the above homomorphisms. Thus, the irre-
ducible representations have the form [9] :

(j1 k) =D’ @ D"

where D’ and D* are Wigner’s representations of SU(2), with the restrictions that
2j, 2k, and (j + k) are non-negative integers. In particular, the character of

S = (4. 95)

in the irreducible space (j | k) is :

0
sin (2 + 1)%1sm(2k + )—2%
119(S) = 1q,) xPlg,) = o : (3)
1 . 2
i smy
On the other hand each subgroup of SO(4) can be denoted [13].
G = (L/Ly; R/Ry) 4

with L, L, R, R, subgroups of SU(2), L, (resp. R,) an invariant subgroup of L (resp. R ),
and the quotient group L/L, isomorphous to R/R, (*). Explicitely we can write :

U i Ly R = U ¢g/R, (5)
i= i=1

then

an

UIGLk reRk(gi[;g:' r) (6)

i

where g, g;, I, r are quaternions of unit moduli (**). The definition and notation of
the subgroups of SU(2) is recalled on table II. A list, based on eq. (4) of the subgroups
of SO(4) is given by Du Val [13].

(*) Several isomorphisms can exist, some of which are unequivalent up to a conjugation.
(**) When L = L,, R = R,, G is the direct product L x R.
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TABLE 11

Subgroups of SU(2) up to a conjugation ; notations are derived from those of the homo-
morphic [13] subgroups of SO(3). Elements of SU(2) are represented by unit quaternions (U, 7).
The chosen setting for C,,, D, is : the m-fold axis along z and one twofold axis along x. In the
other groups x, y, z are perpendicular to the faces of the cube. Y * is conjugated to Y. It has
been distinguished in the table because both groups appear together in the following tables,

= (1 +/9)2

Labelling Order : Definition
C, m (singk; cos -2—£> = (r_)?
m m m
C, o0 (sin 6k ; cos 6)
D, 4m [I® ;0] Com =B x)Cy,,
D, 0 I®xC,
T 24 [1@%(i+j+k;1)@%(i+j+k;—1)]02
0 48 [I@ﬁ(i;l)]T
4 T 1 T-—l r
Y 120 | [r@o <7,§,0, T)] T
. 4 ] T
Y 120 [r@o — 53 0, — §> T

b) Irreducible centralizers and little groups in SO(4)

The four dimensional space V, spans the irreducible representation (1/2 | 1/2)
of SO(4). Its symmetrized 2nd, 3rd, and 4th powers respectively decompose into :

Vil=010 + (1]1) (7)
Vil = (1/211/2) + (3/2]3/2) ®)
Vi =010+ (1|1 +(2]2). )

For irreducible groups G, the representation (1/2 | 1/2) remains irreducible on the
real. It then follows from (8) that G-invariant degree-three polynomials necessarily
belong to (3/2 | 3/2). To determine their centralizers we can restrict the computation
of the subduction number C4(G) to the (3/2 | 3/2) subspace of [V'3]. On the other
hand, we know that the only degree two invariant has SO(4) symmetry and spans
(0] 0). We deduce from (7) that no vector of (1 | 1) is invariant by an irreducible G.
In agreement with relation (9), the degree-4 invariants will comprise one polynomial
spanning (0 | 0) with SO(4) symmetry, and possible anisotropic invariants belonging
to the representation (2 | 2). Consequently, the search of their centralizers can rely
on the computation of the subduction numbers in (2 | 2). These calculations consist
in evaluating the number of times the former representations of SO(4) contain the
trivial representation of G, with the help of the characters z*/21*?" and 4'*'? supplied
by formula (3).
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Among the subgroups of SO(4) listed by Du Val, the selection of the irreducible
ones can be based on the following remarks :

i) Groups of the form (L/C,, L/C,) and (L/C,, L/C,) are reducible as they repre-
sent rotations of SO(3) thus preserving the fourth dimension [13].

i) (C,,/C,. C,/C,) are Abelian groups, hence reducible.

i) (D,,,/C,» D,,/C,) involve in addition to an Abelian group of the preceding type,
a generator of the form (x, x), with x = (1, 0, 0; 0), which is a real diagonal operator.
These groups are also reducible.

iv) Ifin eq. (4) either L, or R, isa group D, (n = 2), T, O, or Y, then G is irreducible.
This derives from the irreducibility of D /> with respect to these subgroups of SU(2).
Accordingly (1/2 |1/2) = D'* @ D'? is irreducible on the real (it is irreducible
on the complex if both L, and R, coincide with the former groups).

Few subgroups of SO(4) escape these criteria. Their reducibility has been checked
directly by constructing their set of elements, and looking for an invariant subspace
in (1/2 ] 1/2). Irreducible subgroups of SO(4) are listed on tables III and IV as well
as their subduction numbers in (3/2 | 3/2) and (2 | 2). The list of irreducible subgroups
agrees with the partial one worked out by Brown et al. for the « crystallographic »
subgroups of SO(4) [14].

Table III contains the groups without a central rotation (i.e. the element — I).
These groups are the only ones compatible with degree three polynomials since no
such polynomial is presérved by (— 7). Likewise the centralizers of degree-4 polyno-
mials belong necessarily to table IV which contains the groups with the central
rotation. The groups listed in these two tables represent the symmetries of all possible
irreducible order parameters with four components. Application to their subduction
numbers of the criteria indicated in section I11 allows a straightforward determination

TABLE 111
Irreducible subgroups of SO(4) not containing (— I) centralizers and little groups of third
degree polynomials in SO(4).C5(G) is the subduction number in (3/2, 3/2). The sign + in
columns 3 and 4 means that G is a centralizer (resp. little group). * and ** are families of groups
not contained in ref. [13] and whose definition is :

4
* @(CiLxY[I +(x.CH]C, x C,

1

** [(x,Clp) @ (C3, C3,) @ (xC3,, Co) @ 1] C, x C,.

The frame of reference adopted is the same, for the two SO(3) rotation components as in
table L

Labelling of G C,(G) G, G, Invariants
Dyivay Danss h=k=1 1 + + I
Caus1’ Caney hz1, k>1 0
D2h*1 . C8k+4> h = I\ = 1 2 + Il 12
C2h*1’ CZk‘?I h 2 1,/\ > I 0
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is the subduction number in (2, 2). * is a group not contained in ref. [13] :

Labelling

C2m X Dn

(Dm/clm’ C4n/C2n)

(D2/Dy, Cg/Cy)
(C4m/C2nﬂ D2n/Dn)

(T/Dy, TD,)
(0/Dy, O/D,)
(C()m/CZm’ T/DZ)

(D2m/Dm’ Dln/Dn)

TaBLE IV
Irreducible subgroups of SO(4) containing (— I) and groups G,, G} of degree-4 polynomials. C,(G)

(1 + (Cly X) + (%, Ch) + (Chy X, XCap)] Cop % Csy .
I, (little group O(4) is invariant by all the group).

Indices

3

vV Vv
L S B O B O i O

888

\ Vo3
(SIS )

[SS RS RS S S

vV VYV

3

é\/\/
(SN SN N I

3

[ S

v
[ 3]

\

\

g8V g8V

VvV

=

[SSTN SIS IR S I S D )

=
[N

[SS N S I 0]

VooV
BN = NN NN

\

~
-

= 88VvagV
[3%] [ 2 Y

[SS 3 S B (O3 (S I (V]

C4lG)

—

R e = DN = W W e N W = NN O

O

_———— N

[SC 2 S B8 )

—

GP

B

Gy

-+

Invariants

LI I DI, I, 101, 1,

Il 12 13 15 19 110

11 15 19 112 114
Il 15 19

I Is Iy 1y,

IiIs1e Ig 1o

11 12 110

I 1,
I,

I 11, 1,

(I + 216)(I; + 6 15)

I I, Iy I

I Is

I 15 Iy

I I
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TABLE 1V (suite)

Labelling Indices C4(G) G, G; Invariants
(D,,/D,.D,/C,,) m n
2 >2 1
> 2 1 3
> 2 2 2
>2 >2 1
(DZm/CZm* DZn/Czn)* m n
2 2
2 >2 1
>2 >2 1
(DSM/CZnH O/Dz) m
! 2 + + L,
2 : o+ L+ 20
> 2 0
(Y+/C2, Y/Cz) — 1 + + 14

Cy, x T;C,, x0;C,,, xY
D,xT;D,xO:D, ~Y:T~T
Ox0;YxY;TxY,;0xY:0xT
(O/T, O/T); (C4/Com O/T)

(Dy/Com O/T) (D,,,/D,,, O/T)

(D3/Capm O/T)

of the G; and G, centralizers. They are indicated in the tables together with the sym-
bols of their invariant polynomials. The expression of the various polynomials in a
specified basis of V, is shown in table V.

One more step is necessary to select the G; groups among the G,. To illustrate
this selection, consider the example of the two symmetry related G, groups

(Cg/C4, D4/D,) = (D4/D,, D,/D,) (10)

whose respective E{ spaces are spanned by the set of invariant polynomials (/,,
I,,1,0)and (I, I,). The setting of the smaller group leaves unspecified the direction
of a twofold axis in the left-side D, component of the larger group. By rotating arbi-
trarily this axis in the (x, y) plane one generates a continuous set of conjugate groups
which have (Cg/C,4, D,/D,) as a common subgroup. It can be checked that, in this
set, the group which has a twofold axis making an angle n/4 with x leaves the I,
polynomial invariant. Hence, like I, and I,, I,, has a symmetry group conjugated
to (D,/D,, D4/D,). The smaller group in eq. (10) is not a little group G ;. This method
has been applied to all the relevant G, and G, groups (Tables 111 and IV)

c) Irreducible centralizers and little groups in O(4)

The full rotation group O(4) is generated from SO(4) by :
04) = SO4) + ¢ x SO4) (11)
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TABLE V

Invariant polynomials of degree-4 (I ;) and of degree-3 (). The frame of reference chosen for the two
SO(3) rotations constituting of an element of SO(4) is the same as in table I.

Iy = (% + y? + 22 + 12)?

(2 + )2 + (22 + 12)?

I =x*+y* + 24 + 1*

Iy = xyzt

I, =53 + y* + 249 + * + (60/\/3) xyzt + 12 2(x* + y? + z22)

P
—
Il

Iy = (x* = yY) (22 — 1} + 41,

Ig = xy(z> = 1%) = zt(x? — %) + xz2(y? — 62) + ype(x* = 2%) = xit(y? — 2%) + yz(x* — t?)
I = — xyx* = y?) + zt(z% = ) + xz(x? — 2%) + yi(y? — 12) + xt(x? — t?) — yz(y* — 2%)
Iy = xt(3(y* = 22) = (x* = 1) — yz(3(x* — %) — ()* — 2?)

Iy = xyz? — %) — zt(x? — y?)

Iig = xy(x* — %) — z(2? — 1?)

Iy =xz3y* + 312 —x* = 2) + pi3x? + 322 — )2 — 1?)
I, = (xz + yt) (x* + y* — 22 — 1})

ILiy=xt3y* +32% — x> = 1) — yz(3x> — 3% + 22 — y?)
Jo=Ty+2lg+ 1y + Ly — Io — I,,)

Ji =, +21) J,=U;+61) Jy=(s —41,)
I = x(x* — 3y + 222 — 3¢

I3 = Wy* — 3x%) + t(t* — 32%)

I3 =10 —tx* + y* + 29 + (10/\/3) xyz

Iy = x(z% — %) + t(x* — y*) — 2 yz(x + 1)

I5 = x(x* — 3y — (> — 327

where C is the « axial reflection » defined by C(U;t) = (— U;t). O(4) contains
« proper » subgroups G = SO(4) and « improper » ones G* which have the form :

G*=G+ SC x G (12)

with G a proper subgroup of index 2 of G* having the form (L/L,, L/L,) and the ele-
ment S € SO(4). Several G* can have the same proper subgroup. If G is irreducible,
so is G*. However the converse is not true, and there is one family of irreducible G *,
indicated in ref. [13] which has reducible proper subgroups of index 2. It is denoted [13]
(see Table II) :

(Dnr/Z/Cm Dnr/Z/Cn):;!k' = (1 @ (x’{'v rl::)) (Dnr/Z/Cm Dnr/Z/Cn)s . (13)

The subduction number of G* is equal to the number of invariant polynomials
of G left invariant by the operation SC. The determination of the centralizers in 04)
can then be performed according to the following properties which are easily esta-
blished :

1) G is an irreducible centralizer (resp. little group) in SO(4) with L # R, or L, # R,,
then G will remain a centralizer (resp. little group) in O(4).

i) G is an irreducible centralizer, subgroup of index two of one or several G*.
For such a group the invariant polynomials have been determined in the preceding
section and the action of SC is readily determined for each G *.
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i) G is an irreducible subgroup of index two of one or several G*, not a centra-
lizer in SO(4). The application of the relation C,(G*) < C,(G) to the subduction
numbers reproduced in tables III and IV show that no such G* is a centralizer in
0(4).

1v) G* belongs to the family (13). For this case the subduction numbers of the redu-
cible centralizers G have been calculated and the effect of the SC operation examined
in order to determine the subduction number of G *.

The groups G5, G,, G5, and G§ in O(4) are presented on figure 1 and table VI
which summarize the results of the investigation.

TABLE VI

Meaning of the symbols used in figure 1 for the centralizers of degree-3 and -4 polynomials.
The notation used is that of Du Val [13] for the subgroups of O(4). For the centralizers of degree-
3 polynomials, the invariants of degree-3 and -4 are indicated. Column 3 contains Mozrzymas
notation for the crystallographical groups [19]. The I, invariant is common to all the groups
and is not listed.

Symbol
(order) Notation Mozrzymas Invariants
1 (D x D)* — I,
2 D, x D — I, I
3 C, xD — I, 151,
4 C, x D — I Is1g1,J,
384 (0/D,, O/D,)* 115.01 I, I,
240 (Y*/C,, Y/C,)* 112.01 I,
192 (T/D,, T/D,)* 109.01 1,1,
128 (D4/D,, D,/D,)* 101.01 1,1,
120 (Y*/C,, Y/C)* 100.02 I 1,
96 (De/Cy4, O/D,) — Jy
72 (De/C5, Dg/C)* 90.01 I;1,
64 (D, x D,)* 82.01 1,1, J,
48 (D;/C,, 0/D,) 77.2 I, I
48 (C,/C4, T/D,) — JiJ,
40 (Ds/C,, Ds/C,)* 66.01 I, 1,;
36 (D;3/C4, D4/C)* 65.01 1;;1,
32 (D,/D,, D,/D,) 57.1 I, 1514
32 (Cg/C4, D4y/D3) 52.1 I, 1,1,
32" D, x D, 56.1 I, 1,151
24 (Ce/C,, T/D,) 49.2 I, 1511,
20 (Ds/Cy, Ds/Cy)* 36.01 I, 1,14
18 (D3/Cs, C,,/Cy)* 33.1 I Ié;l,
16 (D,/D,, Cg/C,) 29.1 I, Is1g 14,
16' (C,/C,,D,/D,) 31.1 1, 15111,
16" C, x D, 26.1 1,1, 1515161,
8 C, x D, 13.1 I R P I I PR PR PR P B
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FiG. 1. — Partial order (by inclusion up to a conjugation) of the conjugation classes of irreducible sub-
groups of O(4) which are centralizers of a vector space of 4-variables homogeneous polynomials of degree-3
and -4. Each subgroup is labelled by its order if it is finite and by a I symbol otherwise. For groups on the
same horizontal line, the dimension of the vector space of invariant homogeneous polynomials is the same.
It is indicated in the left column, for degree-3 polynomials and in the right one for degree-4 ones. The
latter groups have no degree-3 invariants. All relevant information on the groups is contained in table VI.
Little groups are singled out among centralizers by an underlining of their symbols.

V. Discussion and conclusion

Figure 1 shows that degree-4 homogeneous polynomials have 22 ¢ 4 centralizers,
including O(4), while degree-3 terms have 5 G, centralizers. Thus there are 27 dis-
tinct types of Landau expansions (with or without degree-3 terms) corresponding to
the four-components order parameters. Up to a conjugation the symmetries of these
expansions are represented by 18 little groups, subgroups of O(4). However it is the
complete set of 27 expansions which have to be considered in the Landau theory.
Actually, a variation of the expansion coefficients always exists, either arbitrarily
imposed in order to plot the phase diagram of the system, or provoked by a change in
temperature or pressure. Such variations have the effect of replacing the symmetry
group G of the expansion by a conjugated group. Therefore the effective symmetry of
the physical system is the common subgroup G , of all these groups. In the case where
G, and G, do not coincide, allowing for an infinitesimal variation of the expansion
coefficients, we can keep the same symmetry group GZ and rotate instead the reference
frame in the order parameter space. With respect to this frame, the stable state of the
system which corresponds to an orbit [9] of directions specified with respect to the
orientation of G, will also be rotated. As a consequence we can expect that for the
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considered G, part or all of the stable orbits form a stratum [9] containing a conti-
nuous family of orbits i.e. they will not be in directions which are isolated from a sym-
metry point of view. This property is realized, for instance in the groups C, x D,
and C, x D, [7].

In the determination of the fixed points, one deals with a flow of the expansion
coefficients, and the symmetry group common to all the stages of the renormalization
should also be G, and not G;. Recently, it has been shown in an example of 2-compo-
nent order parameter expansxon for which G, # G, that there was a continuous line
of fixed points [15]. This property seems to result from the same remark made above
for the stable orbits. '

The situation for n = 4 appears as much more complex than for lower values of n
(Table I). Many of the listed expansions are likely to be realized by phase transitions
in crystals. In ref. [7], 13 of the 22 expansions without cubic invariant were already
found. They arise from the irreducible representations of the space groups compati-
ble with standard crystalline transitions. Physical realizations have been observed
in VO, [16] (expansion with little group D, x D¥)and in NbO, (| D,/D,,D,/D, [*)[3].
Other expansions are encountered in the study of modulated magnetic structures
such as in DyC, (D, x D¥*) [3] or structural transitions to an incommensurate
phase such as in Ba,NaNbsO,s (D, x D¥) [17] and in BaMnF, (D, x D,) [18].
We notice that the latter transitions, which are also induced by space groups irredu-
cible representations, can be associated to non-crystallographic little groups in 4-
dimensions [14]. Actually, incommensurate transitions will always be related to
continuous little groups (such as D x D¥) : the translation matrices always form
an infinite set dense in a continuous group.

Only 4 of the 21 anisotropic expansions without degree-3 terms have been examin-
ed up to now in the renormalization group theory. For D, x DX and (D,/D,,
D,/D,)*, an anisotropic fixed point was found, while for D, x D, and (T/D,, T/D,)*
no stable fixed point exists in the approximation used [3, 18]. Investigation of the
remaining expansions should provide an interesting test of the conjecture that most
expansions have no stable fixed point for n > 3 [4].
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