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When I received an invitation to this conference, I was
asked to speak on group extensions of the Poincaré group.
In order to give a precise account on this subject, I wrote
in advance the first three parts of this paper. At the
same time I was trying to understand relativistic Su(6)
symmetry and I intended to make this subject a substantial
part of my oral lecture (Part IV here). Since I spoke on
the last day, I have certainly been very much influenced
by the free discussions and the inspiring atmosphere of
this conference.

TI. Simple Concepts in Group Theory

In order to present a self-contained paper, let us recall
some basic facts of group theory.

I. 1 Known concepts.

We suppose that the reader Knows what are a group G (we
denote its group law multiplicatively), a subgroup H of G,
a left coset x H, a right coset H X. We denote by (G : H)L
or (G : H)g the set of left or right cosets of the subgroub
H of G, If for every X (denoted ¥x) € G, xH = HX, then H is
called an invariant subgroup of G and one has only one set
(¢ : H). It becomes naturally a group (group law X H,y H=
x y H) called the guotient group of G by its invariant sub-
group H and denoted G/H.

I. 2 Group homomorphisms.

A group homomorphism of the group G into G' is a mapping
£ of G in G' which preserves the group law, 1.€e., YV x,
vy € G, f(x)f(y} = f(xy)€ G'. We shall denote such homo-
morphism by G 3 G' If the mapping f 1is one-to-one onto
G', then the homomorphism is an i1somorphism denoted GG,
We denote by Ker f, the kernel of f that 1is the set
(xe€a, f(x) = 1€ G'}. Ker f is an invariant subgroup of
G. We denote by ImT, the image of f, the set of values of
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f. It is a subgroup of G', and we have the isomorphism:
G/Ker £ ~v Im £ (1)

We call the homomorphism G £ ' and injection if Ker ¢ = 1;
then G is isomorphic to a subgroup of G'; we call it a
projection 1f Im f = G' and we denote it G>G'> 1,

An 1somorphism of G onto G is called an automorphism;
the set of automorphisms of @ forms a group denoted by

Aut G,
As a mapping, homomorphisms can be composed. We denote

by f o g the composed homomorphism, first g and then f,

Commutative diagram: 1t is a set of groups and homomor-
phisms between them such that all possible compositions of
mappings which define g2 homorphism between two given groups
of the diagram define the Same homomorphism. (See examples
below, e.g. Fig. 1).

1. 3 Group G acting on a set E,

Glven a set E (finite or infinite), we denote by P (E)
the group of permutations of its elements. We say that a
group G acts on E when we consider a homomorphism:

¢ £ ® () . (2)

The set E 1s called a homogeneoug space of ¢ if for every
pair a,B€ E there exists (J) x € G such that f(x) trans-
forms o into B. We also say that G acts transitively on E.
In the general case of action of G in E, this set is a union
of disjoint subsets which are the homogeneous Space of G
and are called the orbits of ¢ in E. 1In that case, the set
of X € G, such that ffo leaves o € E fixed, form a sub-
group of G called stabilizer of o or (by us physicists)
little group of o ; we denote it by G . Let g€ E and y €
G such that f(y) transform o into B. aEvery element of the
coset y G_ has the same action on a and one sees that there
is a one-%o-one correspondence between the elements of E
and the cosets in G of the stabllizer Gy The stabilizer
of Bis G, =y G y‘l, the subgroup G conjugated by y (or
B a a

any € y G,).

When, in (2), Ker f = 1, we say that G acts effectively
on E ; 1if G acts ineffectively on E, then

kert = N _ o (3)

It can be proved that it is the largest invariant subgroup
of G contained in the stabilizer Gy
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Examples:
1) If E is G itself and a is transformed by x into x a.

Then G acts effectively and transitively in its set of
elements. This action is saild to be by left transla-
tions on G.

2) IrE is [G : H] and x € G transform a H into x a H
(example 1 is a particular case of 2 for H = l).

It can be proved that every homogeneous space of G is
equivalent to an example 2, 1l.e., it is characterized by a
subgroup H up to a conjugation in ¢ (H is the stabilizer of
an element).

T. U4 Group G operating on the group A.

If @ acts on the elements of the group A by group auto-
morphisms (i.e., G £ @ (A) with Im fe Aut A = ® (),
then we shall say that G operates on A.

Examples: When A = G and f(x) transforms a into x a x~1.

then Ker f is called center of G (denoted ¥ (G)) and Im f
is called the group of inner automorphisms of G (denoted
Int G). Then in that case (1) is written:

¢ /¥ (@ = 1IntG (4)
One proves that Int G is the invariant subgroup of Aut G,
and the quotient Aut G/Int G = Out G is called the group of

outer automorphisms of G.

I. 5 A useful theorem.

Operations of G on 1tself by inner automorphisms
G-f Int ¢ leave stable any invariant subgroup K, so that
they induce automorphlsms on K.

¢ —L, Int G

;\\1//1 . h=10f (5)

Aut K
so G operates on K (by G B oaut k).
This enables us to define a mapping g from Q = G/K on
Out X = Aut K/Int K. Indeed, let g € Q and X € G such

that (See Fig. 1):
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G _P o a/K = @
o s
Aut K —2_5 out K

Commutative diagram 1

i

Fig. 1 : Ker s Int X, Ker p = K

Il

g op S oh

p(x) = q ; we write h(x) = vy and s(y) = z . We define
g(d) = z. This correspondence g 1s a mapping; indeed, let
us make another choice x' instead of x such that p(x') = q.
Then x' = € x with p(¢) = 1, 1.e. £ € K. Thus h(¢)

€ Int K = Ker s, s o h(¢) = 1

and

z' = s oh(x')=s 0o h (). s oh(x) =s o hix)= z = g(q)
(6)

Moreover, g is a group-homomorphism:
indeed

g(ql)g(qg) =h o s(xl). h o s(xg) =h o s(xlxg)

with
p(xy) = a;, p(x,) =q .
Hence
p(xlx2) = qlq2 3
sSo

hos(xx,) = glaae,) .

To summarize, if K is invariant subgroup of G, we have
established the diagram of homomorphisms of Fig. 1 with:

gop=8oh , (7)

l.e., it 1s a commutative diagram and we shall assert:
Theorem 1: K invariant subgroup of G = commutative
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diagram 1. If K is abelilan, Aut = Out K, so s is the
identity isomorphism.

I. 6 Extension problem.

If Q is a homomorphic image of G, we also say that G is
an extension of @ : G B @ » 1, with kernel Ker p. A class-
ical mathematical problem is "given Q and K, find all
extensions G of Q with kernel K". This problem can be de-
composed into a set of problems, one for each g € Hom
(Q, Out K), the set of homomorphisms of Q into Out K. For
some g the problem may have no solutions. There exist
mathematical criteria on g for existence of a solution. One
has to decide when two solutions for a given triplet Q, K,
Q & Out K are to be considered as equivalent. The natural
mathematical definition is the following: two extensions
Eq, Ep, solutions for the triplet Q, K, g, are equivalent
1if there exists an isomorphism f such that the diagram
(Fig.2) is commutative:

So two equivalent extensions are E
isomorphic but the converse might

not be true. ;L// \\\z
(See below, IV. 1). K f Q
\;\x ,//Zj
g

Ey

Out K

Diagram 2

i = injection, p = projection
Figure 2
For more information we refer the reader to the
mathematical literaturel or to some earlier lectures

for physicistsg. If g is the trivial homomorphism

(Im g = 1), there are always solutions called "central
extensions".

Particular extensions are the semi-direct products (one
at most for each g); by definition Q 1s isomorphic to a
subgroup of G that the corresponding injection 1 satilsfiles:

p o 1 = Identity on Q, where Q = p(@)

If G is both a central extensilon and a semi-direct
product, it 1s then a direct product.
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II. Relativistic Invariance

II. 1 The Poincaré group P

Here we consider only the connected Poincaré group P,
The translation group T is its only proper invariant sub-
group. The quotient P/T~ I, 1s the (homogeneous, connected)
Lorentz group. Indeed P is the semi-direct product:

P=Tx1
To how many subgroups of P 1is T, isomorphic? Wigner3
has shown that all these subgtroups are conjugated from each
other in P, His proof is even burely algebraic, and does

not use the topology of P, (see equations (38) and (39) or
Ref. 3),

If a € T, A € L, we can denote the group law of P by
(a, A)(b, B) = (a + Ab, AB) (8)

II. 2. The universal covering P of P,

The group SL(2, C) is the universal covering of L, We
denote it by L. It has a two-element center Zp and L/Z5=L,

By composition of homomorphisms I, » I, - Aut T, L operates
on T and P is the corresponding semi-direct product. The

P¥ Pof P, This also means, (see, e.g. Ref. 2, chap. V)
that given any central extension E with a continuous
homomorphism p : ER p and_with Ker p abelian, there exists
a unique homomorphism q : P LE such that the diagram

E P > 1 is commutative
S Zi

P

Whether this property is still true if no continuity is
imposed on P 1is not known,

II. 3 The action of P on the space-time € .

The group P acts effectively and transitively on space-
time. The stabilizer ( = 1ittle group) of one point is L.
The orbits of L on € are well-known to physicists; they
are the origin 0, the two halves of the lightaone (without
the origin), the sheets of the hyperboloid corresponding
to constant Minkowski length of vectors of € with origin O,
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Through P, the group P also acts on.g .

II. 4 The group Aut P.

The group L has only one class of continuous outer auto-
morphisms, that of space inversions. So for continuous
automorphisms, OutcL = Z,, the two element group.

When one forgets the %opology of L, one can consider the
group Out L. This group is known (see for instance™ § 7. 1)
and is abhorrently large (~ @ (E), where the set E has the
power of the continuum). The situation is similar for the

translation group.

Space inversions also induce on P a class of continuous
outer automorphisms. With the notation of (8) the
correspondence,

(a.v A)"*‘—') ("'a: A) B (9)

is an automorphism of P called space-time inversion. Let
o be a positive real number ; the correspondence:

(a, A)——3(aa, A) (10)

is called a dilatation. Hence, the multiplication group

RX of the field of real numbes operates on the Poincaré
group P by (9) and (10). It is the direct product:

R* =2, ® R , (11)

An opinion poll among physicists shows that they all know
that:

P=12 Z R 12
Out -® 2,8 (12)
(space inversion, time inversion, dilatation) and that Aut
P is the semi-direct product:

Aut P = P x Out P (13)
We have omitted the index c¢ for continuity becauselit can
be proved5 that every automorphism of the Poincare group
is continuous and that Aut P is given by (13) and (%2).
This is related to the remarkable theorem of Zeeman- .

Theorem Z: The permutation group of points in space-time
which preserves, or completely reverses, the partial order
relation corresponding to causality is Aut P.

This theorem can also be formulated:
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Theorem Z': The permutation group of points in space-time
which transforms light rays into light rays is Aut P,

We shall now show that this remarkable theorem imposes
strong conditions on the invariance group of a relativistic
theory.

II. 5 The invariance group G of a relativistic theory.
With F. Lurgat, I have suggested elsewhere( 8 that the
invariance group of a physical theory 1s an extension of the

Poincaré group., Indeed P, as automorphism group of the
theory, 1s a quotient of the invariance group G of the
formalism of the theory by the invariant subgroup K which
does not act on space-time or on its dual, the energy-
momentum vector space. This is a generalization of the
classic Wigner analysis of ray representations of P for
quantum mechanics3., Zeeman's theorem makes this argument
even more powerful.

Every element of the invariance group G of relativistic
theory acts or does not act (1.e., acts trivially) on
Space-time. By this action, either space-time 1is trans-
formed into itself, although physicists, needing more
freedom, invent the possibility of sending it into a larger
manifold?. We will consider here the former alternative
only: the group G permutes space-time points. In order not
to destroy relativity, 1t transforms light rays into 1ight
rays. So, by the Zeeman theorem, there exists a mapping
G---»Aut P, The day has not vet arrived in which someone
dares to make this mapping not a group homomorphism. So
I would say that today all physicists who do not escape
from space-time agree on the existence of a homomorphism:

s

G -’-’-» Aut P (14)

for the invariance group of a special-relativistic theory.
Thanks to Lee and Yang, physicists learned that Imy  does

not contain space inversions when the relativistic theory

deals with weak interactions. Only a few relativistic

theories are dilatation-invariant and the KQ - 2r decay has

recently revived doubts about time inversioh invariance.

By definition of a relativistic theory Im ¥’ o> P, So,

neglecting eventually inversions ard dilatations, we are

led to the conclusion: the group G of invariance of a

relativistic theory is an extension:

G Y’¢ P —>s1 (15)

of the Poincaré group.
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ITITI. Mathematical Results on Extensions of P

IITI. 1 The extension problem.

We just give here the relevant known mathematical
results and the pertinent references.

As we have seen in Part I, there is a general mathematical
theory for the study of the following problem:

"Given the group K, Q and the homomorphism @ & Out K, find
all extensions E of Q with kernel K such that E operates on
its invariant subgroup K according to diagram of Fig. 1",

In the case where K is the Poincaré group, for any pair
Q, g,(Q & Out P) there is one and only one solution, the
semi-direct product: one solution, because Aut P is a semi-
direct product, one only, because P has no center (ref. 1
for instance). It is to be remarked that no topological
considerations are involved in that case.

However, the case of interest for us is when the
Poincaré group is the quotient Q.

III. 2 Central extensions of the Poincaré group
(i.e., g = Q).

The case of central extension is the only one to be
considered for groups K such that there 1s one only
homomorphism, P » Out K, the trivial one. This 1s true
when K is a finite group or a compact-simple Lie Group
(ex : SU;) even when its topology is neglected. If one
considerg only continuous g homomorphisms, this is then
also true when K is a compact group or a semi-simple
(finite-dimensional) Lie group.

Physically when K is generated by infinitesimal operators
invariant under P (charge, isotopic spin, unitary spin and
so on) one has of course to choose a central extension of P.

Then, there is always at ]least a solution, the direct
product K ® P. I have shown that there 1s a one-to-one
correspondence between the central extensions of P by K and
those of L by K. To obtain this result, again no topology
is involved (another way to say it: 1t 1s a property of the
abstract P and L groups). It can be shown that the only
central extensions of P by K interesting for physicists are

those of the form:

E -K®&P
Q ZQZGS

i.e., the quotient of the direct product K @ P by a two

(16)
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element group 22 generated by (a,w) € K® P where o € _je(K)=
Center of K and a square root of 1 (a2 = 1) ang w € P is
the "2r rotation" (i.e., non unit element of the center of
P). If a=1, E, 1s the direct product X ® P.

When the center of K has no divisible subgrouﬁ (A group
is divisible 1if every e&ement has at least an nt root for
every n) I have proven? that the only central extension of
the abstract group P by the abstract K is of the form (16).
(This is therefore true for every semi-simple Lie group K).
For other groups K, it is not known if there are other
extenslons, but, if they exist, I have proven in Ref. 4 that
they have properties so pathological (and related to the
abhorent Aut L you have heard of previously) that physicists
would not consider them.

III. 3 Noncentral extension of P.

Nothing as general can be said in that case as an
application of the abstract group theory of extension. There
is 1n the mathematics literature nothing written on exten-
sion theory for topological groups although there is a
general theory for groups with Borel structurelO (i.e., a
structure weaker than a topology). But the problem is
completely solved in the mathematical literature if we
consider only Lie groups and ILie group homomorphisms.
Indeed, in that case, we can pass to the Lie algebra. From
the semi-simplicity of L, the last theorem of Ref. 11 tells
us that the only solution in that case is the semi-direct
product of the Lie Algebrasle.

However in physics we do use more general extensions of
the Poincaré group. This is the case of the invariance
group of electrodynamics where the kernel K of the extension
G > P > 1 is the gauge group of the second kind. This group
is not a Lie group, but a functional group, and P operates
nontrivially on it. To my knowledge, the classification
of this kind of extensions of P has not been made.,

IV. Application To SU6) Symmetry

IV. 1 Physical interpretation for the extensions of P

We have shown that relativistic invariance in elementary
particle theory leads us to adopt as G, the invariance group
of the formalism, an extension of the Poincaré group. Then
the "mixing" of Poincaré invariance and the internal
symmetry invariance K is "rather poor". It has, however,
to be interpreted, and in 1961, with ILurgat”, I proposed as
an interpretation, the existence of the relation
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"o + 4 + 23 1s even" (b = baryonic charge, £ = sum of the
leptonic charges, j = spin) for any physical state. The
group K we considered was the direct product of Ul's (first
kind gauge group for baryonic, electric, leptonic charges).
It must be emphasized here that although in that case all
extensions given by equation (16) are isomorphic, they are
inequivalent, i.e., distinct for the mathematical theory of
group extensions. The physical interpretation uses very
naturally this distinction.

Indeed, physicists have not only to consider abstractly
the invariance group G of a physical theory, but they have
to label its elements, i.e., to decompose them in a product
of "simple physical operations" such as space or time
translation, pure Lorentz transformation, covering of a
space rotation, isospin rotation, hypercharge gauge trans-
formation, etc. The appendix shows how such a labeling
leads very naturally to conditions on the mixing of internal
symmetry and relativistic invariance.

IV. 2 The group of invariance of Wigner's
supermultiplet theory

The physicists who introduced SU(6) symmetry13’14’15
considered it as a generalization of Wigner's supermultiplet
theorylé. So let us first study the Galilean invariance of
Wigner's theory.

In it, a nucleon wave function is a square integrable
function y(x, o, 1) of space-time, spin and isospin. 5o
the one-particle states form the Hilbert space H* which is

a tensor product

¥(1) = w1 e ¥1) @ u(1) (17)

of three Hilbert spaces ; the last two, Egand ET have only
two d nsions each. Physical n-particle states belong to
s @H'1) = ¥ (where S is the projection on completely
symmetric or completely antisymmetric tensors if the
particle is a boson_or a fermion) and the Hilbert space of
state-vectors ¥ = @ _, #'7/ can also be written as

H=H,® N, @, (18)

When one can neglect spin and isospin dependence of
nuclear forces, Wigner's supermultiplet theory is a good
approximation in which the Hamiltonian operator is of the

form

H=H®( ®I) (19)
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where I is the ldentity operator. We used the brackets in
order to write simply I ® A for any operator not acting
on Hx. Therefore it commutes with H. In order to preserve
the hermitian metric, A must be unitary. The bold step
made by Wigner was to pass from the invariance under the
group Us ® Us (whose unitary representation I ®[D (U2)
®DT(U2§] commutes with H) to invariance under tge group
Usyo = Ul the 1argest(1f5aitar'y group acting on ¥(1),but not
on space time or on Eix . This internal symmetry group of
invariance acts on ¥ as I ® D(Uy) and so commutes with H.
Let us study now the Galilean invariance of the theory.
It appears through a central extension 9 :9.2, G > 1 of
the Galilean group G (see fdr instance 17). Since G acts
on space time, @ does it also through G. But it also acts
on spin, and therefore on 3:(6, through the homomorphic
image SUo :

j f-» SU,-»1 (20)

where SU2 is the covering of the three-dimensional
rotation group.

Table 1 summarizes the actions of § and Uy on ¥, These
actions do not commute. So what is the invariance group of

H =Mx ® (H-G®HT)
action of g : Dx(g )® D_[¢ (3‘ @I
action of Uy : I ® D(Uy)
action of gﬁ' : Dx(g'/) ® I @I

action of g’@ Uy DX(?I) ® D(U)

Let us denote by 3 a group isomorphic to ? , acting as
the Galilean group on space-time (therefore @’ acts on Hye ),
but acting trivially on spin and, of course, on isospin,
Then one sees easily that the direct product 49xU acting
on # by the unitary representation D.(9) ® D(Uy), 1is the
invariance group of Wigner's supermultiplet theory. This
group contains the physical ex,tension 9. of the Galilean
group as a subgroup : 3 c 9 ® Ub{, but 4 is placed in a
skew way ; 1ts elements are the form [g, Y (g)] where €Y
and Y (g) € SU2 < Uy. (Among elements of Uy, some are
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labeled "spin transformations"” and form a sub-group SU,,
image of 9 ). (See figure 3). A supermultiplet corresponds
to an irreducible representation Y of 9' ® Uy ; it
becomes reducible when it 1s restricted to 9, and this
gives the spin content of the supermultiplet.

g' g
4

R

v ()

FIGURE 3

IV. 3 Possible group of invariance of a relativistic
SU(6)-theory

The invariance of the SU(3)-theory is easy to describe.
We can repeat for that case what we did in IV. 2. Since a
one particle wave function w(x, s p) is a function of three
kinds of variables: space-time variable x, spin or Lorentz
indices p, "unitary spin" indices p, we are led to consider
the Hilbert space ¥ of physical state vectors as a tensor
product.

=0, 0t & (21)

The invariance group is the direct product P ® SU(3) where
P is the covering of the Poincaré group P. Through P, the

group P acts on space-time, hence on Hy. It also acts on

u-indices, hence on Mu through L = SL(2, C) :

- e -
P o [ —»1 S (22)

the covering of the homogeneous Lorentz group. We summarize
this in the first line of Table II.

We face now a difference with table I: the new fact, well-
known, for instance, in Dirac theory, is that D [SL(2,C)]
is not a unitary representation and £ is not a Hilbert
space. Hence D (P) ® DLL [ sn(2,c)] 1s"not a unitary
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representation of the direct product P ® SL(2,C). However,
the representation D, (P) ® D, [e(P)] 15 a unitary
representation of P, So with finite-value spin indices,

in order to disconnect spin and space one has to pay the
price of handling nonunitary representations.

In the '"static" approximation, the Wigne§ step is to
enlarge SU2) ® SUR) to SU(6). One can provel® that for
SL(2,C) ® SW3)the minimum step is the enlargement to
SL(6,C). But as I learned at this Conference, some
physicists are even bolder! Because of parity conservation
one has to consider the orthochronous group L® whose
fundamental finite representationl9 is real and four-
dimensional. The corresponding Wigner step leads to a
4 x 3 = 12 dimensional linear group U(6,6). This group is
a noncompact real form of U(12); it leaves invariant the
pseudo-hermitian metric with 6 plus signs and 6 minus signs.
It is a 144 parameter group. Its Lie algebra is that of
the associative algebra on the real field generated by the
tensor products of the 16 Dirac matrices and the 9 unitary
3 by 3 matrices. Of course SU(6,6) > 3SL(6,C)

.._.__.____-__—.__—____—_-__-.—_.—_—__-_ I T T —

P ® 5U(3) acts as : D_(F)® D, [e(P)] & n(su,)

P' ® SL(2,C) ® SU(3) : D (P') ® DM[SL(Q,C)]® DP(SUB)

P'® SL(6,0) : D_(P') ® D [sL(6,0)]
P' ® SU(6,6) : D_(P') ® D [su(6,6)]

TABLE II

El
A p
g e iee e

|

[

[

|

| _Su(6,c)

8(g)
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The two alternatives SL(6,C) (70 parameters) or SU(6,6)
(143 parameters) are written_in Table II. The covering of
the physical Po:l.ncare' group P is placed as a subgroup of
P' x SL(6,C) € P' x SU(6,6) by the injection P_i, P! x
SL(6,6) with i(g) = (g, © (g)] . _

Tensor products of irreducible representations of P'
(unitary representations) and SL(6,C) (unitary infinite of
finite nonunitary representations) are, for P'® SL(6,C),
irreducible representations whose restriction to P ® su(3)is
unitary and reducible. The reduction yields the spin and
unitary spin content of the theory._

Since the translation group T & P is represented
trivially in SL(6,C) (T < Ker ©) this scheme cannot yield
a mass formula by pure group-theoretical means.
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Conclusion

In order to transform the invariance group of Wigner's
non-relativistic supermultiplet theory without sending
space-time into a larger manifold (36 dimensions at least
for SU(6) theoryld) one can adopt the scheme described
above. In the burgeoning output of papers on relativistiec
SU(6) theory, I do not know yet if this scheme 1is widely
accepted. 1In many papers it is difficult to guess the
framework, generally very much hidden by the superstructures.

It 1s easy to write interaction terms of a Lagrangian,
invariant under P' ® SL(6,C), but nobody has yet written
a full Lagrangian with such a property. Indeed the gradient
9/0x* is transformed by P' but cannot be transformed by
SL(6,C); so for this group, it is to be considered as a
spurion. It might be that the badly broken finite-para-
meter-Lie-group invariance is only a pale reflection of a
deep invariance under an infinite parameter Lie group., In
the recent years it has always come as a surprise that
strong-coupling approximate symmetries are much better and
more useful than one would have expected. Relativity does
introduce a kinematical spin-orbit coupling (e.g. Thomas
precession) which can be handled by pure group theoretical
techniques. The recent boom of SU(6) theory seems to in-
dicate that once these space-spin kinematical correlations
have been (more or less awkwardly!)taken into account, the
dynamics seems rather "spin-unitary spin" independent.

This situation is just the opposite of the revolution-
nary situation considered by F. Lurcat2® where dynamics
does mix intimately spin and space degrees of freedom.
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Appendix

On relations between internal symmetry and
relativistic invariance

Let us study the invariance group G of a relativistic
theory with an "internal symmetry" given by the invariance
under a group S. Then (as we explained in IV, 1) every
g € G has to be labeled with the elements of P and S, i.e.,
g is made (as a product) of elements of P and of S. (There
exlsts a mathematical characterization of the abstract
group G in terms of the abstract groups P and S). A natural
hypothesis 1s that every g € G is a product:

g = ps with p € P, s € S, (1)

That P and S have no common element implies (easy proof,
given in Ref. 8) the uniqueness of the decomposition of (1).
To summarize:

Hypothesis 1: P and S are subgroups of G with PN S = 1
and every element g € G is a product as in equation (1). We
use for this hypothesis the condensed notation: G = P-3,
This also implies G = S°P,

During the past year, under the name of McGlinn's
theorem, many papers 1 have given long proofs of various
versions of the following lemma: _

Lemma G: If G = P.S and if ¥4 € LeP, V.5 € S, 4s =_ sy,
then G is the semi-direct product G = P x S (where P is
kernel, S quotient).

G = P.S implies_a natural one-to-one correspondence
between E = [G : P]L and S. By left translations G acts on
the space E G L Q(E) (See I. 3, example 2) explicitly:

g € G transforms sP into gsP. The hypothesis /s = sg implies
4sP = sP so L€ G does not act in E, i.e., L€K = Ker f._
Hence KNP is_an invarlant subgroup_of P which contains L.
Hence PNK = PCK and ¥ p€ P, ps € sP or s"lpseP,_In other
words, P is_an invariant subgroup of P; with G = P. S, this
proves G = P x S,

In fact, the proof uses only the weaker hypothesis:
Lemma P: If G = P.S. and if there is one p € P which is not
the covering of a translation such that V s € S, s™1 p s
€§, then G is the semi-direct product P x S (where P is
kernel, S quotient). ~

By exchanging the role of P and S, one obtains the
symmetric lemma: _

Lemma S: If G = P. S with S a simple group (no proper in-
variant subgroup) and if there is one s € S such that for
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every p € P, p‘l s p€ S, then G is the semi-direct pro-
duct G = S x P (with P as quotient).

In III. 2, we have seen that if S is a simple Lie group,
then G is the direct product S @ P.

If one internal symmetry observable is relativistically
invariant (e.g. hypercharge) any element s € S of the one
parameter group it generates as infinitesimal operator
satisfies the condition of the lemma S, which forbides
"mixing" of internal symmetry and Poincaré invariance.
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DISCUSSION

Coleman - There is another objection that can be made to
this last structure. The construction for finding
representations which you gave is the sort of construction
that one would go through if one were attempting to find
the possible fields that are invariant under this group.
However, there is, of course another way of applying
representation theory to groups in physics, and that is to
1look for the infinite-dimensional unitary representations
of the full inhomogeneous group, to 1look for the possible
particles, as Wigner did for the Poincaré group in the late
30's. If one attempts to do that with this group, one
finds, because the 1little group is noncompact, there are

an infinite number of particles for any fixed momentum
four-vector; every super-multiplet is infinitely degenerate.
I think that this is very, very unsatisfactory from the
viewpoint of physics, much more unsatisfactory than any of
the handicaps you have mentioned.

Michel - Well, I know that, everybody here knows that, but
when you have an objection, Just apply it to a theory

which you know works well. If you take a Dirac field with-
out the Dirac equation - if it 1s not solution of the
Dirac equation - the infinite representation 1s not unitary;
it is unitary only if you restrict it to solutions of the
Dirac equation. And, of course, here there is a difficulty,
because the Dirac equation 1s not invariant under this
direct product. We are really at the 1imit of symmetries
which are formal, which exist not in the way of writing,
but exist in nature. But you know that isotopic spin just
happened thls way. Tt was a formal symmetry which existed
in writing. Now every physicist feels this symmetry.
Coleman - The example of the Dirac equation is an excellent
argument agalinst this sort of structure. One might argue
that precisely because this sort of difficulty arises 1if
you do not have a kinetic term, you must put the kinetic
term in the Lagrangilan. I think that an argument based on
unitary representatlons of the group, an argument that does
not go through field theory and does not resort to local
causality or to Lagrangians is an insensitive argument .

A1l it involves are the most fundamental principles of
quantum mechanics and our basic ideas about how symmetry
groups enter into guantum mechanical systems. In order to
overthrow such arguments would seem to require a much more
radical revision of our fundamental ideas than any that has
been presented at this conference.

Sudarshan - Following up the train of thought that
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Professor Michel outlined with regard to the "forms" that
people have to fill in, I think when anybody writes a paper
about a spin-dependent group they should fill in a blank
space to say what they mean by "spin". In this argument
you have presented here, for example, you have written that
the spin in relativistic theory must be SL(2,C). This is

a kind of spin but this is not the only kind of spin. The
day before yesterday I briefly outlined some work of
Mahanthappa and myself, Riazzuddin and Pandit, which used
another definition of spin in relativistic theory. And,

in fact, you can construct a particular model which happens
to be invariant under the Po;ncaré group, that is, it
furnishes the representations of the Poincaré group by
unitary matrices in a Hilbert space, and it also furnishes
the representation of a certain spin-dependent group. Both
of these papers are correct but not as obviously precise as
your paper, so they might actually be published!

Michel - I think it is useful to try to make everything
precise and of course it is much more interesting to try to
make precise the difficult things in physics, not just the
things which are going well. There is some trouble here -
I completely agree - but I do not have time to dwell on it.
But you know that the way to test an objection is to test
the same objection on a theory which works well. Of course,
if you have for instance, a Klein-Gordon equation, which
several people have mentioned during this conference, a
part of our trouble is gone. But we need more in physics;
we need also dynamics and we need some spin-orbit coupling.
The Dirac equation is a very particular way to write the
spin orbit coupling. You could have non-relativistic spin-
orbit coupling. The Wigner super multiplet theory works
because we, of course, by assumption, supppress any spin-
orbit coupling. Therefore the Schrodinger equation has only
the Laplacian which correspondsto the Klein-Gordon operator.
The question rightly is very exciting because we know this
difficulty. I think we have to insist on it, but we are
really at the forefront when we are considering things
which do not exist but which are still useful to consider,
And we have to study the difficulty - that is the most
exciting thing. But I think that if you accept the frame-
work we have been obliged to think the last few years, you
have really to consider direct products of groups. There is
not other way of mixing things if you assume what every-
body has assumed for the past few years.




