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ABSTRACT

We give the most refined intrinsic classification of three dimensional Euclidean lattices
by combining the 14 Bravais classes, the 5 combinatorial types of Voronoi cells and the
24 Delone symbols. After recalling the fundamental concepts of group actions, we define
Bravais classes and Voronoi cells in arbitrary dimension. We are quite explicit for the
application to two and three dimensions.

The aim of these lectures is to give the most refined intrinsic classification of
three dimensional Euclidean lattices. This classification uses two distinct concepts,
both used by crystallographers and physicists: the classification by Bravais [1] into 14
symmetry classes; the classification by Fedorov in 1885 of the 5 combinatorial types of
their Dirichlet = Voronoi (= Wigner Seitz ) cells. The synthesis of these two points of
view is given most elegantly by the Delone symbols [4]; it yields a refined classification
into 24 classes. The richer paper on this classification is [5] of Delone et al. written in
Russian and not translated into a Western language.

These lectures are divided into four parts. §1 recalls the fundamental concepts
related to the actions of groups and studies an example in Euclidan geometry, using
the concepts of the previous section, §2 studies the symmetry of Euclidean lattices of
arbitrary dimension n; it defines crytallographic systems and Bravais classes; they are
thoroughly studied in dimension n = 2. §3 defines Voronoi cells of lattices and recalls
their main properties in arbitrary dimension. The generalisation of Selling parameters
[10] due to Voronoi [12] is introduced. We apply them to dimension n = 2. §4 deals
with the Delone classification in dimension n = 3, the aim of the lectures.

§1. Fundamental concepts for group actions

§1-1. Definitions.

Groups enter in physics through their actions. An action of the group G on the
mathematical object M is given by the group homomorphism:

G -4 Aut M; g.m short for p(g)(m). 1(1)

We generally assume that kerp = 0; in that case the action is called effective.
Group orbit. The set of transforms of m, that we denote by G.m, is the orbit of m.
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When every m € M can be transformed into any other m" € M, then M is an orbit of
(; equivalently one says that the G action is transitive.

M is a disjoint union of its orbits. The set of orbits is called the orbit space and
we denote it M|G. Given the surjective map 7, one calls section any injective map o
such that o o 7 = I, the identity map. Here a section of M — " M|G chooses for any
element of M| a point in M belonging to the orbit; the image of the section is called
a fundamental domain: it is a subset of M which contains a unique point of each ¢
orbit.

Stabilizer. The set GG, = {g € G, g.m = m} of elements of G which leave m fixed,
is the stabilizer of m; it is a subgroup of G.

It is easy to prove that G, . = ¢G,.g™"; so the set of stabilizers of the elements of an
orbit is a conjugacy class [H]q of subgroups of (¢ (H is one of the stabilizers).

Orbit type. Orbits with the same conjugacy class of stabilizers are of the same type.
One such type of orbit, with ( as stabilizer, are the fixed points. Similarly the orbits
with a trivial stabilizer 1 (then all stabilizers of the orbit are 1), are called principal
orbits.

Example 1) Every subgroup H < G can be a stabilizer of an orbit. Indeed, consider
the set G : H of left cosets of H in ¢ with the (¢ action g.zh = gxH = (gz)H; by its
definition, this action is transitive on (& : H and Gy =H.

Stratum. In a group action, a stratum is the union of orbits of the same type.
Equivalently, two points belong to the same stratum if, and only if, their stabilizers
are conjugate.

When they exist, the fixed points form one stratum and the principal orbits form
another one.

The set of strata is called the stratum space and is denoted by M|\, Belonging to
the same stratum is an equivalence relation for the elements of M or for those of M|(G.
We have the commutative diagram of natural surjective maps (=onto =projections):

M I MG

o\ s 1(2)

§1-2. Examples.

Let us give other examples of group actions:
Example 2) G acts naturally on itself: G —%5 Aut( with plg)(m) = gmg~"'; then
Kerp = C(G), the center of (G, and Imp is the group of inner automorphisms of G.
The orbit of z € (7 is called the “conjugacy class” of z in G we denote it by [z]g. The
stabilizer of x € G is the subgroup of the elements commuting with z; this subgroup
is usually called the “centralizer” of z in G- it is denoted by Cq(x). The stratum of
fixed points is C(G) = Cu(Q), the center of G.

The action G 25 Aut M defines naturally an action of G on the subsets of M. We

A1, 5. 5 Y s
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might select only a family of remarkable subsets; for instance, example 2 can be ex-
tended to
Example 3) (i acts on its subroups by conjugation. We denote the set of subgroups
of G by {< G'}. The orbit G.H of H is the conjugacy class [H]s of the subgroups of &
conjugated to H; the stabilizer Gy of H is theset {g € G,gHg ' = H}. I Gy = G,
H is by definition an invariant subgroup of G (it is usual to write this relation: H < G).
In the general case, the stabilizer Gy is called the normalizer of H in G; it is usually
denoted by Ng(H). Remark that it is the largest G-subgroup which contains H as
invariant subgroup.

We denote the set of conjugacy classes of subgroups of G by {[< GJs}. That set
is the orbit space of the natural action of G on its subgroups; as an exercise show that
it is also the stratum space:

{[£Gle} = {<G}G = {<G}||G. 1(3)

By definition, in a group action, the set of possible types of G-orbits can be identified
to a subset of {[< Gg}. That can be translated into a natural injection of the stratum
space to {[< (g}

M||G -2 {[£Glel, ¢ injective. 1(4)

On the set {[< GJg} of conjugacy classes of (i subgroups, there is a natural partial
ordering, by subgroup inclusion up to a conjugation. Given this partial ordering, the
injection ¢ defines a partial ordering on the the stratum space M||. As we shall show
the role of this space is essential; indeed, the elements of this space correspond to the
different symmetry types of the elements of M. For non finite groups, [{[< Glg}| is
infinite in general ' | but in all problems we shall study, M||G is finite. In that case,
there exist maximal and minimal strata: the maximal ones correspond to maximal
symmetry and the minimal ones to minimal symmetry.As we shall see in the next
section, strata spaces are fundamental concepts.

A very simple, but important remark, is that the action ¢ ~+ M defines implic-
itly an action of any strict subgroup H < G, by restricting p to H (the restriction is
denoted by ply). When the action G —£5 M is restricted to that of a subgroup [:

H<GLsAutM: H,=HnG,,. 1(5)

In general the G-orbits split into a disjoint union of H-orbits. When we know the

orbits of Aut M on M, this technique of restriction can be applied to study of any

group action (& — Aut M on M by considering the subgroup Imp < Aut M.

Example 4) (i acts on its set of elements, that we denote by a different symbol

by left mutiplication, i.e. Vg € (7, G 3 m = g.mm = gm: then G is a principal orbit.
3 i g ; g gri i

Consider the restriction of this G-action to the strict subgroup H. The orbit of r € G

v
=
<
[
Sy
.

'For instance Uy, the one dimensional unitary group i.e. the multiplicative group of complex numbers of
Y g i i g
modulus 1, the subgroup of nth roots of 1 is a cyclic group of # elements ~ Z,,. Since for different n, the
Zn are not isomorphic, every group containing [/; has an inifinite set of conjigacy classes of subgroups. For
instance, that is the case of O, < GL, (R} for s > 1.
*For instance, for infinite groups, ¢ might be a manifold, and the action g.m = gm be a diffeomorphism
€ Aut M. Then the orbits are submanifolds of M and the orbit space MI(/ is an orbifold.
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is the set of elements Hxz. These H-orbits are called right cosets of H in (+. The set
of right H-cosets in (i is often denoted by (G : H)p; it is the orbit space:

H < G H acts on G by left multiplication :  G|H « (G : H)p. 1(6)

Remark that the group action of G on G by right multiplication is defined by ¢g.z =
zg~"'. By restriction to H < (, the H-orbits are the left cosets z 4 and the orbit space
can be identified with the (G : H)p, the set of left H-cosets.

Main Example: According to the Erlangen programme of F. Klein, a geometry is
the study of the action of a G on one orbit and its subsets. For the lectures, we
are interested by Euclidean geometry. The n-dimensional Euclidean group Fu, is the
semi-direct product Fu, = R" >10,,, where R™ is the invariant subgroup of translations
and O, the orthogonal group. The Euclidean space &, is the principal orbit of R™ or,
equivalently, the orbit & = Eu, : O,. Let £%? the set of pairs = # y of distinct points
of &,: the action of Eu, on this set contains a unique stratum 3 with an infinite set
of orbits labelled by a positive real number, the Euclidean invariant d(z,y) > 0, the
distance between z and y.

Similarly, the number of strata in the action of Eu, on £X% the set of triplet
z,y, 2 of distinct points of £,, is independent of n. The distances £,1,( between the
3 pairs of points are Euclidean invariant, but they are not arbitrary positive numbers;
so we prefer to choose the three invariants A, y, v:

E=d,2) = J(n+0) >0, g =diza) = +2) >0, C=dey) =04 >0,
1(7)

A=—=E4+n+(20, p=(-—n+(20, v==C(4n-(2>0, 7)

with the easy to prove condition that no more than one of these 3 invariants A v
vanishes. It is well know that the surface s(x,y, z) of the triangle (z,y, z) is given by:

80

4s(z,y,2)" = (A + p + v)Auv. 1(8)

We shall determine the stabilizers only in the 2 dimensional case; it corresponds to the
Euclidean geometry we have studied in high school. We have to distinguish two cases
1) and ii) and several subcases:

i) Auv # 0:

a) (A= p)(v = A)(p—v) #0, i.e the 3 invariant have different values. The stabilisers
are trivial: the orbits of generic triangles (they are 3 parameters of them) are principal.
b) only two of the parameters are equal: that correspond to the two parameter family of
orbits of isocele triangles. The stabilisers are the Z, groups generated by the reflection
through the symmetry axis of the triangle; this conjugacy class is also denoted by C,
in the Schonflies notation used by molecular or solid state physicists.

*Let m be the middle of the segment ry, and £, the bisector hyperplane of the pair z, ¥. As an exercise,
show that the conjugacy class of the stabilizers of this stratum is [Ony % Z2]gw, where O, _; is the stabilizer
of m in the Euclidean group of £,_, and Z, is the 2 element group generated by the reflection (in E,) through
ihe hyperplane £,_;.

o
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¢) A = pu = v # 0 defines the one parameter family of orbits of equilateral triangle; the
stabilizers are U3, ~ 83 (the permutation group of three objects).

1i) among the three invariants Ay, v exactly one is zero.

a) (A—p)(v—=XN)(pe—v) #0, ie. the 3 invariants have different values. The stabilisers
are (' groups generated by the reflection through the axis carrying z,y, 2.

b) two invariants are equal and positive, the third one is zero; this means that one
point is at the middle of the segment formed by the other two: the stabilizers are
Cy, ~ Z3.

To summarize: we have found 4 strata: the minimal one (trivial stabilizers)
which corresponds to generic triangles; the unique strata above it (stabilisers C) which
contains the orbits of same type for two different kinds of geometric objects: cases i-b)
and ii-a); there are two maximal strata with 6 and 4 element stabilisers.

§1-3. Stabilisers of linear representations of finite or countable groups.

We shall give now basic results that we will need in §2 and §4 for some linear
representations of G, (7). Here we denote the group by Gj it acts linearly ¢ — ¢.0
on the real finite dimensional vector space V. We denote by V9 the set of vectors left
fixed by g¢; it is a vector subspace of V. Moreover:

V=V H<K<G = VE>VE 1(9)
We denote by Sy the manifold of vectors of V which have H as a stabilizer.

-Lemma 1-1. In a linear representation of a countable or finite group: H is a stabilizer
& Sy ois dense in V.,

If H is not a stabilizer, Sy is empty. We assume that H is a stabilizer, i.e. Sy is
not empty. Of course Sy C V. Let {K;} the set of stabilizers strictly greater than
H; Then V% has to be a strict vector subspace of V¥ since it has no point of Sy. So
Sy is the complement in VI of U;VE¢ a countable (or finite) set of strict subspaces;
that proves that Sy is dense in V.

Lemma 1-2. In a linear representation of a countable or finite group the intersection
of two stabilizers is a stabilizer.

Let P, the stabiliser of 7;, i = 1,2, .... Consider the elements of the straight line
A = {7} defined by 7y, 7:
N 1(10)

The stabilizer of any point of the line is > the intersection of the stabilizers of two
arbitrary points:

Po>bPink, P>2FR0OPF, PB>FPN0F. 1(11)
Taking the intersection with one of the groups in each intersetion:
g}/g N }}2 2 {}; 0 ‘g')zf, [")g i }32 Z f}g N f}}d ete.... Egi‘ﬁ}

and similarly for any other stabiliser P\, we obtain the equality of the intersection of
any pair of stabilizers of points of A:

PinPy=P0OP =-=PnNP. 1(13)
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Hence it is impossible that all stabilisers be strictly greater that the common intersec-
tion of any pair of them, because it would require all of them to be different, but the
set of different stabilisers is at most countable while the set of Py should have the same
cardinal as the set of points of A, i.e. the power of the continuum. So the common
intersection P\ N Py of the stabilisers of any pair of points of A is the stabiliser of all
points of a dense subset of A. We have proven more than the lemma; it is easy to
extend that result to any set of vectors spanning a d-dimensional subspace of V:

Corollary 1-1. In a linear representation of a countable or finite group (& on the space
V' the intersection P = NP. of the stabilizers P; of a set of vectors 7 generating the
subspace Vy is a stabilizer; the intersection V; N Stpy of the corresponding stratum Sip
with V; is dense in this subspace.

Combining that corollary with lemma 1.2 we obtain:

Corollary 1-2. In a linear representation of a countable or finite group (i on the space
V, if Py and P, are stabilizers, the subspaces VP and V> span the subspace V1P
of fixed points of the stabilizer P, N P,.

Extending the proof of corollary 1-1 and the results to the whole space V we
obtain the existence of a unique minimal stratum, which is open dense and whose
stabilizers P is unique since it is the intersection of the stabilisers of all vectors of the
space V. By definition it is the kernel of the representation. Hence the theorem:

Theorem 1. In a linear representation of a countable or finite group (i on the space
V, there exists a unique minimal stratum, open dense in V'; it has a unique stabilizer:
the kernel of the representation.

We end this section by giving a simple theorem that we shall need for a systematic
research of the strata. Its proof is obvious.

Theorem 2. Given an action of G on M, and the inclusion of subgroups K < H < G
where K is a stabiliser. Then M c n,cyy MK,

That is a direct consequence of K < H = M" c M*. Notice that when K is
an invariant subgroup of H, the theorem reduces to MH  MX.

For more information on the subject of §1, see [8] and earlier references given
therein.

§2. Classification of Euclidan lattice symmetries

This section relies very much on a publication with J. Mozrzymas [9] and the
manuscript of a book in preparation with M. Senechal.

§2-1. Manifold L,, of n-dimensional lattices.

Let V,, be a n-dimensional orthogonal vector space whose positive definite scalar
product is denoted by (Z,7); we use the notation N(F) = (¥, 1) for the norm of the
vector ¥. We simply denote by R* the additive group of V,,. As we have seen in the
main example of §1, the action of the translation group R™ on the set of elements (a

manifold) V, of the vector space V., transforms it in a Fuclidian space £,. lLet o be

S ———
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the origin of V,,. We denote by © = o+ Z the translated of o by 7; every point of &, can
be obtained by a translation of 0. The point y is obtained from z by the translation
y—I,ie y=x+y—1I,s50

d(z,y)* = N(j — ©). 2(1)

We first define the lattices of V,, and simply call them:
Lattice: A lattice L is the subgroup of the translation group of V, generated by the
vectors b; of a Vi baszs i.e. the vectors of L are linear Combmamons with integral
coefficients of the b;’s. More abstractly: it is a closed subgroup of R" of rank n.
The image L + T of a lattice L by a any translation ¥ € R" is an Euclidean lattice of
&,. We reduce the study of Euclidean lattices to that of lattices by choosing as origin
o a point of the Euclidean lattice.

For convenience, in order to define the matrices of the orthogonal group O, =
Aut V,, by the relation rr" = r"r = I we introduce an orthonormal basis (€,, €5) = bap
of V,. Then an arbitrary basis of V,, is defined by b; = 3, bia@, where the matrix b
has non vanishing determinant, i.e. b € GL,(R). Given another basis by the matrix
b there is a unique group element ¢ € GL,(R) which transforms the basis b into
B = g.b=bg~'. So the set B, of bases of V, is a principal orbit of GL,(R), i.e. B, is
the manifold of the elements of GL,(R).

When is & another basis of the lattice L generated by b7 The vectors b must be
in the lattice so b’ 2 mzjbj, where m is a matrix whose elements m;; are integers.

—
Moreover, the vectors b' must form a L basis, so m~™! must also be an integral matrix.

To summarize the bases of L are of the form mb, m € GL,(Z). So L can be identified
as an orbit of G'L,,(Z) acting on B, by left multiplication. Using 1(6), we have shown
that the manifold £, of n-dimensional lattices can be defined as:

Lo = Bo|GLu(Z) = (GLo(R) : GL.(Z))r. 2(2)

The matrices of GL,(Z) have determinant 1, so det b have same absolute value for
all bases of the lattice; this value is a characteristic of the lattice; it is simply denoted

by:
det(L) = | det b|. 2(3)

§2-2. Crystallographic systems.

The interesting mathematical objects are the intrinsic lattices, i.e. lattices mod-
ulo their position in space. The orthogonal group O, transforms the position of a
lattice L into aﬁv sihe? position: if L has basis b the lattice r.L, r € 5}& %‘4 g;szizez*&‘ieﬁ
by the basis br~! = br7. Hence the manifold of positions of L 1s ‘is;e orbit (U, . L and
the orbifold £ of @»éizz;&;‘;g%@nai “intrinsic” lattices is the orbit space:

L8 = £,|0,. 9(4)

The corresponding strata yield a corresponding classification of lattice symmetry. They
are called in [7] (International Tables of Crystallography): Bravais crystallographic
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systems. Denoting their set in n dimensions by { BC'S}, we have the definition * as a
stratum space:

{Bravais crystallographic systems}, = {BCS}, = L,]|0,. 2(5)

We can give an equivalent and more explicit definition of L7, Indeed, given a basis
be GLn(R) of L, we have just shown that the left coset b0, C GL,(R) is a set of
bases generating all lattices belonging to the orbit O,.L of the positions of L. We also
showed (see 2(2)) that the right coset G'L,(Z)b C GL,(R) is the set of all bases of L,
and therefore represents L € £,,. Hence the double coset GL,(Z) bO, GL,(R)is the
set of all bases of all lattices of the orbit O.,.L and therefore represents the “intrinsic”
lattice L in £7; that shows that £° is the set of double cosets:

Lo =GL(Z): GL,(R) : O,. 2(6)
The set of double cosets can be viewed as an orbit space for the action:
(mxr) € GLu(Z) xOn,  (mxr)b=mbr™, L2 =B|(GL.(Z)%0,),  2(7)

Its symmetry meaning is the following: consider the lattice L generated by the V,
basis b which is tranformed into b by the orthogonal transformation r; if this trans-
formed basis generates the same lattice [ then, by definition, r is a symmetry of this
lattice and there must exist m € G'L,(Z) which transforms the old L basis b into
the new one br~'. To summarize:

(m x 1) € (GLA(Z)xO0,); & mb=br"" & m=bth! e, = b tm b 2(8)
We define the canonical, projective homomorphisms of groups:
GLni(Z) X0y =5 GLA(Z), 7o(m x 1) = m; GLn(Z) X0, =5 Oy, 7o(m x 1) = 1.
2(9)
Because G'L,(R) acts freely by left or right multiplication on itself, the stabilizer of
any basis, (GL,(Z) x0,); is a “diagonal” subgroup of GL,(Z) xO,, i.e. it contains

no element of the kind m x 1 or 1 x r outside the identity 1 x 1. That implies that the
stabilizer and its two canonical projections are isomorphic:

(On < GLA(Z))s ~ 7.((On X GL4(2));) ~ 7,((On % GLn(Z));), 2(10)

It is important to distinguish these two isomorphic groups; that is why we use for them
different notations which specify to which group they are subgroups:

Pr=m0((0n X GLu(2)); < On,  Pf = 1.((0n X GLo(2));) < GLo(Z).  2(11)

Similarly we shall use different names for them: we call P = n,((0, x GL,(Z))
holohedry of L and P} = r,((0, x GL.(Z));) its Bravais group.

*Bravais did not define the Bravais crystallographic systems. [2] uses “French crystallographic systems”;
indeed this concept was defined and used by the French school of crystallography. Weiss [13] in 1816 was the
first to introduce a concept of “crystallographic systems”; but this concept, different {rom that of BCS, does
a0t generalize easily to arbitrary dimension. However both concepts coincide in dimension 2. In dimension
3 both give 7 crystallographic systems: but only 5 of them coincide. Strangely encugh, [TC merge the two
pairs of different crysallographic systems into one “family” (as they called it).
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Lemma 2-1. The holohedry and the Bravais group of a lattice are isomorphic finite
groups.

The isomorphy has already been proven. The last equality of 2(8) shows that
the holohedry is the intersection in G'L,(R) of the compact subgroup O, and of the
discrete subgroup b= GL,(Z)b. As a compact and discrete group, it is finite.

We recall that the symmetry through the origin is a symmetry of any lattice; so

~I,eP, I, €P; 2(12)

We do know that the symmetry types are given by a conjugacy class of subgroup. As
we have seen in 2(4):

the conjugacy class [PL]o, defines the Bravais crystallographic system of L.

We shall explain that:

the conjugacy class [P}]gr, (z) defines the Bravais class of L

§2-3. Bravais classes.

Equation 2(6) is basic for describing the orbifold of n-dimensional intrinsic lat-
tices. We have defined the Bravais crystallographic systems by studying the action of
O,, on the manifold of cosets GL,(Z) : GL,(R). Now we study the other interpreta-
tion: the action of GL,(Z) on the manifold of cosets GL,(R) : O,.

The real symmetric n x n matrices form a vector space Vi of dimension N =
n/(n + 1)/2. This space has a natural scalar product (a,b) = trab. The subset of
positive matrices form a convex cone C*(Q,) since the sum of two positive matrices is
a positive matrix. The real symmetric positive n x n matrices, e.g. bbT have a unique

real symmetric positive square root ° that we denote by / bbT so any b € GL,(R) has
unique left and right polar decompositions:

b= \;’gf;;» = wﬁ;é, r e O,. 2(13)
To verify that r € O, compute rr' and 7" r. The first equality of the polar decompo-
sition identifies the left coset factorisation GL,(R) : O, with C*(Q,). When the basis
b generates the lattice L, the matrix elements of ¢ = bbT are gi; = 53; g;} often called
the Grammian of b. These scalar products are O, invariants; with 2(7) we verify again
that O, acts trivially on b7 while the action of GL,(Z) is

m € GL(Z), ¢ = = CHQ,), mg= ;f'}?{g?;f;? 2(15)

The strata of this action of GL,(Z) on CY(Q,) are the Bravais classes of lattices.

Denoting by {BC'}, the set of Bravais classes of n-dimensional lattices, this definition
can be written:

{Bravais classes}, = {B('}, = CY(Q)| GL.(Z). 2(16)

*In other words, for ¢ € CY(Q,) the maps ¢ — /7 and ¢ — g° are diffeomorphisms of C7{Q,).
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In his memoir Bravais [1] gave a different but equivalent definition of the classes and he
determined the 14 Bravais classes of { BC'}5 correcting the classification of Frankenheim
into 15 classes. The action of GL.(Z) on C*(Q,) was studied from the 1780’s by
mathematicians (Lagrange, Gauss, Jacobi, Hermite, etc....) as “arithmetic theory of
quadratic forms” without mentioning for a century the traduction in terms of lattices.

We have seen in §1 after equation 1(4) that there is a natural partial order on
any stratum space. We now prove that there exists an order preserving surjective map

{BC}, —% {BCS},, o surjective, 2(16)

from the partially ordered set of Bravais classes onto the partially ordered set of Bravais
cristallographic systems: it is the restriction on {BC}, of the natural map & (whose
existence we shall prove) from the set the conjugated classes of finite subgroups of
G Ln(Z) to the similar set for O,.

Lemma 2-2. There is a natural bijective map ¢ between the conjugacy classes of finite

subgroups of G'L,(R) and of O,.

It is well known that any finite subgroup of GL,(R) is conjugate to a subgroup of
On < GL,(R); so we are left to prove that two subgroups of O, which are conjugated
in GL,(R) are conjugated in O,: indeed assume g,¢’ € O, conjugate by s & GL,.(R):
g = sgs™' let s = rt, r € O,, t = VsTs the polar decomposition (see 2(13)) of s;
then I = ¢'Tg' = (sT) " 1gTt2gs™ ! fe. {2 = g7 'tgg™tg; since the positve square root
of t? is unique, t = g~'tg and ¢’ = sgs~! becomes g’ =rgr~'. (end of the lemma proof)
Since GLn(Z) < GL,(R), two subgroups conjugate in G'L,,(Z) are conjugate in GL,(R).

Let ¢’ be this natural surjective map: {[< GL.(Z)]6r.(2)} 2 {IS GL.(R)]cr,(r)}-
Then ¢ of 2(16) is the restriction of ¢ = 10 ¢’ to {BC} C {[< GLo(2)) L (2)}-
Arithmetic classes is the short hand used by crystallographers for “conjugacy
classes of finite subgroups of GL,(Z)". It was proven by C. Jordan that {AC},, the
set of arithmetic classes of GL,(Z), is finite for all n. For n = 1, 2,3,4 this number is
respectively 2,13,73,710. Strangely, many mathematics books give 70 instead of 73.
Hence for any dimension the number of Bravais classes ({BC}, C {AC},) and (since
¢ in 2(16) is surjective) the number of Bravais crystallographic systems are finite. For
n =1,2,3,4 these numbers are respectively 1,5, 14, 64 for Bravais classes, 1,4,7,32 for
Bravais crystallographic systems.
Hemark
Beware that for some holohedries Pp, all the different conjugacy classes [Pplgr,(z) of
the ¢ pre-image ¢~'([PL]o,) are not necessarily Bravais classes (of course at least one
of them is). This happens for every dimension n > 2. We shall see later the example
for n = 3.
We have still several concepts to introduce about Bravais classes and Bravais
groups.
Dual lattice: The dual L* of L < V, is the set of vectors of V., whose scalar products
with all vectors of L are integral. From this definition we deduce that L* is a lattice.
If b is a basis of L the dual basis b*, defined by:

(67,0;) = 6; & b" =517 2(17)
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is a basis of L*. This implies for the corresponding quadratic forms:
(L) =q(LYnv < L™ =L 2(18)

When L* = L, we say that the lattice is self dual. That is equivalent to ¢(L) € SL.(Z)
(easy proof left to the reader). Considering the inverse of each side of the equation
g = mqm" we obtain for the Bravais group of the dual lattice:

Pio= (P 2(19)

i.e. every matrix m € Pf is replaced by m™!T. We call this group the contragredient ©
of Pf. When two contragredient Bravais groups belong to the same Bravais class, we
say that this Bravais class is self dual. When the two Bravais classes are distinct, we
say that they are in duality; show that the map ¢ of 2(16) sends them into the same
Bravais crystallographic system (but the converse is not true!).

Given a finite subgroup F' < GL,(Z) one can define on the n(n+1)/2-dimensional
vector space @, of n variable quadratic forms. the linear operator oz:

g op(q) = |F|™! >: mgm" 2(20)
mekF
It maps the orbits of F' on their barycenter; one easily verifies that o7 = op, i.e.

it is a projector and Imog is a subspace of @, containing all F-invariant quadratic
forms. 2(20) shows that op projects any F-orbit on its barycenter. Since the sum
of positive quadratic forms is a positive quadratic form, when ¢ in 2(20) is positive,
or(C4(Q.,)) C Ci(Qn). More precisely, if we denote by V¥ and C,(Q,)" (notation
defined in 1(9)), respectively the vector subspace of F' invariant quadratic forms and
the cone of positive quadratic forms invariant by F:

Vi =Imop,  0r(Ce(Qn) = VINCH(Q) = C4(Q0)". 2(21)

We know from lemma i 1 that F'is a Bravais group if it is the stabilizer of an open
dense subset of C+(Qﬁ) The union of these subsets for all F' in the conjugacy class
defining the Bravais class, is the corresponding stratum. Hence:

dimension of the Bravais class [P] |GLa(z) stratum = dimCy aﬁ,gi} . 2(22

We know from theorem 1 that there is a unigue minimal stratum, the generic
open dense one, whose stabiliser is the kernel K of the linear action of {r; Al ?’},, that
the set of m € GL,(Z) such that for all g(L), mgm'™ =g som=*1,1.e. me Zy(—1) ~
C(GL.(Z)), the center of GL,(Z).

Since for every dimension n, the number [{ AC},| of arithmetic classes is finite
(Jordan theorem), this partially ordered set has maximal elements. The maximal finite
subgroups of L, (Z) leave invariant the barycenters of their orbits, and since they are
maximal, they are the stabilizers of these points. Hence every maximal arithmetic class
is a maximal Bravais class. Moreover, if P is a Bi‘é‘xai% group of a maximal Bravais

class, all lattices represented by ;’;é}m{s«, of C%ng " have P as the Bravais group.

®The concept of dual groups is already defined in mathematics with a very different meaning, so it should
not be used here.
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We give the simplest examples of maximal Bravais classes in arbitrary dimension.
Consider the lattice whose vectors are, in the orthonormal basis (&), €;) =46

L= {nggé}? W € 7} 2(23)

Its quadratic form is ¢(L) = I,,. Its Bravais group is the set of m € (7L,(Z) such that
mim’ = mm" = 1. This is 0,(Z), the orthogonal group on the integers; it is easy
to show that it is the symmetry group of the cube (or of its dual, the regular cross
polytope) in n dimension and has the structure:

O0nNGLL(Z) = 0,(2) ~ Z1 > S,,. 2(24)

That group is generated by n? reflections through hyperplanes; it is maximal 7. 0.(Z)
is also a symmetry group of a sub lattice of index 2 of L; it is D7, the lattice generated
by the roots of the D, simple Lie algebra:

and of the dual lattice DY (the weight lattice of D, whose each vector coordinates
satisfy:

L={S e, allpse Zor € Z+ 1), 2(26)

For 2 < n # 4 these 3 lattices belong to three distinct maximal Bravais classes, inverse
image of the Cubic BC'S [0,(Z)]o,. For n = 2 there is a unique Bravais lattice and
for n = 4, the Bravais groups of D} and D} is Fy, the symmetry group of a self-dual
regular polytope which has no corresponent in the other dimensions.

There is a systematic method for finding the set of Bravais classes as subset of
the partially ordered set {AC}, of arithmetic classes. Consider a complete ascending
chain of finite subgroups of GL,(Z) starting from Fy = Z,(—1I); it is finite and ends
with a maximal finite subgroup F,, of GL,(Z). In such a chain Fy < F| < < ..
the corresponding dim(Imop, ) satifies dim(Imog,) > dim(Im OF,,, ); the relation is >
(respectively =) implies F} is (resp. is not) a Bravais group.

Let {ZACY}, be the set of cyclic arithmetic classes; its image (as conjugacy classes
in G'L,(R)) by ¢' (the map defined immediatly after the proof of lemma 2-2) is the
set of cyclic geometrical classes; this set can be easily computed by an elegant method
given by Hermann [6]. I will not explain it here, and neither explain the use of the first
cohomology of finite groups to obtain {ZAC}, from the Hermann list. The conjugacy
classes in O, of the generators of the cyclic geometrical classes are labelled explicitly for
n = 2,3 in the [7] under the name geometric elements. We will call here the COnjugacy
classes in GL,(Z) of the generators of the {ZACY},, arithmetic elements and give their
list for n = 2,3; the [7] labels them. As we will see for n = 2,3, knowing the set
{ZAC}, of cyclic arithmetic classes it is easy to find which ones are Bravais classes.

“indeed in any linear group, all reflections are conjugate into themselves, so O, is an invariant subgroup of
any subgroups of (L. (Z} containing it. So the largest subgroup containing is its normaliser Nap ontOnlZ3).
Let n be an element of that gronp and r € O, (7). Then nra™! € Ou{Z}, ie. (nrn™! }{sern“zf = 1, which
is equivalent to n' nr = rn’ r. Since GLa{Z) s irreducible on the complex, n7n is a positive diagonal matrix
ofl GLo(ZYson ' n=1ie nec I PAN
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§2-4. {BC}, and fundamental domains in C*(Q,).

In Schonflies notations the finite subgroups of O, are C,, ~ Z, (cyclic group
generated by a rotation of 27 /n), C, the group generated by a reflection and C,,, the
2n element group generated by the reflections through two axes with an angle of 7 /n.
The trace of the matrix representing a rotation by 6 is 2cos @: that is an integer only
for 0 =27 /n withn =1,2,3,4,6

In dimension n = 2, any real matrix s with trs = 0, det s = —1 has eigenvalues
1,1, so it is conjugate to the Pauli matrix o3 which represents a reflection through
the z-axis in the orthogonal plane zoy. We shall show that the matrices:

1 0 0 1 .
pm::o'3:<0 ~1>, cm:m:(l O) 2(27)

are not conjugate in (GLy(Z); so they belong to two different arithmetic classes which
are denoted in [7] pm and em respectively; the common m is an abbreviation of “mirror”
(= reflection) in these tables. Let { a conjugation matrix o; = tost™; then I 4+ 0y =
t(I + o3)t™'. It is absurd to assume that ¢t € GL,(Z) because that implies that
conjugated integral matrices have same ged (= greatest common divisor) for their set
of elements, but ged(I + 07) = 1 while ged(/ + 03) = 2. Note that the two matrices
are conjugated in G'Ly(Q)), the general linear group on the rational; indeed

oy =togt™',  witht = (i “11)? 1= 14T 2(28)

As we recall in 2(12), —I belongs to every holohedry and Bravais group. So that proof
shows also that the two groups:

{£1,t03} € pmm, {+I,+0,} € cmm, 2(29)

belong to two different arithmetic classes; we denote them by pmm and cmm, the
notations of [7].

Any two dimensional representation of an Abelian group is reducible: but on
Z the representation might be indecomposable into a direct sum of two irreducible
representation; choosing as first vector of coordinates, the one which spans an invariant
space, we can put the matrices into a upper triangular form. For instance for pm and

em of 2(27):

1~y (ltHy —yN ., oy (1 2y -1 {1 2y4+ 1N
ig”{ﬁ z) i“‘( 11 )i teosls “(@ mz}’g%géf‘i =lo 1 )

2{30)
That establishes that o, is not diagonalizable and that there exist only two arithmetic
classes of reflections. This result extends to every dimension n > 2.

The rotation by 7 is represented by the matrix —/I, in the center of GL(Z).
Since the product of two reflections is a rotation, one can prove from our result on
reflections that the rotations of order 3,4,6 form a unique arithmetic class for each
order. So, in the [7] notation:

n=>2 arithmetic elements : pm, em, p2, p3, p4, p6. 2(31)
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As in [7], we use the same notation for the cyclic arithmetic class generated by these
arithmetic elements. As we said, the class p2 is the center of G'Ly(Z) ie. the kernel
of the linear representation of G'L;(Z) on the 3 dimensional space Q, of 2 variable
quadratic forms, so the Bravais group of the minimal stratum (which is dense open in
C4(Q4)). In Q3 we choose the basis of the three matrices [y, 04,04

Qd3q=th+zo3+yo = (t;x tj{;r>’ det g = t* — 2% — 42 2(32)
In the linear action ¢ — mgm" of GLy(Z) on Q,, the only invariant is det ¢ since
det mdetmT = 1. So the effective action of the adjoint group G'L,(Z) /Z, is identical to
the action of the Lorentz group (without time reversal) on the 3 dimensional space time
(of coordinates t,z,y). This Lorentz group is O(1,2) ~ SELy(R) | Z,, where S*Ly(R)
is the subgroup of G'L,(R) containing the matrices of determinant +1. Remark that
C4(Q2) is the interior of the future light cone:

g>051t>0, t° 22 —y? > 0. 2(32")

Using §1-3 it is easy to find the Bravais classes of dimension 2. For example, from 2(29):
Ci(Q2)™ = C4(Q2)"™™ is the plane (t,z,0). Then we have to study the stabilizers
of the points of this plane. We consider only those representing matrices ¢ > 0, i.e.
—t <z <. The elements m of the stabilizers satisfy:

m = (i 2) v ad—be=¢=+1; m(tl+zo3)m" = e(t] + z03). 2(33)
We find that the integers a, b, ¢, d must be the solutions of the 3 equations (use t+z > 0,
t—x>0):

(a—de)=0, tlb+ce)—z(b—ce)=0, —bec=1—a 2(34)

If #/t is irrational, b = ¢ = 0 so the only solutions are m & pmm. From corollary
1-1 we deduce that pmm is a Bravais group. The second equation of 2(34) yields
b = —ec(t +x)/(t — z) so either b = ¢ = 0, or 0 < —bee; from the third equation
a =0 (= d) and b = —ce which implies, from the second equation z = 0. So all points
of C1(Q2) in the plane (¢,z,0) have pmm as stabiliser except those in the half-line
t >0,z =y = 0: those are invariant by the group generated by pmm and ;. That
is the group Oy(Z) of symmetry of the square; it is denoted by pdm in [7]. We have
proven in footnote 7 that it is a maximal finite subgroup of G Ly(Z) so it is a Bravais
group: the stabliser of all points t > 0 =z = y.

By a similar computation we find that emm fixes all positive quadratic forms of
the plane (£,0,y) and it is a Bravais group. Indeed

m(tl+zo)m’ =e(tl+zoy), e =1 < be=0, 2by+(a—d)t =0, b*+ad = 1, 2(35)

so when y/t is irrational, b = ¢ = 0, a = d, i.e. m = +/. We now prove that there
are only tree possible non generic lines in this plane. Indeed, to obtain 2(31) we had
shown that the only rotation are of order 4,3,6, ie. trm =a+d = 0,~1,1. Assume
a+d = 0 then from the 3rd equation of 2(35) b* — a2 = | the only integer solutions
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are with @ = 0 = d which implies from the 2nd equation y = 0, so we find again the
line (,0,0) (stabiliser Oy(Z) = p4m). Assume a +d = +1; from the equation of 2(35)
we obtain 4y* = t* and for these 2 points (which are exchanged by pm) are fixed by a
group generated by one rotation of the arithmetic class p6 and emm. Their arithmetic
class is called p6m in the [7]. For instance for r = 0 < t = —2y the two new solutions
of 2(35) are the reflections of the arithmetic class em:

(é —~11>’ <w11 _i)- 2(36)

2u+14+z=0. 2(37)

The two planes they fix are

To summarize we have established the existence in dimension n = 2 the existence of 5
Bravais classes which satisfy the partial order relation:

pmm  —  pdm
/ / 2(38)

p2  —  cmm  —  pbm

From our results we are also able to choose a fundamental domain of the action of
GLo(Z) on C1(Q2). We arbitrarily choose one of the cone defined by three planes
(each one fixed by a reflection), such that the inside have only points in the generic
stratum p2. We choose arbitrarily:

Poiy=0, Po:a=0, P3:2y+1—2z=0. 2(39)

The open face, carried by Py represents the Bravais class pmm while the two open
faces carried by P, and P; represent the same set of lattices of cmm, but in two
different bases; hence one of these 2 faces has to be removed in order to obtain a strict
fundamental domain instead of its topological closure. The half lines (with { > 0)
in the intersections P, N Py, P, N Py, P, 0 P, represent respectively the maximal
Bavais classes pmm, emm, and a generator of the closed cone C; (Q3), i.e. a rank one
semi-positive quadratic forms in @,, which can also be interpreted as one dimensional
lattices. The fundamental domain we have chosen is that of the positive quadratic
forms ¢;; satisfying the relations:
i

y s . 37 A
4= qrz. 0<gn<q, 0<—¢2< -qo 2(40)
2
That fundamental domain could have been obtained without an analysis into Bravais
classes; indeed it was first given by Lagrange in 1773.
We draw figure 1-2 to show the the action of GLy(Z) on C1(Q,). As we alre

dy
vointed it out, this action is obtained as a restriction to the subgroup (7L,(7) of tl
’ i FA

tie
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orthochronous Lorentz group. To draw a two dimensional picture we make a stereo-
graphic projection from the tip of the future ligth cone C+(Q3) onto its intersection
with the plane H of equation ¢t = 1 (see 2(32)):

0<t,  E4n'<1, Ci(Q) 3 (46, tn) — €. 2(40')

The two dimensional space V; of the lattice is the “spinor space” the bijective
map between non vanishing spinors up to sign, and the light vectors was emphasised
by E. Cartan (e.g. [3]); explicity, when n = 2

2

Vgéi’v::}:(g) Hv\iv:q(v):(sﬁ (;g) 2(41)
The v with integral components form a lattice L € Vj; among them, those with rel-
atively prime coordinates are called the visible vectors of L. They form one orbit of
GLy(Z). In figure 1-2 the points of the circle 2 + p? = 1, images of visible vectors ¢
are denoted by the coordinate of £. Four among them have a label L, [/, K, K’

to=2(5) v =(en

1 0 /
i(O)HL:(l,O), :!:(1><—>L:(O‘,l)?
:i:(i)w[(:((),l)j ﬂ:(jl)é—ﬂ»[{':((),wl).

The reflection o3 acts on H as the symmetry through LI’ and the reflection oy
acts on H as the symmetry through K K’. That explains the symmetry of the figure
1-2 which shows the strata of the actions of G'L,(Z) on the disc €2 + n% < 1. The
computation of this figure yields another determination of the five Bravais classes.
We represent the G'Ly(Z)-orbit of LL' and KK’ by the full and the dotted lines re-
spectively. Notice that the stabilizer of a v € V; which is, up to.a factor, an element
of L, is infinite, indeed

2(42)

o « 1 b (1Y
33 e ; f e i ,,i ) 2
v (Q) GLy(Z), = { (@ J?i{\g 1}35,&%2’} (43)

So from the points of the unit circle of H corresponding to the points of L < V,, an
infinite number of lines is produced, and they can be proved to be alternatively dotted
or full.

The dotted lines represent the ¢’s of C,(Q7)”™" and the full lines those of Ci(Q2)™™,
So, except for their intersection points, they represent g¢’s belonging to the Bravais
classes pmm and cmm. The intersections of these lines have to correspond to maxi-
mal Bravais classes. Indeed LL’' and K K’ intersect at a point s which represents ¢'s
belonging to the Bravais class pdm (square lattices) and this is also the case of all
intersections of a dotted line and a full line (they are labelled s in the figure). The two
points h of KK’ are at the intersection of three dotted lines; so by G Ly(Z) transfor-
mations we know that through each intersection of two full lines passes a third one.
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We have labelled these triple points by h; they represents the hexagonal lattices, 1.e.
those belonging to the maximal Bravais class pbm.

The points of the interior of the disc and outside the lines, represent the generic lattices,
those of the minimal Bravais class p2.

Notice that in the interior of the disc, every dotted line contains only one point s
and each full line one s and two h’s. Each triangle (whose sides are carried by two full
lines and one dotted line, whose vertices are s,k and one point of the boundary circle)
represent a fundamental domain of the G'L,(Z) action. The Lagrange fundamental
domain given in 2(39) corresponds to the triangle of vertices L : (£ = 1,7 = 0),

5:(6:0,?’;:0)?h:((f::{}?n::—%).
§2-5. Selling method in two dimensions.

In 1874 Selling published a paper [10] on the arithmetic classification of the quadratic
forms (not necessarily positive) in 2 and 3 dimensions; it has introduced an elegant
symmetry into the problem. We will give in next section the generalization to any
dimension for positive forms made by Voronoi [12]; here we already use Voronoi nota-
tions. ,

Consider the quadratic form:

Q(f) = )\mfﬂ‘% -+ )\0231% + z\ilz(l'} - 332)2 = (.’Z Qf) 2(44)

= Ty Aor + A1z —A12 > 9
— = . 2(45
* ($2> ' . ( — A2 Aoz + Apz (45)
det(q) = o1 Aoz + Aot A1z + Aoz Az 2(46)

We make here the assumptions:
0<1,7 <2, }\gj = )\Jgg > 0, at most one ;’&gj =0. 2{47}

That implies ¢ > 0. The converse is not true, i.e. there are positive forms which do
not satisfy 2(44) and 2(47); indeed those assumptions correspond to the large triangle
LL'K’ in figure 1-2; since it contains a fundamental domain, every positive quadratic
form of two variables can be transformed by G Ly(Z) into a form satisfying 2(45), 2(47).
It represents a lattice generated by the vectors f&;,ﬁ g; which satisfy:

gy = igégi\*’ = o1 + 3%‘23 gz = 55;?2? = Agz + 5‘4327 g1z = igzsgﬂs} = —Aqg. 2(4}51

Examples of the action of m € GLy(Z) on ¢, g — mgm':

0 1 . I
m: r= 1 ) , =1, Ao — Az, Az = Aazs Aoz = Aor 2(49)
\ -1 -1/
;/S 1\ e £ s
m: ezx{é S}ﬁs‘frfw}’ sr=1"ts, Aoy < doz, 2(50)
Y

so r, s generate the permutation group 8z of the X's. With — /5, which acts trivially on
g, they generate the GGLy(Z) subgroup pbm ~ Cy,.
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Figure 1-2. Stereographic projection of Cy(Q,).

Each point inside the circle represents a ray of positive quadratic forms ¢'s (i.e. defined up to a positive
factor). The ¢’s belonging to the Bravais classes pmm, emm, pdm, pbm are represented respectively
by the dotted lines, the full lines, the points s (intersections of a dotted line and a full line: square
lattices), A (intersections of three full line: hexagonal lattices). The dense open set of the other points
of the interior of the disc represents the generic ¢’s; they belong to the minimal Bravais class p2. See
the text for the meaning of the pairs p : ¢ of relatively prime integers. Each triangle represents the
topological closure of a fundamental domain in the action of GLy(Z) on C4(Qy).
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Selling showed that syntactic permutation symmetry and he made it obvious with the
adjunction of the vector by defined by:

bo+bi+b=0 4,5=012i#5: (b,b)=-\s: (b, ZA” 2(51)

The quadratic forms invariant by any one of the three elements s, rs, r2s of GL(7)
(corresponding to the odd permutations of S; and generating this group) are repre-
sented in ﬁgure 1-2 by the 3 full lines (partly) inside the triangle LL'K’; hence one
can also see in the figure that the group S; they generate is the sy mmetry group of
that triangle. The sides of the triangle LL'K" are dotted lines and they correpond to
the three cases where one only of the three parameters );; vanishes. So the method
of Selling yields again the classification of Bravais classes. It just depends also on the
number of parameters \;; which are equal. A short hand for listing the cases is to
use triangular symbols whose vertices are labelled by 0,1,2 and the sides by the Aij
parameters.

first case: Agi Ao Aip # 0:

[ p2, generic Bravais class;

second case: one only of Ay, Mgy, Ajo vanishes

L pmm
4x  pdm.

There is an analogy with the “main example” of §1-2 with the change of notation
As py v into Agi, Aoz, Asg. The difference is that while in §1-2 the sum of two param-
eters is twice the distance between two of the 3 distinct points (which do not form
necessarily a triangle), here it is the square of the lengths of the side of the (genuine)
triangle defined by by + by + by = 0. For the two problems the symmetry group is the
same; it is the Esdiéfeaﬁ group in two dimension since our study of lattice symmetry
generalizes immediately to Euclidean lattices (see §2-1). For each problem the cases to
consider are the same because they are determined by the syntactic symmetry of the
three parameters and the effective symmetry groups of each case are identical with the
difference that here the action is not effective, so one must enlarge the group with —7J.
For the lattices, if we had used the symmetry classification by Bravais m%; stallographic
systems, we would have had also four strata only; the classification by 5 Bravais classes
is more refined and distinguishes between the two Bravais classes pmm and cmm of the
same Bravais crystallographic system mm. We will show in §4 that the most refined
classification of lattices in dimension 3 by group symmetry (with 14 Bravais classes)
can be refined by using more invariant concepts. We shall introduce them in the next
section.

S’i?si%ig the &5 symmetry, one can choose Ayy = 0 so the quadratic form is diagonal and invariant by o
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§3. Voronoi cells, Voronoil and Delone tessellations of lattices

This section deals with these topics for Euclidean lattices in arbitrary dimension
n. As general reference we use the last Voronoi’s paper in two parts [11], [12], and the
monography in preparation with M. Senechal.

§3-1. Voronoi paving. Corona and face vectors of Voronoi cells.

Given an Euclidean lattice L in dimension n, we define the Voronoi cell Dy (o) of
o € L as the topological closure of the set of points of the Euclidean space &, which
are nearer to o than to any other point ¢ of the lattice. Explicitly:

o€ L, Do) ={x €&, YlelL, du,o)<d(x )} 3(1)

The interior is defined by replacing < with < in 3(1). The points of the space common
to at least two cells belong to their boundaries. The Voronoi cells of I form an orbit
of the translation group of L; they also form a paving of &,. We recall that the points
of the lattices and the middle between any pair of those points are symmetry centers
of the lattice. So o is the symmetry center of Dy (o).

Let us take o € L as origin of the space. We will write simply Dy, for the Voronoi
cell of the origin of the lattice L < R. From 3(1) we can write:

e

Dy ={Fe R*, Ve l, N#) <N~ ). 3(2)

Since the lattice L is a subgroup of R™, if we consider the coset ¥ + [, = ¥ — [ =
{Z — ¢, L € L}, we can interpret 3(2) as:

I € Dy & T is shortest in its coset R"/L. 3(3)
{55 unique shortest vector Z € interior of Dy, } 3(4)
Z not unique shortest vector ¥ € 9Dy, the boundary oA

so D is a fundamental domain of the translation group I; its volume is by definition
that of the lattice:
volDy, = vol(L). 3(5)

We can also translate 3(2) into:
Dp={fe R Vle L, (Z0)<-((D}. 3(6)

That shows that Dy is the intersection of the half-spaces containing o and bounded by
i : 5
the hyperplanes bisectors of the segments of, £ € L. That implies that D} is convex.
Since Dy, has been defined in terms of norm or scalar product of vectors, the symmetry
L I ] ¥

group P} of the lattice is symmetry group of the Voronoi cell Dy .

Corona vectors. We say that 0 # ¢ € L is a corona vector if the Voronoi cell
centered at ¢ = o+ ¢ # 0 has common points with the Voronoi cell at the origin; then
=0+ %éi the middle of oc is one of these common points: moreover

¢' is the symmetry center of Dy (o) N Dp(c).
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Denoting by 2L the lattice whose vectors are 2(, { € I and denoting Dy, as 2D;, we
can give two equivalent definitions of ', the set of corona vectors of L:

C={ce L, D(o)NDylc) # 0} & C = LNs2Dy,. 3(7)
From 3(3) we deduce the lemma
Lemma 3-1. The corona vectors are the shortest lattice vectors in their L /2L cosets,
Equivalently:

FeECE&YO<Iel, NE+20)—N@) >0 él+ NI > 3(8)
Remark ¢ € €' = —¢ & C. So, for the number of corona vectors, we have the inequality:
202" = 1) < |C]. 3(9)

In 3(8), let us replace 2 by m > 2:

FeCm>2 Yo<felL m ' (NE+ml)—N@)=

= 2E0+ N()) + (m — 2)N({) > 0. 3(10)

This shows that a corona vector is the shortest vector in its coset L/mL, m > 2. So
for m = 3 and ¢ # 0, we obtain:

C]<3" -1 3(11)

That proves that the number of supporting hyperplanes of 9Dy, is finite. Moreover
these hyperplanes cannot be all parallel to a direction since volDy, finite. So

Dy is a polytope of center o.
Face vectors. When the bisector plane of the corona vector ¢ supports a face of
dimension n — 1 of Dy, we say that ¢ is a face vector. We denote by F' the set of face
vectors:

F={feC, dmD.NnD.(f))=n-1}CC. 3(12)
The equation of the plane bisector of a lattice vector [ is jEZ )= 3N 5;"; SO we can
give a definition of Dy knowing F:
b P ey 1 AT/ Ao I4
Dy ={7, Vfe \f. 8 < -N(H} 3(13)
, SV

ot

Theorem 3-1 (Voronoi). A lattice vector [ is a face vector if and only if +f are
strictly shorter than the other vectors of their L /2L coset.

Proof of “if”. Assume that in the same L/2L coset there are other corona vectors
+¢, N(¢) = N(f);s0 { = L(f +¢) € L. Then one computes 2(, é; = N( f f ¢) =

‘Z‘v’(g, c@z;zpazmg with equation 3(13) that means that 1 f is in the face of center %c

With fv;‘f; = N{(¢&), that implies f = C.
Proof of “only if”. Assume that 4¢ are stricly shorter in their L/2L coset and that
the corona vector is not a face vector: ;¢ belongs to the boundary of a face of center
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L[ 50 (f.e) = N(f). The middle of the vector ¢/ = 2f — ¢ is in the same face (it
is the symmetric of } ¢ through the face center); so ¢ is a corona vector in the same
L/2L coset as ¢. However N(¢') = N(c) +4N(f) —4(f,¢) = N(¢) which contradicts
the hypothesis.

This theorem proves that the number of faces is < 2(2" — 1). A lower bound is
2n; indeed, at least n pairs of parallel hyperplanes are necessary to envelop a bounded

domain. Gathering these results and those of 3(9) and 3(11):
2n <|F)<2(2" - 1) < 0] <3 — 1. 3(14)
We will prove the following equivalences:
[Fl=22"-1) & |C]=2(2"-1); 2n=|F|&|C|=3"-1. 3(15)

From the theorem 3-1, if [F| is maximum, F = C and conversely. In dimension n,
remark that if a Voronoi cell has 2n faces, each hyperplane of a parallel pair has to be
perpendicular to the hyperplanes of the other pairs. That means that one can take as
basis n orthogonal face vectors; in that basis the quadratic form ¢(L) is diagonal. If
its elements are all different, the Bravais group Pf ~ ZJ contains all diagonal matrices
with elements +1; its Bravais class is usually called “orthorhombic P-lattice”. When
the multiplicites of equal elements in the diagonal ¢(L) are n;, the Bravais group is
the direct product x;0,,(Z). As we have seen, in the particular case where ¢(L) is
proportional to the unit matrix, the Bravais group is O,,(Z) and the Voronoi cell is an
n-dimensional cube. For all the cases in which [F| = 2n, the center of all d-dimensional
facets is the middle of a corona vector; so |[C] = 3" — 1.

For the dimensions 2,3, 3(14) reads:

n=24<|F|<6<|CI<8 n=3,6<|F|<14<]|C| <26 3(15')

§3-2. Delone tessellations. Primitive lattices.

A vertex of a Voronoi cell is at the intersection of at least n bisector hyperplanes
corresponding to (at least) n + 1 points of L. Those form the L subset

LDP,={leL, visa vertex of D({)}. 3(16)

The vertex v is equidistant from all points of P,; in other words: all points of P, are
on a sphere of center v.

Definition: The Delone cell ® Ap(v) is the convex hull of P,.

Since they are on a sphere, the points of P, are the vertices of Ap(v) and this polytope
is inscribed in a sphere of center v. We leave to the reader to prove that the Delone
cells of L form a tessellation of the space £, and of the following result:

the Voronoi and the Delone tessellations of the lattice I are dual of each other; i.e. for
every integer d 0 < d < n, to every d-dimensional facet ®; of the Delone tessellation
corresponds a unique n — d-dimensional facet F,_; of the Voronoi tessellation and

*Voronoi [11] has defined these cells and began to study them for arbitrary lattices. They have been studied
more thoroughly by Delone.
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¢, L F,_g4; and conversely: to every d-dimensional facet F; of the Voronoi tessellation
corresponds a unique n—d-dimensional orthogonal facet ®,,_; of the Delone tessellation.
In the Euclidean space &,, a sphere is defined by n 4+ 1 points in general position
(so they are vertices of a simplex). If more than n + 1 points are on a sphere they are
not metrically in general position.
Definition: A lattice L is primitive 1% if, and only if, every vertex of its Voronoi tes-
sellation belongs to exactly n + 1 cells or, equivalently, if, and only if, every one of its
Delone cells is a simplex.

Lemma 3-2a. In the Voronoi tesselation of a primitive lattice, every d-dimensional
facet Fy belongs to exactly n + 1 — d adjacent Voronoi cells.

Indeed every vertex of this facet is the intersection of n bissector hyperplanes
and this facet is supported by the intersection of a subset of n — d hyperplanes; they
separate n + 1 — d adjacent cells.

The Voronoi cells belonging to the Voronoi tessellation of a primitive lattice set
are called primitive Voronoi cells. There is a necessary condition to be satisfied by
primitive Voronori cells.

Lemma 3-2b. An n-dimensional primitive cell must have 2(2" — 1) faces (or, equiv-

alently, F' = ().

If this condition is not satified there is a corona vector ¢ which is not a face
vector. For instance if 1 ¢'is the center of a d-facet (d < n—1) which is the intersection
Dr(c) N Dy(o); it contains at least d + 1 vertices. At any one of them, there is a cell
whose intersection with Dy (o) has dimension d < n — 1, so there are more than n cells
meeting D (o) at this vertex v; so the cells are not primitive since more than n + 1
meet at v. That ends the proof of the lemma.

The set of d-faces, 0 < d < n, of alattice Vororonoi tesselation can be decomposed
into orbits of the translations. Let us study the intersection of these orbits with a given
Voronoi cell Dp(o). Let F; be one of its d-face; we have seen in the proof of lemma
3-2a that it is the intersection of n — d faces; let {£,}, 1 < a < n — d the set of their
face vectors; they give the centers o + 7, of the n — d other Voronoi cells which share
this d-face with ??;;{s:}) Each translation wég transforms Do + {C,; into Dy (o) and
therefore Fj; into {, + Fy, another d-face of the Voronoi cell Dy(0). That proves the

Lemma II 3-2¢. A primitive Voronoi cell contains exactly n+ 1—d d-faces which can
be obtained form each other by a translation of L.

We can now study the orbits of the group of translations and symmetry through
points and their intersections with ;. We will show that, except for d = n — 1, the
orbits of this group split into two orbits of translations. Indeed consider a d-facet Fj
of Dy and F} its symmetric throught the origin. If they were on the same translation
orbit, there would exists a translation —¢ transforming Fy into F); but we have shown

One could have said generic, but Voronoi used the word primitive when he introduced this notion for
lattices. Moreover, we are mainly interested by Euclidean lattices; for them we have already defined the
generic ones: those with the smallest possible symmetry. The primitive and the generic lattices {orm two open
dense sets of L., which do not coincide.
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in the proof of the preceeding lemma that ¢ is a face vector; so this is possible only if
d=n~—1 Whend < n—1, Fyand F} belong to two distinct translation orbits. We
will call family of d-faces the set of d-faces of Dy on the same orbit of the translation
and symmetry through points group of the lattice. So we have proven

Lemma II 3-2d. In a primitive Voronoi cell, the number of d-faces, 0 < d <n-—1, is

a multiple of 2(n + 1 — d), which is the number of d-faces in the same family.

In the particular case d = 0 that proof shows that, for a primitive lattice, the set
T of the vertices of the Voronoi tesselation forms a crystal of lattice L with WVi/(n+1)
points by fundamental domain. The Delone tesselation is another aspect of the same
crystal structure. The set T can be decomposed into L-orbits. Let T —s T|L the
canonical projection on the orbit space. A section "' YT|L -Z5 T is a choice of one
vertex (or one Delone cell) per orbit. The total volume of these chosen Delone cells
must be equal to the volume of the unit cell of the lattice

> vol A(v,) = |det(L)] = vol Dy. 3(17)

vaElme

Any vertex of the Voronoi cell of a primitive lattice L belongs to exactly n faces; their
face vectors are linearly independent so they form a basis of the space. Do they form
a basis of the lattice L? Not necessarily: they may generate only a sublattice L. So
we define:

Definition: A primitive lattice or a Voronoi cell are called principal if for each vertex
of the cell, the face vectors of the n faces meeting at this vertex form a basis of the
lattice.

That definition implies an important property of the Delone cells of principal
primitive lattices: they have all the same volume. Indeed, they are simplexes defined
by the n edges of their vertex o, i.e. the n face vectors f, forming a basis of the lattice;
so the volume '? of each Delone cell is (n!)~! det f, = (n!)~tdet L.

Lemma 3-2e. A principal primitive Voronoi cell has (n + 1)! vertices.

When all Delone cells have the same volume, we can replace the sum in the left
hand side of equation 3(17) by the product by |V|/(n + 1), the number of vertices
by fundamental domain in the crystal T of Delone cells of a primitive lattice. That
equation becomes |V| = (n + 1)(det L)/ vol A(v) = (n + 1)n!.

Corollary 3-2e. A principal primitive Voronoi cell has (n+ 1)n/2 edges.

Indeed, in a primitive lattice, n edges meet at each vertex and each edge has two
vertices.

"It has to satisfy ¢ o 7 = Iv, the identity map on 1.

"“Here is a proof of the formula given the volume of a n-dimensional simplex defined by a vertex at the
origin and n vectors. First assume that these vectors are mutually orthogonal and have same length r. The
volume is of the form K, r" = f{; Raoi{dp™ [dp)r = p)dp, so By = 0™} Koy, ie. for vectors of unit length,
the volume of this simplex is K = (n!)™'. The group GL,(R) acts transitively on the bases of the vector
space: the matrix which transforms an orthonormal basis into the basis { £} has for determinant det f, so the
volume of the simplex is (n!)”"" det f,.
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Voronoi found that there are non principal primitive cells only for n > 4 and
that there exist some for n = 5; they have one family less of vertices, that is [V| = 708
instead of 720.

We denote by Ny(n) the number of d-faces of the Voronoi cell of a n dimensional
primitive lattice. They satisfy the relation imposed by the Euler-Poincaré characteris-
tic:

Y Ny(n)=1+(-1)" 3(18)
0<d<n—1
With our knowledge of Ny(n) for d = 0,1, n— 1 we know all these numbers upton =4
for primitive cells:

No(2) = N1(2) = 6, No(3) =24, N:(3) = 36, Ny(3) = 14;
No(4) = 120, Ny(4) = 240, Ny(4) = 150, Ny(4) = 30. 3(19)
§3-3. Voronoi cells in two dimensions.

First we notice that for the quadratic form ¢ of 2(45), when the 3 Selling pa-
rameters are strictly positive, the six vectors 4b;, i = 0,1,2 are face vectors. Indeed
2(44) shows that their norms are sums of two \’s and the norm of any other vector is a
linear function of the 3 lambda’s with some (or all) coefficients strictly larger. So the
Voronoi cell ** is a centrosymmetric hexagon.

From lemma 3-2d we remark that in dimension 2, all vertices belong to the same fam-
ily; by an elementary geometry proof that shows that their 6 vectors have same norm,
so a two dimensional Voronoi cell is inscribed in a circle 14,

We will call v; the 6 vertices. To precise the notations we indicate their incidence

into the edges (that we denote by their face vector):

gi§ “523 mgfh i;i? 527 —“{f%» Wg}% {;?3 gﬂ? B'?:;l'; '—g?a 507 gl- 3{2{})
The equation of the support line of the face b, is:
(b, q(b — 27)) = 0. 3(21)

We obtain for instance the coordinates of vy by changing 7 into @y in the two equa-
tions written for b, and b;. Denoting det(q) computed in 2(46) by D, we find for the
coordinates:

i (} - }{}2}3}2/{&
vy o= - ,
ol AotArz/ D

s E

> H {WE - ;)tggg/\%gg,f/z}% 1 [ I~ }’*Q?}*lEf!;}
i i )‘, Uz =

. Py o - - . . 3{223
2T T £ da /D kﬁmugmggg/ﬁ) ht

T}

Let us denote by ¢; the square length of the Voronoi cell edges orthogonal to the face
vector b;; we find

eo = N(# +v2) = Aiz(1 = dordoa/ D), €2 = N(i + v2) = Aaa(l = Aot ha/ D),

*In dimension 2, the nature of the cells was first determined by Dirichlet (Collected works of Lejeune-
Dririchlet t.II, p. 41} That is why we use the symbol D for them.
“Indeed this is also true for rectangles.
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€9 = ;’V(i;g + U;) = \01(1 - )ﬁ{)gx\}g/D), 3(23)
Thus e; is proportional to A, where 1,7,k is a permutation of 0,1,2. So when one of
the A’s vanishes, the corresponding edges shrink to zero and the Voronoi cell becomes
a rectangle. Indeed, from the syntactic symmetry, we can choose Aj, = 0 = ¢4 and
(51, 52} =0, Le. the face vectors of the non vanishing faces are orthogonal; notice that
q is diagonal. :
Finally we verify that the six vertices are at the same distance from the origin;
indeed )
N(v) = ;(/\12 + Aot + Aoz — A2 Ao Ao DY), 3(24)

This is still true when one of the \’s vanishes.
§3-4. Voronol generalisation of Selling parameters.

In [12] Voronot study the N = n(n + 1) parameter family of quadratic forms as
a generalisation of 2(44):

1< Z,j < n, Q(f) = Z,\gg:()? -+ Z ;\?;)'(:IC,' — ;’Ej)z, Aoi >0, /\5j > 0. 3(25)

i<y

The basis vectors b; and the vector g{) defined by

0<a,B<n, 3 b, =0, 3(26)
satisfy
(barba) = > Ao, a # 8, (b, bg) = —Ayp. 3(27)
B

Let us consider the vectors igg defined by:

N={1,23....n}, 0#KCN, b =35 3(28)
3

When all the parameters A’s are strictly positive, a simple generalisation of the argu-
ment we gave for n = 2, proves that the 2(2" — 1) vectors +bx are the face vectors, so
the Voronoi cell of the lattice defined by q 1s primitive. Voronoi showed that for n = 4
(and a fortiori for n > 4), there are positive quadratic forms which cannot be written
in the form 3(25) by aGL,(Z) transformation. He called those which can be written
as 3(25) with all A;; > 0, primitive of the first type; he showed that there are two other
primitive types for n = 4.

In the literature, one calls zone a set of parallel edges of a Voronoi cell; for
primitive cells it is one or a union of families of 2n edges (see lemma 3-2d). Voronoi
[12] extended to dimension n what we showed in the previous subsection for dimension
2, i.e. the edges of a family shrink to zero when one of the parameters A;; — 0. That
is generally called zone contraction; zone contraction may be made on several zones
successively up to the step when it becomes impossible (e.g. the cell collapses). Voronoi
conjectured that any cell could be obtained from a primitive one by this method, but
he added he could not prove it. Indeed there exists a counter-example already for
n = 4. Let us just remark here
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Lemma 3-4. It is not possible that the n \’s containing a fixed index are all zero.

Let o be this fixed index. Then 3(27) shows that N(b,) = 0. So the vectors b’s
span only a n — 1-dimensional space and the quadratic form ¢ is degenerate: det(q)0.

It was shown by Selling that every positive quadratic form € Qs can be trans-
formed by G'L3(Z) in the form 3(25); Voronoi proved that is not true for n = 4 and he
constructed the three combinatorial types of Voronoi cells existing in dimension 4. He
called the cells of the quadratic forms of 3(25) with all A > 0, in any dimension, the
primitive cells of the first type.

&4. Classification of 3 dimensional lattices

§4-1. The five types of Voronoi cells in dimension 3.

We recall what we already know on the primitive cell for the particular case n = 3
(see 3(19)). It has 24 vertices, 36 edges (three meeting at each vertex) and 14 faces.
The faces have a symmetry center; s of them have 4 edges and h others have 6 edges.
Since an edge is common to two faces,

4s+6h =172, s+h=14, = s=6, h=8. 4(1)

Delone [4],[5] introduced a symbolic representation of the four values 0,1,2.3 of the
indices in 3(26 - 27) as the vertices of a tetrahedron and of the six );; as the edges. The
tetrahedron has the same symmetry Sy as the syntactic symmetry of the parameters.
For this group, the 6 edges form one orbit, the 15 pairs of edges form 2 orbits of 12
and 3 elements which correspond to pairs of edges with and without a common vertex,
respectively; the 20 triplets of edges form 3 orbits, one of the 4 triangles of the face,
another of 4 elements (the three edges have a common vertex), the last one of 12
elements (the two possible paths of 3 edges, connecting the two vertices of an edge).
As we explained in the preceeding section, the different types of Voronoi cells
are obtained by zone contraction, i.e. by distributing 1,2,3 zeros on the edges of the
Delone symbol. It is not possible to put 4 zeroes because any quadratic form in Qs
with only two A’s has a zero determinant. For the same reason, lemma 3-4 forbids us
to put 3 zeroes on 3 edges with a common vertex. From our count of orbits it seems
that we have five possibilities; but we will see thal the two orbits of three vanishing
X’s yield the same type of cell.
Let us list the different possibilities:
N
|

AN

LN Xy, = 0, all choices are equivalent

N

N Ay = 0, Ags = 0, the 2 edges have no common vertex.

/}E , ‘ ¢
N Az = 0, Ags = 0, the guadratic form is a direct sum of a block 2 x 2 with

three parameters (correspond to hexagon) and one diagonal parameter fixing the
height of the hexagonal prism.
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& & A1z = 0, Ay3 = 0, and either A\ = 0 or \yy = 0, the quadratic form is

again a direct sum of a block 2 x 2 but with two parameters only; so it yields a
rectangle (see §2-3) and both cases yield a rectangular parallelpipede.

With the primitive cell, we have obtained five different combinatorial types of Voronoi
cells. The number of non zero parameters for each type of cells is also the dimension
of their domain in C4(Q3).

The map of successive zone contractions is:

A A A\ 1)

The table 4-1 gives all relevant information on the cells types.

Let us precise the position of the middle of the corona vectors which are not face
vectors for the different lines of table 4-1:
line 2; the middle of the 4 edges common to two hexagons (the 4 hexagons form a belt);
line 3: the 6 vertices of valence 4;
line 4: the middle of the edges of the two hexagonal faces: 20 — 8 = 2 x 6;
line 5: the 12 middle of edges and the eight vertices: 26 — 6 = 12 + 8.
The line 2 cell has a belt of 4 hexagons; on each side of the belt four rhombohedras
which meet at a valence 4 vertex. The line 3 cell is called dodecarhombohedra for its
12 faces are rhombohedras.

§4-2. The 14 Bravais classes and the 7 Bravais crystallographic systems.

We follow here the same strategy as for dimension 2. The proof of crystallographic
restriction for the order of rotation to 1,2,3,4,6 is the same. These five kinds of rotations
and their product by —/ give the 10 “geometric elements” which are listed in [7] under
the notation:

1,23, 4, 6(-)=1(3) =m, 3. 1. 6. 4(3)

(Caution: 3 is of order 6). These 10 geometric elements generate the 32 geometric
classes, i.e. the 32 conjugacy classes of subgroups of O, satisfying the crystallographic
restriction; their list was established independently by Frankenheim in 1826 and Hessel
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Delone |dim [6 -4 ||F| ||E|

Vi3 -4 [iC] L/2L

6 8-6 |14 [36 [24 (24-0 |14 12222222

) 4 -8 {12 |28 |18 |16-2 |16 (2222224

12 124 |14 |8-6 |18 12222226

4 2-6 |8 18 |12 (12-0 (20 (2222444

> > >

3 0-6 |6 |12 |8 18-0 126 (2224448

Table 4-1. Three dimensional Voronoi cells.

Column 1 gives the Delone symbol. Column 2: the dimension of their domain in C4(Q2). Columns 3,
4: the number of hexagonal and 4-edges faces and |F| the total number of faces. Column 5: |E| the
number of edges. Column 6, 7: |V], the total number of vertices and the number of those of valence
3 and 4. Column 8: |C| the number of corona vectors. Column 9: the number of shortest vectors in
each of the 7 non trivial L/2L cosets.

1830 (before the invention of the word “group” by Galois). Among them 11 groups
contain —/ and are therefore candidate to be stabilizers of Bravais crystallographic
systems. Among those 11 groups we shall obtain from our study of Bravais classes,
the seven of them which are holohedries: they define the 7 Bravais crystallographic
systems. We list them here in both notations, Schénflies and [7]:

Ci =1, Cyn = 2/m, Dy, = mmm, Dy, = 4/mmm,

D3y = 3m, D¢y, = 6/mmm, O = m3m. 4(4)

The next step in our strategy is to list the “arithmetic elements” that is the
conjugacy classes of G L3(Z) which are mapped by ¢ (defined after the proof of lemma
2-2) into those of O3. We know from §2-4 that there are two classes of reflections
(denoted by [7] as for n = 2 but with upper case) Pm, C'm. Multiplying the integral
matrices by —1, this implies the same dinstinction between P2, C2. We shall prove
below the distinction between P3 and R3 and therefore P3 and R3; we will leave to
the reader the corresponding study of the elements of order 4.

Pl P2 P3 P4 P6 PI Pm P3 Pi PG
C2 R3 I4 Cin R} 14 PB 4(

W23

Table 4-2. The sixteen arithmetic elements in 3 dimensions.
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We continue our strategy for the determination of Bravais classes. Here we first deal
with

The maximal Bravais classes

We have proven in §2-3 that three maximal Bravais classes are the one whose holohedry
is O3(Z) < O3, which is the symmetry group of the cube. The three lattices defined in
2(23),2(25),2(26) have the same holohedry but their Bravais groups are non conjugate.
These three groups are denoted in [7] by Pm3m = Os(Z), Fm3m, Im3m. Their
Bravais domains are | dimensional (in C*(Q3)). Indeed one can choose such bases that
the set of their quadratic forms are ¢p, g, qr defined hy 17:

1. 1
)y qr = i{[(

3

Jii= 10> 0, q(b) =14+b(J 1), qp =t =1q(0), qr = tq(

b - ). 4(6)
2
These 3 Bravais classes Pm3m, Fm3m, Im3m are mapped by ¢ of 2(16) on the
crytallographic system !¢ called cubic.

The intersection of the stabilizers of these 3 quadratic form is a stabilizer (lemma
1-2); it fixes the 2-parameter quadratic forms tq(b) whose positivity conditions are

—2 < b< 1. This group R = (—=1,7r,m) is generated by the matrices !7:

00 1 0 1 0 1
=10 0, m=11 0 0], —-<b<l, gp=tq(b) = Cy(Qs)".
0 1 0 0 0 1 :

4(7)
R is a maximal subgroup subgroup of Os3(Z); in it, its index is 4. It is therefore a
Bravais group; its Bravais class is denoted by R3m.
The conjugation of the matrices r,m by the matrix u € G Ls(Z) gives:

1 0 0 10 1 1 I 0
u=1| -1 1 0 r=uru' =10 0 1|, m=umu'=]0 —1 0
-1 0 1 0 1 -1 0 -1 1

4(8)

That shows that this representation of the group R is reducible: indeed the first vector
of the basis is invariant. However the matrices of the group are in upper triangular
form for two diagonal blocks of dimensions 1 and 2.
By a conjugation in G'L3(Q) the matrices ' and m’ could be completely decomposed
into a direct sum of two integral representations of R (a one dimensional one & a
faithful 2-dimensional one) but using arguments similar to those which gave 2(30), one
can show that it is impossible to change by a conjugation in (GL3(Z) the value mod2 of
the second and third elements of the first line of #' and m’. So this integral reducible
representation of R is indecomposable by (¢ Ls(Z).

To construct the two other arithmetic classes mapped by ¢ to the same geometric
class 3m we define the matrices 7/ , 1" which are a decomposable representation of »', m/’

“The generalisation to dimension n is trivial: replace 3 by n at the end of 4(6).

*“In dimension 3, for the five Bravais crystallographic systems which coincide with the Weiss crystallographic
systems (defined only in dimension 3) we simply say here “crystallographic system”.

"1t is isomorphic to the 12 element dihedral group. To show that is a too poor information for our subject,
we note that the isomorphic groups form 4 conjugacy classes in Us and 7 in G La(2)).
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with (for our convenience) a permutation of the two diagonal blocks and we also define
the matrice /n” (obtained from 7’ by changing the sign of the 1-dimensional block):

0 —1 0 ~1 0 0 -1 0 0
M=11 -1 0|, w'=|-110], m=|-11 0/]. 409
0 0 1 0 0 1 0 0 -1

YR

The two groups R’ = (—I,#',/') and R" = (—1,7,m”) and the group R are in the
same conjugacy class '® of G'Ls(R), but they belong to 3 different arithmetic classes
denoted in [7]: R3m, P3m1, P31m.

By an easy computation one finds:

1 1o
2 i $31
a>0,e>0, gu=all 1 0]=0C(Q)" =Ci(Qa)" =0C(Qs)" Cgc, 4(10)
0 0 =

where H = (R', R”) (q¢ will be defined in 4(14)). The 24 element group H is denoted
by P6/mmm in [7]. It belongs to a maximal geometric and (therefore) also maximal
arithmetic class so it is a maximal Bravais group whose label is P6/mmm. That Bra-
vais class is the only one of the corresponding Bravais crystallographic system; it is
called Hexagonal system. Indeed P6/mmm is the symmetry group of a regular hexag-
onal prism.
We have given the example of three arithmetic classes mapped by ¢ in the same ge-
ometric class, but the lattices they leave invariant belongs to two different Bravais
crystallographic system. That is the example mentioned in the “remark” after lemma
2-2.

We continue our strategy by starting from the minimal Bravais class. In dimen-
sion 3, the arithmetic class of the group generated by I, —1 is denoted P1 (see 4(3)).
As we saw, it is the kernel of the linear action of GL3(Z) on the 6 dimensional vector
space Q3 and therefore (by theorem 1), it is the minimal Bravais class. Its domain is
6 dimensional. It is the only Bravais class of the triclinic crystallographic system.

We now study the action of the reflections. The matrices

1 0 0 0 1 0)
s3=10 1 0 1e€Pm, m=}1 0 0]€Cm, 4(11)
00 -1 \o 0 1

(m was already defined in 4(7)) are representatives of the two GL3(Z) conjugacy classes

of reflections, denoted by Pm and Cm respectively. We study now the domain in
C4+(Qs) invariant by them:

*

a b 0
a>0,¢>0,e>0, ac=b">0, ga=1b ¢ 0] =09, 4(12)
6 0 e,
a b d
a—|bl >0, ae—d* >0, (a+ble—2d*>0, gg=|b a d|=0QF.  4(13)
d d e

¥One shows they are conjugate in the 48 element normaliser of H = (R, B”) in GL:(R).
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These 4 dimensional domains are invariant respectively by the group A = (~1, ;) and
the group B = (~I,m). By applying corollary 1-1 we prove that these groups are
stabilizers and therefore Bravais groups, whose conjugacy classes are denoted by P/2m
and C'/2m respectively. We know that (in any dimension) there are only two Bravais
classes in this crystallographic system: it is called monoclinic.

The group C' = (—1I,s3,7) = (A, B) belongs to the arithmetic class denoted by
Cmmm. The domain invariant by this group is the intersection of the two domains

defined in 4(12-13):

a b 0
a—1b>0,e>0, ge=1]b a 0 =qaNgp =C4(Q3)" NCL(Q3)"  4(14)
0 0 e

Checking that this group is stabilizer of points in the domain, corollary 1-1 proves that
Cmmm is a Bravais class. Its holohedry is mmm = Dy, ~ Z3. That holohedry defines
the orthorhombic crystallographic system.

We know also the existence (in any dimension) of the P-orthorhombic Bravais
class denoted by Pmmm. A representative group is the group D generated by the
diagonal reflections (one element of the unit matrix is changed of sign; example s3). It
fixes the 3-dimensional domain of diagonal quadratic forms:

a 0 0
a>0,¢>0,e>0, gp=[0 ¢ 0] =0Cr(Q3)". 4(15)
0 0 e
The 2-dmensional domain fixed by the group Q = (C, D) is
a 0 0
a>0,e>0, go=10 a 0] = C+(Q3)Q = qc N gp. 4(16)
0 0 e

@ ~ Dy = 4/mmm is a maximal subgroup of O, = m3m of index 3. So it is a Bravais
group. Its Bravais class is denoted by P4/mmm and its crystallographic system is
called tetragonal.

We have already found 11 Bravais classes. By inclusion of the different domains
gx fixed by group representatives of these classes we have also established their partial
ordering (see figure 4-2). To find more Bravais classes we will apply Theorem 2 (at
the end of §1). In order to do that we first build the normaliser NV = Nary(z)(B),
B € C2/m. Then we will study the action of N on the 4-dimensional domain ¢g =
Ci(Q3)".

We first notice that B = (—1,m) is in the center of N: indeed G « N, so every
n € N has to conjugate the 4 matrices I,—1,m,~m of B into each other; since the
matrices of B have different traces, n commute with them. So N = Cgr,z(B), the
centralizer of B in GLs(Z). To compute this centralizer. it is sufficient to find the
integral matrices n which satisfy nr = rn and impose their determinant to be +1:

a [F 6
n=10 o 6|, detn=(o- Byl + B) — 288). 4(17)
\ " & )
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cubic

hexagonal

tetragonal

trigonal

orthorhombic

monoclinic

triclinic

Figure 4-2. Partially ordered set {BC'}3 and { BCS}3 and the map ¢.

The left diagram shows the partial order on { BC}3, the set of the 14 Bravais classes and the right one
shows the partial order on {BCS}3, the set of the 7 Bravais crystallographic systems. Their names
are given in the last colummn. The first one gives the order of the groups. The dotted horizontal

lines represent the order preserving map ¢ defined in equation 2(16).

Each factor of the determinant should be +1:

E=1n"=1, a=f=c¢, y(a+B)—266 =1 = a+fisodd, visodd, detn = en.

4(18)
One can check that N is generated by the matrices:
10 1) /(1 0 0
~I, m, 83, d=10 1 1 L d = { 0 1 07. 4(19)
00 1) 111

As we have seen the group C(—1,s3,7) fixes the 3-dimensional domain ¢ C ¢p (see
4(14)). Since the stabiliser of any lattice is finite, the orbits of N in ¢g are infinite.
Finite groups of N are crystallographic point groups; therefore each one containig B
as strict subgroup will have a linear manifold of fixed points corresponding to a larger
Bravais class. To find the finite subgroups of N, we must first determine their elements
of finite order. As for GL3(Z) their order can be only 1,2,3,4,6. Elements of order 3
must have for eigen values the three cubic roots of 1, so their trace, trn = 7 = 2a + 7,
must be 0. That is impossible as, from 4(18), we know that ~ is odd. Hence N has no
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elements of order 3 or 6 (the square of the latter would be of order 3). Writing from
4(17) the equation n? = 1 yields the following conditions in supplement of those of
4(18), and combined with them:

V4208 =1, 2a(a—¢)+68 =0, §(r—e)=0=¢8(r—=c) with 7 = trn. 4(20).

Since the eigenvalues of these matrices are +1, their trace can be either —3or 1. In
the former case we find easily that n = —J. When the trace r — +1 we must have
trn +detn =0 so

T =2a+7y = —ey. 4(21)

That, with the first two conditions of 4(20), yields n = —1. Notice that for elements
of N which are squares, ¢ = § = 1, so there are no elements of order 4 in N. That
proves that in N, all non trivial elements of finite order are of order 2. Hence all
finite subgroups of N have the structure 75 and we know from the study of GL3(Z)
subgroups (or of the geometrical classes), that & < 3.

It is easy to verify that the largest finite subgroups of N represent 3 of the
four conjugacy classes of 73 subgroups in G L3(Z); explicitly, representatives of the
conjugacy classes Cmmm, Fmmm and Immm are !9

C = {(m,s3,~I) € Cmmm, F' = (m,w", ~I) € Fmmm, I' = (m,w,—1I) € Immm,
4(22)
with
0 1 0
w=|1 0o o |, 4(23)
-1 -1 -1

It is straightforward to compute the 3-dimensional domains of the groups F” and I’
one obtain the following planes in ¢g

g =qaN(a+b+2d=0), gqp=qgn(—e+2d=0). 4(24)

One verify with corollary 1-1 that F’ and I’ are stabilisers. Hence we have found 4
Bravais classes: Pmmm,Cmmm, Fmmm Immm corresponding to the orthorhombic
crystallographic system.

Finally, we are led to consider the group Q' = (F' I') with the 2-dimensional
domain it fixes. This group is isomorphic to 4/mmm ~ Dy, maximal subgroup of Oy.
It has to belong to a Bravais class, just smaller 20 than the Bravais classes F'm3m and
Im3m. That completes our determination of the Bravais classes.

§4-3. The Delone symbols belonging to a Bravais class.

The type and symmetry properties of a Voronoi cell is completly characterized
by the Delone symbol. As we shall see, there are 9 Bravais classes whose all lattices
are represented by a unique Delone symbol. Consider for instance the Bravais class

' Among the different method for distinguishing the two point groups Fmmm and I'mwmm, the fastest one
is the computation of their fixed points (i.e. their cohomology group H®(P, L)) by their action on the lattice
L: Fmmm has 2 fix points and mmm has 4 of them,

*In the basis used, the verification is a little tedious.
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Pmmm and the larger ones, P4/mmm and Pm3m. We have already seen that their
Voronoi cells are of the type 6-20 (meaning 6 faces and 20 corona vectors which are
not face vectors). They are rectangle parallelohedrons; hence they have 3 zones (=
families of parallele edges: they have the same length) corresponding to the three non
zero parameters of their Delone symbols. For the tetrahedral lattices in P4/mmm two
zones have same length and for the cubic lattices in Pm3m the three zones have the
same length. To summarize

Pmmm : A,} P4/mmm : A} Pm3m : A 4(25)

Similarly for the ordered sequence of Bravais classes: P2/m, Cmmm P6/mmm the
Voronoi cells are of the type 8-12: they are hexagonal prisms with 4 zones. The length
of one gives the height of the prism; it is always arbitrary. The three others correspond
to the opposite edges of the two hexagonal faces (they have a symmetry center). The
equality of two or three of these zones is seen on the Delone symbols:

P2/m : &, Cmmm : &§ P6/mmm : A 4(26)

Table 4-2 gives the list of the Delone symbols describing the Voronoi cells of the
lattices belonging to a Bravais class. The last column gives the dimensions up to a
dilation. Indeed all geometrical properties we are studying are invariant by dilations
including C4(Q3) itself! It is convenient to remove the scale by the stereographic
projection as we have done it for dimension 2 (see for instance figure 1-2). An equivalent
table was first given by Delone in [5].

Consider for instance the generic Bravais class P1. Its stereographic projection
has dimension 5 and as we explained the generic Voronoi cells are primitive with
different length for the six zones. When one of the parameters A — 0 there is a 4-
dimensional boundary of type 12-4 cells. More precisely there are 6 boundaries (one
per A) supported by hyperplanes, so they form a simplex ¥ containing the domain of
primitive Voronoi cells, But the largest possible stereographic dimension for the Bravais
class domains other than that of P1 is 3. So their domains are in the intersections
of the faces of the simplex ; that is on its edges. And the 4 dimensional domain of
Voronoi cells of type 12-4 with their five zones all inequal is inside the domain of the
minimal (and generic) Bravais class.

As table 4-2 shows there are 5 Delone symbols for describing the cells of the
lattices in P2/m4=Mono C. There are two different ones for primitive cells (type 14-0
with 14 faces: 8 hexagons and 6 tetragons)

F. 3
/1N I\ 0
a: £ b: 4(27)

The symmetry 2/m is generated by the symmetry through the origin (all cells have
it) and a rotation by 7. In case a: the rotation axis passes through the centers of two
tetragons (symmetric through the origin); in case b: the rotation axis passes through
the middles of two edges (symmetric through the origin), each one common to two
hexagons.
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Voronot 14-0 12-4 12-6 8-12 6-20 dim.
f;‘v’i
Cubic P S\

Cubic F éé\ 0
Cubic I A 0
Hexa P ég 1

>
S

Trigo R 1,1
Tetra P £§ 1
Tetra 1 A A 1,1

Ortho P A 2
Ortho C A 2

Ortho F A 9
0 )
Ortho | A ég A 2,21
Mono P 2;1\ 3
Mooc| A A A 332
A E
Mono C é{:_i& & 3.2
;‘{?\ q\\ f&g
Trich P LAY N AN %A’%’{;

Table 4-2. List of the Delone symbols describing the Voronoi cells of the lattices
belonging to a Bravais class.

The first column lists the Bravais classes. The last column gives the dimensions up to a dilation, of
the different domains of cells; the first dimension is also that (up to a dilation) of the domain of the
Bravais class in C(Q3).
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