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ABSTRACT

The aim of the preceding paper was exclusively to study carefully the mathematical
properties of band representations, like to show the surprising result that all simple
band representations for infinite space groups are weakly equivalent, but not to discuss
its impact on the physics. Long discussions during and after the Summer School have
motivated the authors to comment on the physical importance of the results of the
preceding paper in this short contribution.

1. General Remarks on Band Representations

We shall denote that paper DZD. It recalls carefully the formalism used in solid
state physics for the study of bands: Wannier functions and Bloch functions which
form respectively a countable orthonormal basis and a continuous (pseudo-) basis for
the Hilbert space L?(R3) of functions on our physical space. These two bases are
transformed into each other by a generalized Fourier transform. It also makes the
comparison with the formalism obtained when one replaces the space group by a finite
group, as proposed by Born and von Karman. Then the paper studies some band
representations of the space group (7, that is the representations induced from an
irreducible representation D* of a local group, i.e. the little group G, of a point in the
action of 7 on our space R3. The strata! of this action are called Wyckofl positions
in the International Tables of Crystallography (ITC) [15]* which tabulate them for
each space group. The Wyckofl positions are in one to one correspondence with the
conjugacy classes of local groups. So there exists among them a partial ordering;

'If necessary see in this book L. Michel's lectures for the basic concepts of group actions.
“The references given by numbers between square brackets are those of the commented paper.
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unhappily it is not given in the ITC. Since €/, C € does not contain translational

subgroups, the restriction of the group homorphism 6 - G/T = P to G, is an
isomorphism with a subgroup IFFH = 6((,) C B of the point group? B. Beware that
several distinct conjugacy classes of €7, can correspond to the same IFH. It is easy to
prove that the group generated by (7, and the translation subgroup ¥ is a semi-direct
product (= symmorphic) group TE,. That limits the list of possible IFH C B. So
a band representation is defined by the local group 7, (up to a conjugation in () and
one of its representation D*. We simply denote:

D@e)1® = [nd% D, (1)

where ¢ is the label of a Wyckoff position in the ITC.

We call a band representation elementary if it cannot be decomposed into a
direct sum of band representations. The possible ones are induced from irreducible
representations D of maximal finite subgroups? [5]. But that necessary condition is
not sufficient: some of those representations are not elementary?®; among the elementary
ones, some are equivalent®. The classification of the equivalent classes of elementary
band representations has been made in [13]. The authors used Frobenius reciprocity
theorem: On one side one uses only finite dimensional irreps of & and of (7,. This
well defined side gives a meaning of the ill defined other side that contains the infinite
dimensional BR. In general the energy of an elementary band is a multivalued function
on the Brillouin zone. The number of energy branches of the band is: “(index G, in P)
x (dim D)” (see e.g.[13]). The commented paper studies only the simple bands, i.e.
those with one branch only. For them 6(@,) = B (so  has to be symmorphic) and
dim D = 1. Simple band representations (=SBR) are elementary. Among the 890 of
them, [13] proved that only fourteen pairs are equivalent:

#22 = F222: Byo = By, Bew = Bya, o=1,2,34 2)
#196 = F23: Boo = Byo, Bew = By, a=1,2,3. b

2. Finite Space Groups

Most solid state physicists use the term finite space groups for what we shall call
here BvK, since they were first proposed by Born and von Karman [a]”. That is the
case of references [3-10]. DZD studies by this method the case for the non Abelian one
dimensional space group, and, in 3 dimensions, F222 and Pm3m; these three examples
are treated correctly, but the general statement in the conclusion is wrong; indeed the
authors did not guess the deep cause of the facts they observed.

Let us recall that Bravais (and Frankenheim), C. Jordan, Schénflies, Fedorov
studied only the classification of infinite space groups and their lattices. The study of

*The point groups "B are defined up to a conjugation in the orthogonal group {=geometric class}.
It is easy to prove that they are litile groups of points of space.

°First example found in [10].
®First example found in [4].

"The reference of his paper are labelled by a letter between square brackets,
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finite space groups, whose translation groups are finite, is much more complex [b] than
for infinite ones. There exist infinitely many groups that are not correlated to the 230
space groups. So the BvK groups are considered only as a finite homomorphic image of
the true (i.e. infinite) space groups: Gx = /(NT) whose number of elements is |P|N?
when® N > 0. As we shall explain, one has to reject many values of N. A mathematical
theorem states that if N and |B| are relatively prime, then the corresponding BvK
group is the semi-direct product Gy = Z}©P; so this BvK does not distinguish
between the different space groups of an arithmetic class®. So non-symmorphic groups
could have simple bands! For instance if N is even and not a multiple of 3, Gn
represents both P3 and the enantiomorphic pair of (isomorphic) space groups P3;
and P3,. Notice that this group has only 3 equivalent classes of elementary band
representations, depending on the choice of the inducing one dimensional representation
of P ~ Z3 but independent of the position ¢, while for N a multiple of 3 (independently
of its oddness or evenness), there are 3 distinct Wyckoff positions and therefore 9 simple
band representations.

To summarize: The value of N must satisfy the following three conditions:

1. The Gn’s for the different non isomorphic space groups of an arithmetic class, are
non isomorphic; that N is not relatively prime with |PB| is necessary, but not sufficient
e.g. for the groups of the arithmetic class P6, N must be a multiple of 6.

The homomorphism ¢ — Gy must define a bijective (= one to one onto) correspon-
dence between the strata of the respective actions of ¢ and Gy,

2. on their respective Brillouin zones (= BZ) 83 and Zj}

3. i.e. the Wyckoff positions of the respective spaces R® and S3.

These conditions are satisfied when N is a multiple of 12 (also stated without
explanations in [13]). The number of Wyckoff positions with ¢, ~ P for Gy divides the
number of those for G. When the former number decreases, of course the corresponding
band representations become equivalent since they become induced from conjugate
subgroups of G/n. Notice also that the “good” values of N may imply unwanted
properties of (7. For instance F222 has no centre and 4 Wyckoff positions with point
group symmetry 222 = D,; the number of elements of the centre of F222y is equal to
the number of its Wyckoff positions; that number is 1,2,4 for the respective set of N
values: N odd, N = 2mod4, N = 0mod 4.

Nearly 60 years ago Wigner and his collaborators explained to us the richness
of the use of the true space groups in physics. Let us quote some sentences from the
introduction of the paper:

Theory of Brillouin zones and symmetry properties of wave functions in crystals.

o

L.P. Bouckaert, R. Smoluchowski, E.P. Wigner, Phys. Rev. 50 (1936) 58-67

®Remark that Go = € and G, = [

? An arithmetic class is a conjugacy class of a finite subgroup of GL.{Z). It defines an action of ‘B on the
lattice ‘%, For all n Jordan proved thai the pumber of arithmetic classes is finite. For n = 3 it is 73; hence the
existence of 73 symmorphic groups. The international symbols {in I'TC) for the non symmorphic space groups
of an arithmetic class are obtained from the symbol of the symmorphic ones by adding indices in the figures
(skew rotations) and//or replacing some letters m (representing reflections) by a,b,¢,d, n (different types of
glide reflections). The international symbol of a space group gives its group law: the {older) Schénflies symbols
are inferior; they should be obsolete.



340 B. L. Davies, R. Dirl, L. Michel abd P. Zeiner

Thus far the group theory of the B-Z is not different from the group theory
of any other system. But while in atoms, molecules, etc., the characteristic
values of (1) [= the eigenvalues of the Schrédinger equation for bound states] are
well separated, the characteristic values of (1) for a crystal form a continuous
manifold....[for instance the energy £ is a function over the B-7].

Thus a certain topology for the representations must exist and it will be shown
that part of this topology is independent of the special B-7. |...]

[The introduction ends with the sentence}:

The investigation of the “topology” of representations will be essentially the sub-
Ject of this paper, from the mathematical point of view.

This paper never mentions the Born-von Karman method. It }s worth quoting its
footnote 10a: The case of accidental degeneracy will be treated in a paper by C. Herring,
to appear shortly [Phys. Rev. 52 (1937) 365-367). We wish to thank Mr C. Herring
for interesting discussions on this subject.

3. Infinite (True) Space Groups

The simplest way to extend the study of SBR from BvK groups to infinite space
groups is to do it in the Wannier basis; one passes from the N3 x N3 matrices to infinite
matrices in an enumerable basis. DZD do it first for the simplest possible case: the
space group in one dimension containing the inversion through the origin. They obtain
a very striking result: when N is even, there are four inequivalent SBR; but, in the
Wannier basis, they are all equivalent for the corresponding infinite group! That is a
particular case of the general theorem they prove:

Theorem. For each (true) space group, all SBR are weakly equivalent.

The notion of weak equivalence that DZD introduced, means equivalence by a
unitary matrix (denoted by S) in the Wannier basis, but in the continuous Bloch basis,
the function F(k), which represents the diagonal intertwinig matrix has to vanish on a
subset of the the higher symmetry strata of BZ (it is modulus one on the generic - open
dense - stratum). Since the union of non generic strata has zero measure that pathology
of F'(k) has no effect on the value of the integral (27) which defines S from F(k).

4. Critical Comments and Outlook

The Mackey theory [10] of induced representations of locally compact groups
applies to the very particular case (from its point of view) of space groups; since it is
a measure theoretic formalism, it also forgets the (zero measure) non generic strata of
BZ; so it yields the more general theorem: For each true space group, BR with the
same number of branches are equivalent! That theory is useless to physics, just as the
weak equivalence studied by DZD.

In that paper the authors point out that in the basis transformed by the matrix §
of a weak equivalence, the Wannier functions are no longer (exponentially) localisable.
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Their paper also proves that for weak equivalence, F'(k) cannot be continuous. In
[12] it had been shown (using limits of BvK groups) that it is also the case for the
equivalence (found in [13]) inside the 14 pairs (given here in (2)) of SBR. The proof
of DZD is better and it shows that this non continuity of F(k) is compatible with
|F'(k)] = 1 everywhere on BZ.

It was proved by Kohn [c] in one dimension and by Nenciu [d] in 3 dimensions,
that the Wannier functions of SBR can be chosen to be analytic functions. Instead
of using a Hilbert space of square integrable functions, one may wonder that physics
might require Hilbert spaces of analytic functions (first used by Bargmann [e]), although
nothing is known about the analyticity of Wannier functions for the BR with several
branches.

It was first shown by Herring [f], that the matrix elements of some representations
of two non symmorphic groups could not be analytic on BZ, but only on a multiple
covering; that is true for any non symmorphic group. That is an example of a certain
topology for the representations predicted by the quoted BSW paper. Indeed, when
one makes closed loops on BZ, some sets of 7 unirreps have their elements permuted.
However, for the direct sum of the unirreps in such a set, one can make analytic the
matrix elements of such reducible representation of the space group. For BR it is worth
pursuing the problem of topology for these representations.
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