c) If $D_1 \doteq D_2$, S = 1:

(3)
$$X_{+} = \int \mathrm{d}\mu(g) \, D(g) A \, D^{-1}(g) = \chi(A) I.$$

If one takes A such that tr A is well defined and $\neq 0$ (and this is possible e.g. when A has finite rank), one obtains:

$$\operatorname{tr} X_A = \int d\mu(g) \operatorname{tr} A = \alpha(A) d_D$$
,

where d_{θ} is the dimension of D.

Now if (A) would be 0, we would have had $X_4 = 0$ hence tr $X_4 = \text{tr } A = 0$; which is contradictory. Hence $\chi(A) \neq 0$ and d_p is the finite number a/x.

THEOREM 2. - Any irreducible representation of a compact group has finite dimension.

Application to Abelian groups: Take

$$A = D(g_0), \quad g_0 \in G; \quad \Rightarrow X = D(g_0) = \alpha I:$$

since the representation is irreducible, it must then have dimension 1.

Orthogonalization relations. – Since the D(g) have finite dimension, they can be represented by matrices. Let us choose

$$A = \begin{bmatrix} e_{jk} \end{bmatrix} = j - \begin{pmatrix} o & j & o \\ o & i & o \end{pmatrix}$$

Then

$$(X_{+})_{ii} = \int d\mu(g) \, D_{ii}^{(r)}(g) \, D_{ki}^{(s)}(g^{-1}) = \delta_{rs} \qquad \delta_{ik} \qquad \frac{1}{d_{p}} \, \delta_{ii} \\ 0 \quad \text{if} \quad D^{r} = D^{s} \, \chi(A) = \text{tr} \, A/d \, (I)_{ii} \\ \text{for } r = s$$

or, since $D(g^{-1}) = D^{-1}(g) = D^*(g) = D_p(g)$:

(4)
$$\int \mathrm{d}\mu(g) \, D^{(s)}(g) \, D^{(s)}_{\tau_{\sigma}}(g) = \frac{1}{d_{\sigma}} \, \mathrm{d}_{rs} \delta_{\tau k} \delta_{\sigma k} \, .$$

Thus:

THEOREM 3. - The functions $D_{ij}^{(o)}(g)$ form an orthogonal set of functions in $L^{2}(G)$ (the set of square integrable functions on G).

One can prove that $D^{\alpha}_{\alpha}(g)$ form a complete basis of this Hilbert space Peter-Weyl theorem).

理。特益

One can also prove that $L^{-2}(g)$ is separable; therefore there is at most a denumerable set of inequivalent irreducible representations,

Reality condition for irreducible representation. - Let us now define

$$Y = \!\! \int \!\! \mathrm{d}\mu(g) D(g) A D^{-1}(g) \;.$$

If D is a unitary representation, $\overline{D} = D^{-1p}$ is also a representation. By the same technique we prove $DY = Y\overline{D}$:

- If $D \ \overline{D}$, Y = 0. - If $D \sim \overline{D}$, $\exists S \rightarrow \overline{D} = S^{-1}DS = D^{-1S}$

$$Y = \int d\mu(g) D(g) A D^{\sigma}(g) = \alpha(A) S$$
.

Now,

$$D=ar{S}^{-1}ar{D}ar{S}$$
, hence $ar{S}S=\lambda I$ (Schur's lemma), $D^{*-1}=D=S^TD^{-1T}S^{-1T}$, hence $S^{-1T}S=\lambda'I$ (Schur's lemma),

i.e. $S^T = CS \rightarrow C^2 = 1 \rightarrow S^T = \pm S$ by convenient choice of a factor. The S can be made unitary, hance SS = C.

— If $D \sim$ to a real representation \bar{S} is a multiple of the unit matrix and therefore $S^{\bar{x}} = +S$, i.e. C=1 (use the fact that C does not depend on an equivalence). It is easy to prove that this necessary condition is sufficient. Let $\omega \neq$ all proper values of \bar{S} and $|\omega| = 1$; then $D' = (\bar{S} - \omega)D(\bar{S} - \omega)^{-1} = \bar{D}$.— If $D \supset 0$ to a real representation $S^{\bar{x}} = -S$.

Thus for any A

(5)
$$\int \mathrm{d}\mu(g) D(g) A^{r} D^{r}(g) = \pm \int \mathrm{d}\mu(g) D(g) A D^{r}(g)$$

Characters. – The trace of a representation D'(g) is called its character $\chi^{(r)}(g) = \operatorname{tr} D^{(c)}(g)$. Since $\operatorname{tr} D = \operatorname{tr} SDS^{-1}$, the characters are defined on representations up to an equivalence. If two elements g, h are conjugate $(\exists a \to g = aha^{-1})$, then $\chi'(g) = \chi'(g)$; the character is the same for all members of a conjugate class in the group. One has from (4) with i = j, k = l)

(6)
$$\int \! \mathrm{d}\mu(g) \chi^{(r)}(g) \, \overline{\chi}^{(s)}(g) = \delta_{rs}$$

Furthermore, from (5) with $A = [e_{ik}]$ one gets:

$$Y_i = \int \!\mathrm{d}\mu(g)\, D_{ii}(g)\, D_{ik}(g) = \pm \int \!\mathrm{d}\mu(g)\, D_{ik}(g)\, D_{ij}(g) \;.$$

Taking the trace: $(j = l, i = k, \Sigma_{i,l})$ one has:

$$\int\!\!\mathrm{d}\mu(g)\,\chi(g^2)\,=\,\pm\!\int\!\!\mathrm{d}\mu(g)\,\chi^2(g)=\!\!\int\!\!\mathrm{d}\mu(g)\,\chi(g)\,\,\overline{\overline{\chi}(g)\,\,=\,1}$$

(since $\overline{D} \sim D$ if $Y \neq 0$).

THEOREM 4.

$$D \sim \overline{D}$$
 and $D \sim \text{real rep.} \Leftrightarrow \int \mathrm{d}\mu(g)\chi(g^2) = +1$ and $D \equiv \text{real rep.} \Leftrightarrow \mathrm{d}\mu(g)\chi(g^2) = -1$ $\Leftrightarrow \mathrm{d}\mu(g)\chi(g^2) = 0$

Peter-Weyl Theorem. - The original proof makes use of the spectral theory of Hermitian operators. We give a simpler proof due to STONE. It is valid only for groups with faithful representations.

THEOREM. – The functions $D_{ij}^{(r)}(g)$ of $g \in G$ form a complete basis in the space $L^2(G)$, i.e. if $\varphi(g)$ is orthogonal to $D_{ij}^{(r)}(g)$ for all r, i, j, it is the zero function. This basis is uniformly complete, i.e. all $\varepsilon > 0$.

 \exists a finite linear combination f_{ϵ} s.t. $|f_{\epsilon}(g) - \varphi(g)| < \varepsilon$ for any g. In what follows $D_{ij}^{(r)}$ is assumed to be real; for, if it is not, the representation formed by the direct sum $D^{(r)} + D^{(r)}$ is equivalent to a real representation:

$$S\left(\frac{D^{(r)}}{D^{(r)}}\right)S^{-1} = \frac{1}{2}\left(\begin{array}{c} D+D\\ -i(D-D) \end{array}, \begin{array}{c} i(D-D)\\ D+D \end{array}\right)$$

where

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} i & -i \\ -1 & 1 \end{pmatrix}.$$

Let D be a real faithfull representation of G. Consider the Kronecker products

 $\stackrel{\scriptscriptstyle{n}}{\odot} D$

for all n

(note that the Kronecker product of two representations is itself a representation since $(A \otimes B)(A' \otimes B') = AA' \otimes BB'$).

We shall prove that the representation $(\stackrel{n}{\otimes} D)_{i_n i_n}$ form a complete set, so the same holds for the irreducible representations.

Suppose there exists $\varphi(g)$ orthogonal to all $(\stackrel{n}{\circlearrowright} D)_{i_n i_n}$ and different from zero in some neighbourhood of g_a .

Construct

$$f(g, N) = A(N) \exp \left[-N \sum_{ij} \{D_{ij}(g) - D_{ij}(g_0)\}^2\right],$$

where A(N) is chosen so that

$$\int\!\!\mathrm{d}\mu(g)f(g,N)=1\;,$$

It is well known that a function of the form of f(g, N) can be expanded as a power series with an infinite radius of convergence. The terms in the series are evidently linear combinations of the $(\stackrel{\circ}{\otimes} D)_{i}$

$$\lim_{g\to \infty}\!\!\int\!\!\mathrm{d}\mu(g)f(g,\,N)=1$$

but $f(g, \infty) = 0$ for $g \neq g_0$ so that $f(g, \infty) = \delta(g - g_0)$. If $\varphi(g)$ were orthogonal to all $(\overset{\circ}{\otimes} D)_{ij}$ then one would have

$$\lim_{N\to\infty}\!\!\int\!\!\mathrm{d}\mu(g)\,\overline{f}(g,\,N)\,\varphi(g)=0\;,$$

but

$$\lim_{N\to\infty}\!\int\!\!\mathrm{d}\mu(g)\bar{f}\left(g,\,N\right)\varphi(g)=\varphi(g_0)\;,$$

which by hypothesis is different from zero. Thus $(\overset{\pi}{\otimes} D)_{ij}$ form a complete set and can be decomposed into a direct sum of irreducible representations which is complete.

This proof shows also that:

- 1) The set of irreducible representations is at most denumerable.
- 2) Any faithful representation generates, by $\mathring{\otimes}$, all the irreducible representations.

Example. – The two-dimensional rotation group: if φ is the angle of rotation $D^{(n)}(\varphi) = \exp[in\varphi]$ (n integer)

$$\int_{a}^{b} \exp \left[in\varphi\right] \exp \left[-im\varphi\right] \frac{\mathrm{d}\varphi}{2\pi} = \delta_{nm}.$$

We have therefore proved that for the Hilbert space of square integrable functions defined on the interval $(0, 2\pi)$, the functions $\exp[in\varphi]$ form an orthonormal complete set.

Finite groups. – Let N_a be the number of elements of the group. The complex-valued functions defined on the group form a N_a dimensional linear space (Exercise in GARDING's note). We have show that the $\sum_{\tau} a_{p(\tau)}^2 \mathcal{Q}_{ij}^{(\tau)}$ -functions are orthonormal. Since they form a complete set we can conclude

$$\sum_{r} d^2_{D(r)} = N_Q$$
.

The decomposition of a given representation of a compact group into a direct sum of irreducible representations.

From Theorem 1, we can make it unitary.

First case: The representation is finite dimensional.

Then the accident mentioned at the bottom of page 7 will not occur. The representation is a direct sum of irreducible representations.

Let

$$(7) U(g) = \bigoplus n_r D^{(r)}(g),$$

where n_r is number of times the irreducible representation $D^{(r)}(g)$ occurs in U(g). Then

$$\chi(U(g)) = \sum_{r} n_r \chi^{(r)}(g)$$

and from (6)

$$n_r = \int_{\mathbb{R}} \mathrm{d}\mu(g) \overline{\chi}^{(r)}(g) \, \chi(U(g)) \ .$$

If the representation is infinite one has to be more careful.

Let

$$E_{ij}^{(r)} = d_{p^{(r)}}\!\!\int\!\!\mathrm{d}\mu(g)\,\bar{D}_{ij}^{(r)}\!(g)\,U(g)\,;$$

one can prove

$$E_{ij}^{(r)*}=E_{ij}^{(r)}$$
 .

Let

$$E^{(r)} = \sum_{i} E^{(r)}_{ii} = d_o(r) \int \! \mathrm{d}\mu(g) \, \overline{\chi}^{(r)}(g) \, U(g) \, ;$$

calculation yields that $E^{(r)}$ are the projection operators in Hilbert space onto the subspace $\mathcal{H}^{(r)}$ on which act the \oplus of representations equivalent to $D^{(r)}$ occurring in the direct sum of U.

The character in function only of the conjugation class C and not of each group element. Let N_c be the number of such classes.

The characters $\chi^{(n)} \in C$ span a vector space of at most N_o dimensions. Since they are linearly independent (equation (6)) the number N_o of irreducible inequivalent representations is $\leq N_o$.

THEOREM. - For finite groups $N_{\mu} = N_{c}$.

Consider the N_a dimensional linear space of formal linear combinations of group elements. The group multiplication generates naturally a N_a dimensional linear representation on this space, the so called regular representation D_a . It can be shown that D_a contains all the irreducible representations, each one $d_b(r)$ times. We shall not prove it here.

4. - Structure of the Lorentz group.

...U

Notation. – An event in space time is specified by the four numbers (ct, r). We denote 3-dimensional vectors with an arrow above $\mathbf{r} = (x^i)$; i = 1, 2, 3. We denote 4-dimensional vectors with a bar below: $\mathbf{x} = (x^{\mu})$; $\mu = 0, 1, 2, 3$. $(x^{\mu} = et)$.

The separation between two events, x, y is given by:

$$(x-y)^2 - (x-y) \cdot (x-y) = (x^0 - y^0)^2 - \sum_{i=1}^3 (x^i - y^i)^2$$

We define the metric tensor: G

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}G\mathbf{y} = x^0 y^0 - \sum_{i=1}^3 (x^i y^i) = x^\mu g_{\mu\nu} y^\nu; \quad G = (g_{\mu\nu}) = \begin{pmatrix} 1 & 0 \\ -1 & \\ -1 & \\ -1 \end{pmatrix}$$

We define $g^{\mu\nu}$ as the elements of $G^{-1} = G$

$$g^{\mu\varrho}g_{\varrho\varrho}=g^{\mu}_{\varrho}=\delta^{\mu}_{\varrho}$$
 (The summation convention is understood).

We define the covariant components of a vector

$$v_{\mu} = g_{\mu\nu} x^{\nu}$$

Definition of Lorentz group. – The group \mathcal{L} of all linear transformations $\mathbf{x} \to \mathbf{x}'$ such that $(\mathbf{x}' - \mathbf{y}')^2 = (\mathbf{x} - \mathbf{y})^2$. Unless otherwise specified, we shall limit ourselves to the real transformations.

So, we write:

$$x^{\mu} = A^{\mu}x^{\nu} + a^{\mu}.$$

 $a = a^{\mu}$ is called the translation rT;

 $A=\{A_{r}^{\mu}\}$ is called a homogeneous transformation: rL.

The most general Lorentz transformation is called inhomogeneous.

The inhomogeneous group will be noted by \mathcal{L} .

Given a homogeneous transformation Λ and a translation a, one denotes the operation $\mathbf{x} \to \mathbf{x}' = \{x'^{\mu} = \Lambda^{\mu}, x^{\nu} + a^{\mu}\}$ by: $\{a, \Lambda\}$, being understood that Λ is performed first.

Multiplication law:

$$\{a,\Lambda\}\{b,M\}=\{a+\Lambda b,\Lambda M\}.$$

Neutral element (unity): {0, 1}.

Inverse:

$$\{a,\,\Lambda\}^{-1}=\{-\,\Lambda^{-1},a\,\Lambda^{-1}\}$$
 (a, $\Lambda\}=\{a,\,\Lambda\}=\{a,\,1\}\{0,\,\Lambda\}$ i.e. $\mathcal{L}=T\cdot L$

Both T and L are subgroups of \mathcal{L} .

Invariant subgroups. – H is an invariant subgroup of $\mathcal L$ is for all $\{a,\Lambda\}\in\mathcal L,\ \{b,M\}\in H$

$$\{a, \Lambda\}\{b, M\}\{a, \Lambda\}^{-1} = \{a + \Lambda b - \Lambda M \Lambda^{-1}a, \Lambda M \Lambda^{-1}\} \in H$$
.

One can easily see that T is an invariant subgroup. The cosets of $\mathcal L$ modulo T are:

$$\{a, A\}\{b, 1\} = \{a + Ab, A\}.$$

The quotient group \mathcal{L}/T is isomorphic with L.

 $\mathcal{L} = T \cdot L$ but $\mathcal{L} \neq T \times L$ because, whereas T is an invariant subgroup, L is not. \mathcal{L} is sometimes called the *semi* direct product of T and L. The multiplication law is easily remembered by writing in matrix form:

$$\{a, A\}
ightharpoonup \begin{vmatrix} 1 & 0 \\ a & A \end{vmatrix}$$
.

(Another illustration of a reducible representation which is not completely reducible).

- Translation group. T.

The homogeneous group. L. Its four pieces. – Since \mathcal{L} leaves invariant $(\mathbf{x} - \mathbf{y})^2$, it leaves invariant \mathbf{x}^2 (put $\mathbf{y} = 0$), \mathbf{y}^2 (put $\mathbf{x} = 0$), and therefore $\mathbf{x} \cdot \mathbf{y}$:

$$\mathbf{x} \cdot \mathbf{y} = A \mathbf{x} \cdot A \mathbf{y}$$
, i.e. $x^q g_{q\sigma} y^\sigma = A^\mu_{q} x^{\sigma} A^{\rho}_{\sigma} y^{\sigma} g_{\mu\sigma}$;

as this must be true for all x, y, one has:

$$\Lambda^{\mu}_{\ \varrho}\Lambda^{\nu}_{\ \sigma}g_{\mu\nu}=g_{\varrho\sigma} \quad {
m or} \quad G=\Lambda^{r}G\Lambda$$
 .

This is necessary and sufficient.

The invariance of $\mathbf{x} \cdot \mathbf{x} = \mathbf{x}^2$ under $A \in L$ allows us to distinguish between

time-like vectors •
$$x^2 > 0$$
,

light-like vectors
$$x^2 = 0$$
.

space-like vectors
$$x^2 < 0$$
.

In the affine space (set of points 0+x), the sets of points such that $x^2=c>0$ is the two piece hyperbolois \mathcal{H}_{t+} $(x^0>0)$ and \mathcal{H}_{t-} $(x^0<0)$. $x^2=0$ is the light cone C, C_+ $(x^0>0)$ and $C_ (x^0<0)$; $x^2=c<0$ is the one piece hyperboloide \mathcal{H}_s .

Note if $\mathbf{x}'^2 = \mathbf{x}^2 = c \le 0$ one can go continuously from

$$\mathbf{x} \rightarrow \mathbf{x}'$$
.

If e > 0, it is possible only if $x'^{0}x^{0} > 0$.

Connection of L. – One has det $G = \det A^p G A$, thus det $A^p A = (\det A)^2 = 1$ so that det $A = \pm 1$.

One cannot go by a homomorphism from unity (det l=1) to a Λ for which det $\Lambda=-1$; L is therefore composed of two disconnected parts:

$$L_{+} = \{\Lambda, \det \Lambda = +1\}$$
 which is the invariant subgroup of proper Lorentz transformations,

$$L_{-} = \{A, \det A = -1\}$$
 which is the set of improper Lorentz transformations (and is *not* a subgroup).

 L/L_+ consists of two elements.

Now consider real Lorentz transformations: (the complex homogeneous group is denoted by CL).

One has:

$$g_{00} = A_0^{\mu} A_0^{\nu} g_{\mu\nu} = 1 = (A_0^0)^2 - \sum_i (A_0^i)^2$$
 ,

thus

$$(A_0^0)^2 = I + \sum_i (A_0^i)^2 \geqslant 1$$
,

Thus:

$$\{t_0^0 = 1 - \{t_1, t_0^0 > t\} = L^* : \begin{array}{c} \text{orthochronous group} \\ \text{(invariant subgroup),} \end{array}$$

OP

$$A_0^0 \sim -1\{A, A_0^0 = -1\} \sim L_1$$
: antichronous transformations (not a subgroup).

The justification of the terminology is the following:

 $A_0^0 \cong 1 \Leftrightarrow \text{the sign of the time component of a true like vector is not changed:}$

$$\begin{split} x^{0'} &= A_{\mu}^{0} x^{\mu} = A_{0}^{0} x^{0} + A_{i}^{0} x^{i} \;, \\ (\sum_{i} A_{i}^{0} x^{i})^{2} &\leq (\sum_{i} A_{i}^{0})^{2} (\sum_{i} x^{i})^{2} = \left[(A_{0}^{02})^{2} - 1 \right] \sum_{i} (x^{i})^{2} \leq (A_{0}^{0})^{2} (x^{0})^{2} \;, \end{split}$$

(* for a time like vector: $\sum (x_i)^2 < (x^0)^2$.)

Thus $|\Lambda_i^0 x^0| > |\sum_i \Lambda_i^0 x^i|$, which proves the announced result (for space like vectors $\mathbf{x}^2 < 0$, the proof does not go through). Similarly if $\Lambda_0^0 \le -1$ the time component of a time-like vector reverses sign under Λ .

Thus we have found in L four disconnected sets of transformations: $L+\uparrow$, $L-\uparrow$, $L+\downarrow$. Correspondingly $\mathcal L$ has four disconnected pieces.

Decomposition of Lorentz transformations into plane reflections. Def. – The reflection $\Sigma_{\mathbf{n}}$ through a plane orthogonal to \mathbf{n} is defined by

$$\mathbf{x}' = \mathbf{x} - 2 \frac{\mathbf{n} \cdot \mathbf{x}}{a^2} \mathbf{n}$$
.

Note that $\Sigma_{\mathbf{n}} = \Sigma_{-\mathbf{n}}$ and $\Sigma_{\mathbf{n}} \mathbf{n} = -\mathbf{n}$.

Exercise 1. – Show that $\Lambda \Sigma_{\mathbf{n}} A^{-1} = \Sigma_{\mathbf{n}}$ with $\mathbf{n}' = A_{\mathbf{n}}$ ($\Sigma_{\mathbf{n}}$ is explicitely known, $A^{-1} = G\Lambda^{T}G$).

Exercise 2. – If \mathbf{n}_i are linearly independent and $A = \sum_{n_i} \sum$

$$Ap = p \Leftrightarrow \mathbf{a}_i \cdot \mathbf{p} = 0$$
 for all \mathbf{a}_i (\Leftarrow evident);

A is of the form

$$A_{\rm r} = g_{\rm p} - \sum_{i=1}^{n} c_{ii}(n_i)(n_i)_{\rm p}$$
 with $c_{ii} = -2(n_i)$.

3011

$$(Ap)^{\mu} = p^{\mu} + \sum_{i} \lambda_{i} n_{i}^{\mu};$$

hence

$$\lambda_i = 0$$
; $\lambda_i = \sum_i c_{ii} \mathbf{n}_i \cdot \mathbf{p}$;

for $i = k n_k \cdot p = 0$ then $i = k - 1 \Rightarrow n_{k-1} \cdot p = 0$, then....

THEOREM. – Any $\Lambda \in L$ can be written as a product of at most 4 plane reflections. (This is a particular case of a stronger theorem: A « rotation » in k-dimensional space, i.e. a linear transformation leaving invariant the non-degenerate symmetric form

$$\sum_{ij=1}^{n} g_{ij} x^i y^j \qquad g_{ij} = g_{ij}$$

can be written as a product of at most k plane reflections).

The proof goes by induction on k.

We have three cases.

- 1) $\exists \mathbf{x}$ such $\Lambda \mathbf{x} = \mathbf{x}$ and $\mathbf{x}^2 \neq 0$. Then the k-1 dimensional space $\mathcal{E}_{k-1} + x$ is left invariant by Λ : $\Lambda \mathcal{E}_{k-1} = \mathcal{E}_{k-1}$ and Λ is at most the product of k-1 symmetries;
- 2) no invariant x but $\exists y$ such that $(Ay y)^2 \neq 0$. The symmetry Σ_a (where a = Ay y) exchanges Ay and y. Hence $\Sigma_a A$ leaves y invariant, i.e. belongs to first case;
 - 3) for all x, a = Ax x is a light vector,

$$\mathbf{a}^2 = \mathbf{0}$$
.

Part of this proof is more difficult in the general case, but in the case of real Lorentz group in 4 dimension it is very easy to prove that Λ is then the identity.

The symmetries and the 4 pieces.

$$(\Sigma_{\mathbf{n}}^{i})_{i}^{\mu}=q_{i}^{\mu}-2\,rac{n^{\mu}n^{\nu}}{\mathbf{n}^{2}}$$
 $\Sigma_{\mathbf{n}}^{2}=1$ $\mathrm{Tr}\ \Sigma_{\mathbf{n}}=2$; $\det\ \Sigma_{\mathbf{n}}=-1$

$$(\Sigma_{\mathbf{n}})_0^0 = 1 - 2 \frac{n^0 n_0}{\mathbf{n}^2}$$
 i.e. $(\Sigma)_0^0 - 1 = 2 \frac{(n^0)^2}{\mathbf{n}^2}$, the sign of which is $-\mathbf{n}^2$:

Hence $\Sigma_n \in L_-$; if **n** time like $\Sigma_n \in L_-^{\frac{1}{2}}$, **n** space like $\Sigma_n \in L_-^{\uparrow}$.

Hence, elements of L^{\uparrow} – product of even (2, 4) number of $\Sigma_{\bf n}$ with even[(0, 2, 4)] number of time-like $\bf n$

 $L^{\downarrow} = \text{product of even}$

number of $\Sigma_{\mathbf{n}}$ with odd (1, 3) number of time-like \mathbf{n}

 $L_{n}^{\uparrow} = \text{product of odd (1, 3)}$ number of Σ_{n} with even number of time-like n

 $L^{\downarrow}_{-} = \text{product of odd}$

number of $\Sigma_{\mathbf{n}}$ with odd number of time-like \mathbf{n}

 L^{\uparrow} is connected:

$$V\!\Lambda \in L^{\frac{1}{2}}$$
 , $\Lambda = \Sigma_{\mathbf{n}_1} \Sigma_{\mathbf{n}_2} \Sigma_{\mathbf{n}_2} \Sigma_{\mathbf{n}_1}$.

Since the sign of \mathbf{n} is arbitrary, for time like vector \mathbf{n} choose the time component > 0. Now it is possible to vary continuously the time like vector to a fixed time like \mathbf{t} ; the space like, to a fixed \mathbf{s} ; since $(\Sigma_{\mathbf{n}})^2 = 1$, one has varied continuously $\Lambda \to I$ (the identity), except in the case where the situation was for instance $\Lambda = \Sigma_s \Sigma_t \Sigma_t \Sigma_t = \Sigma_{tt} \Sigma_t$, where $\mathbf{s}' = \Sigma_s \mathbf{t}$ (from Exercise 2, p. 000), then when $t' \to t$, $\Lambda \to I$.

Transitivity of L_{+}^{\uparrow} on \mathcal{H}_{t+} , \mathcal{H}_{t-} , C_{+} , C_{-} , \mathcal{H}_{t-} . Notation defined on pages 11-12.

Remark. – If $p'^2=p^2$ and $(p'+p)^2\neq 0$, $\Sigma_{p'+p}(-\mathbf{p})=\mathbf{p}'$. Hence if

$$(p'-p)^2 \neq 0$$
, $\Sigma_{p'-p} \mathbf{p} = \mathbf{p}'$.

We define

$$S_{n', p} = \Sigma_{n'+p} \Sigma_{p}.$$

Now we can easily solve the problem:

Given p and p', $(p'^2 = p^2)$ in the same \mathcal{H}_{t^+} (respectively \mathcal{H}_{t_-} , ...), find $S \in L_+^{\uparrow}$ such that p' = Sp.

Answer:

- 1) for \mathcal{H}_{t+} (respectively \mathcal{H}_{t-}); $S_{p',p}$ (for $\mathbf{p}+\mathbf{p}'\in\mathcal{H}_{t-}^+$), hence $S_{p',p}\in L_+^\uparrow$;
 - 2) for C_+ (respectively C_-):

If p', p are linearly independent $(p'-p)^2 < 0$ let s such that $s^2 < 0$, $n \cdot p = n \cdot p' = 0$; $\sum_{p'=p} \sum_{s}$ is a solution.

If $p' = \alpha p$, take t time like $(\Rightarrow t \cdot p \neq 0)$ call $p'' = \Sigma_t p$ then $\Sigma_{v-v} \Sigma_t$ is a solution;

3) for \mathcal{H}_s $(p+p')^2+(p-p')^2=1p^2=4p'^2<0$, hance at least one of p+p' or p-p' is space like.

If p+p' space like $S_{\nu,\rho}$ is solution p+p' time like $\Sigma_{\nu-p}\Sigma^{r}$ is solution $(s^{2}<0,\ s\cdot p=s\cdot p'=0).$

Little group of vector, - Wigner called little group of $p = L_n$, the set of I such that Ap = p.

p time like from Exercise 2, page 12, L_p is generated by $\Sigma_{\bf n}$ with ${\bf n}\cdot{\bf p}=0$, i.e. n space like. Hence L_s isomorphic to $O_{(3)}$ the orthogonal group into 3 dimensions. Its connected part is O;, i.e. the group of rotations into 3 dimensions.

It can also be seen this way; L_p and $\Lambda_0 L_p \Lambda_0^{-1}$ are isomorphic groups for a fixed Λ_0 . Choose Λ_0 such that $\Lambda_0^{-1} \mathbf{p}$ is on the time axis (if p is the four momentum, $A_0^{-1}\mathbf{p}$ brings the particle at rest.

p space like similar argumentation yields Lorentz group on space with one time axis, 2 space axis.

p light like the space orthogonal to p contains p: $p^2 = 0$. Let n_1 , n_2 transverse vectors orthogonal to p, i.e.

 $\mathbf{p} = \mathbf{n}_2 \cdot \mathbf{p} = \mathbf{n}_1 \cdot \mathbf{n}_2 = 0$ and $\mathbf{n}_i = (0, n_i)$ hence $n_1 \cdot p_2 = n_2 \cdot p = n_1 \cdot n_2 = 0$ we take the n unitary

$$\mathbf{n}_1^2 = -\mathbf{n}_1^2 = \mathbf{n}_2^2 = -\mathbf{n}_2^2 = -1$$
.

Call

$$\mathbf{n}' = \cos\frac{\theta}{2}\,\mathbf{n}_1 + \sin\frac{\theta}{2}\,\mathbf{n}_2\;; \quad \mathbf{n}'\cdot\mathbf{p} = 0\;, \quad \mathbf{n}^2 = -1\;.$$

The most general unit vector orthogonal to p is of the form (a real arbitrary):

$$\mathbf{n}' + \mathbf{p}$$
, indeed $(\mathbf{n}' + \alpha \mathbf{p}) \cdot \mathbf{p} = 0$ $(\mathbf{n}' + \alpha \mathbf{p})^2 = -1$.

The elements of the little group of p are therefore the product of at most 3 arbitrary symmetries of the type $\Sigma_{\mathbf{n}'+\alpha\mathbf{p}}$. (Exercise 2, page 12).

Connected little group. Its elements are the product of 2 symmetics

$$\Sigma_{n'+\alpha'p}\dot{\Sigma}_{n'+\alpha'p}\,.$$

Let us call $R(\theta) = \Sigma_n \Sigma_n$; it is a rotation around p of angle θ ; so is

$$\Sigma_{n'}\Sigma_{n'}=R(\theta''-\theta')$$

and call

$$T'(\mathbf{x}') = \Sigma_{n'+\mathbf{x}'p} \Sigma_{n'}$$
, example $T(\mathbf{x}_1) T_2(\mathbf{x}_2)$,

note $\Sigma_{n'}\Sigma_{n'-x'p} = \Sigma_{n'-x/p}\Sigma_{n'}$ (see pages 12-13).

Any element of the connected little group of p can be written:

$$\varSigma_{n''+\alpha''p}\varSigma_{n''-\alpha'p}^* = \varSigma_{n''+\alpha''p}\varSigma_{n'}^2 \varSigma_{n'}^2 \varSigma_{n'}^2 \varSigma_{n''-\alpha'p-p''(\alpha'')R(\phi''-\phi')F'(\alpha)}^*$$

We can generate the whole group from

$$R(\theta) T_1(\alpha_1) T_2(\alpha_2)$$
;

then θ , α_1 , α_2 are the three parameters of the group.

From $\Lambda \Sigma_n \Lambda^{-1} = \Sigma_{\Lambda^n}$ that this group is just isomorphic to the 2 dimensional connected euclidean group, *i.e.* the group of translation $\mathbf{t} = \alpha_1 \mathbf{t}_1 + \alpha_2 \mathbf{t}_2$ and rotation around the origin of angle θ . Indeed the group law is similar to that of the inhomogeneous Lorentz group and can be represented by the matrice

$$\begin{pmatrix} 1 & 0 & 0 \\ \alpha_1 & \cos\theta & -\sin\theta \\ \alpha_2 & \sin\theta & \cos\theta \end{pmatrix}$$

The isomorphism can be extended to the symmetries. Σ_{n_1} corresponds to the symmetry defined by t_1 , *i.e.* through t_2 (\perp t_1).

Summary. - Little group of p:

p time like: isomorphie to 3-dimensional rotation group,

p light like: isomorphic to 2-dimensional euclidean group,

p space like: isomorphie to 3-dimensional Lorentz group.

The covering group U_2 of $O_3^{(+)}$ (rotations in 3 dimensions). – We use the 3 Pauli matrices $\tau = \{\tau_i\}$ i = 1, 2, 3 such that $\tau_i^* = \tau_i$;

(30)
$$\tau_i \tau_j + \tau_{ii} = 2\delta_{ij}.$$

To each 3-vector \boldsymbol{x} , we associate the matrix $\boldsymbol{x} = \sum_{i} x_{i} \tau_{i} = \boldsymbol{x} \cdot \boldsymbol{\tau}$. Note that

(31)
$$x \cdot y = \frac{1}{2}(xy + yx); \quad x^2 = x^2$$

if $x' = \Sigma_n x$ we have

(32)
$$x' = x - (nx + xn)n^{-2}n = -nxn^{-4}.$$

Let $r_{21} = n_2 n_1$; it corresponds to the rotation

$$R_{21} = \Sigma_{n_1} \Sigma_{n_1}$$
 if $y = R_{21} x$

one has

(33)
$$y = r_{21} x r_{21}^{-1} \qquad \text{with } r_{21} = n_2 n_1.$$

From this it is easy to conclude that the matrices r multiply as do the rotations, *i.e.*

$$R \rightarrow r$$
, $R' \rightarrow r'$, $R'' = RR' \rightarrow r'r = r''$.

This correspondence is however up to a sign, because Σ_n and Σ_{-n} are the same symmetry; hence both $\pm r$ correspond to R.

If the rotation is defined by n, ω , axis and angle of rotation $r(n, \omega)$ can easily be computed (use $ab = a \cdot b + i(a \wedge b) \cdot \tau$). We obtain taking $n^2 = 1$

$$r({m n},\omega)=\pm\left(\cosrac{\omega}{2}-ilpha\,\sinrac{\omega}{2}
ight)=\pm\,\exp-\left[irac{\omega}{2}\,{m n}
ight]=\pm\,u(\omega,\,{m n})\,,$$

Remarks:

a) The matrices $u(\omega, n) = \exp[-(i\omega/2)n]$ for all values of n (with $n^2 = 1$) and ω generates a group, U_2 the unitary unimodular group.

Ideed

$$= \left(\frac{\omega}{2} n\right)^* = \frac{\omega}{2} n \Rightarrow \text{u unitary}$$

$$\operatorname{tr} n = 0 \Rightarrow \det u = 1$$
.

- b) Conversely a unitary 2 by 2 matrix \vec{u} can be written $u = \exp[-i\hbar]$ where h is a 2 by 2 hermitian matrix and any h can be written $(\omega/2)a$.
- c) What we have found therefore is not a true representation of the rotation group $O_3^{(+)}$ but a representation up to a sign only.

We also prove $U_2 \stackrel{f}{\to} O_3^{(+)}$, where the homomorphism f is a two to one correspondence. Kernel of f is u=1 and u=-1 (which form the two element group Z_2). $\pm u(\omega, n) \to r(\omega, n)$.

d) Note that $u(2\pi, n) = -1$ whatever n.

Definition of Poincar, group, π_1 . – For a topological group consider continuous mapping s_1 of the circle S_1 (= sphere in 1 dimension; we can generalize to S_n) into the grop manifold and such that this mapping contains the

identity. (By translation on the group any other fixed point can be chosen). If a given s_1 called s_1' can be, by continuous transformation, transformed into s_1'' (another s_1), then s_1' and s_2'' are said a homotopic s_2''

(another s_1), then s_1 and s_1'' are said «homotopic». It is easy to see that «homotopy» is an equivalence relation among the s_1 . We can define the «product» of two s_1 , when s_1 is oriented. This \Rightarrow a composition law for the equivalence class, which gives a group structure. (the identity class is that of the s_1 which, by continuous deformation can be reduced to a point). This group is called π_1 or Poincaré group.

Simply connected group. – It is a group whose Poincaré group has only one element. All closed paths in the group are homotopic. Example, U_2 is simply connected.

The most general matrix of U_2 is of the form

$$\frac{\alpha}{\beta}$$
 $\frac{\beta}{\alpha}$

with $\alpha \overline{\alpha} + \beta \overline{\beta} = 1$. If $\alpha = \alpha_1 + i\alpha_2$, $\beta = \beta_1 + i\beta_2$, the condition is $\alpha_1^2 + \alpha_2^2 + \beta_1^2 + \beta_2^2 = 1$. This is the equation of S_3 , the 3 dimensional sphere. Consider a closed path in it, passing through the point 1, 0, 0, 0 (unit of the group). By continuous deformation this path can be made « plane » (i.e. contained in a 3 dimensional plane) and this plane can be moved continuously to the tangent plane in 1, 0, 0, 0.

Covering group C of G.— It can be shown (see C. J. Pontrjagin: Topological Groups, § 47, for the proof and the precise sufficient conditions) that for any Lie group G, there exists a unique simply u connected group C, locally isomorphic to G, homomorphic to G. Then, the kernel π_i of the homomorphism is isomorphic to the Poincaré group of G. This unique C is called the covering group of G. We have therefore proved that U_2 is the covering group of O_3^* . We also know the two homotopy class of paths of O_3^* . The identity class is that of closed paths which are image (by the homomorphism $U \to O_3^+$) of closed path of U. They can be shrunk to a point since U is simply connected. The closed paths in O_3^+ which are image of continuous path from 1 to -1 in U cannot be shrunk to a point. A way to «see» the topology of O_3^+ is to plot each rotation n, ω at the tip of the vector ωn with $0 \le \omega \le \pi$ and identify the points $\pm \omega n$; closed paths which contain an odd number of such points $\pm \omega n$ cannot be homotopic to zero.

The covering group C_2 of L_+^{\uparrow} . – What we have done for O_3^+ with the Pauli matrices can be done now for the Lorentz group L and the Dirac matrices

We write $i\gamma^{\mu}$ for the matrices, because it is possible to choose the $i\gamma^{\mu}$ real. Indeed the $4\gamma^{\mu}$ generate an algebra of 16 linearly independent matrices

$$\gamma^{(A)} = 1, \gamma^{\mu}, i\sigma^{\mu\nu} = \frac{1}{2} [\gamma^{\mu}, \gamma^{\nu}], \quad \gamma^5 \gamma^{\mu}, \quad \gamma^5 = \gamma^0 \gamma^1 \lambda^2 \gamma^3$$

The 32 matrices $\pm \gamma^{[A]}$ form a group of elements $\gamma^{[A']}$. We can compute (see pages 555, 666)

(35)
$$\frac{1}{32} \sum_{4} \text{Tr} (\gamma^{(4)})^2 = \frac{1}{16} \sum_{4} \text{Tr} (\gamma^{(4)})^2 = 1$$
.

We define the correspondence $x \rightarrow x$.

Equations similar to (31), (32), (33) hold.

To summarize, $A \in L_{+}^{\uparrow}$ can be decomposed into (see page 14)

$$A = \Sigma_{n_i} \Sigma_{n_a} \Sigma_{n_a} \Sigma_{n_1}$$
 with $|n_i^2| = 1$.

The correspondence $A \to \pm n_4 n_3 n_2 n_1 = S(A)$ is a representation up to a sign of L_1^{\uparrow} .

This representation is reducible

$$i\gamma^5 S(\Lambda) = S(\Lambda)i\gamma^5$$
.

Since $(i\gamma^5)^2 = 1$ and $\text{tr} \gamma^5 = 0$, γ^5 can be written

$$au_{\mathbf{a}} \otimes 1 = \begin{pmatrix} 1 & & & \\ & 1 & & & \\ & & -1 & & \\ & & & -1 \end{pmatrix}$$

$$\gamma^i = (\tau_1 \otimes \tau_i) ; \qquad \gamma^0 = (i\tau_2 \otimes 1) .$$

Another method to prove it directly is: We form the matrices X for a given \mathbf{x} according to

36)
$$X = x^{0} \cdot 1 - \sum_{i} x^{i} \tau_{i}$$

$$X = \begin{pmatrix} x^{0} + x^{3} & x^{1} - ix^{2} \\ x^{1} + ix^{2} & x_{1} - x^{3} \end{pmatrix}$$

and notice that $\det X = \mathbf{x}^2$. Corresponding to $\mathbf{x}' = A\mathbf{x}$ we write

$$X^{\prime \mu \nu} = A^{\mu \nu}_{ \rho \sigma} X^{\rho \sigma}$$
 .

For a light-like vector \mathbf{x} ($x^2 = 0$) this has the form

$$\alpha^\mu\beta^\nu = A^{\mu\nu}_{\ \ \varrho\sigma}\xi^\varrho\eta^\sigma\,.$$

In this case one finds that it is possible to write

(37)
$$X' = AXB^{T} \qquad \text{or} \qquad X' = AX^{T}B^{T},$$

where the requirement $\det X' = \det X$ imposes the condition $\det A \cdot \det B = 1$ which leaves a great choice of possible A, B. If we suppose that $\det A = \det B = 1$ we still have an ambiguity in sign: we can choose either A and B or -A and -B.

The real homogeneous connected Lorentz group. - For this group ${\bf x}$ is real and X hermitian

$$X^* = X, \quad X'^* = X'.$$

So that

$$(B^{z})^{*}XA^{*} = AXB^{z}$$

or equivalently

$$XA^*(B^q)^{-1} = (B^q)^{*-1}AX^*$$

or

$$XA^*(B^T)^{-1} = [A^*(B^T)^{-1}]^*X$$
.

Writing

$$F = A^*(B^r)^{-1}$$

we have

$$XF = F^*X$$
;

this holds for all hermitian matrices, in particular for X=1 so that

$$F=F^*$$

By Schur's Lemma ∃ a scalar & such that

$$F = \lambda I$$

32

so that

$$A^* = \lambda B^T$$
:

but $\det A = \det B$ so that

$$A^* = \pm B^x$$
.

For the group L_{\perp}^{\uparrow} :

$$(40) X' = + AXA^* ;$$

for the set (not a group!) L_{\perp}^{\downarrow} : $X' = -AXA^*$.

Conversely, take an A such that $\det A = 1$: the correspondence $X \to X' = AXA$ is a linear correspondence $\mathbf{x} \to \mathbf{x}'$ preserving \mathbf{x}^2 .

Thus we have a homomorphism between the Unimodular group C_2 , i.e. the group of all 2×2 matrices of determinant 1, and L_{\perp}^{\uparrow} :

$$A \in L_+^{\uparrow} \to \pm A n G_2$$
.

Examples. - Rotation:

(41)
$$(n, \omega)$$
, A unitary $U = (U^*)^{-1} = \pm \left(\cos\frac{\omega}{2} - in\cdot \tau \sin\frac{\omega}{2}\right)$.

« Pure » Lorentz transformation:

(41')
$$(l,\beta)$$
, A hermitian positive definite $=H=H^*=\pm\left(\coshrac{eta}{2}+l\cdot au \sinhrac{eta}{2}\right)$

(a change in «velocity» β (th $\beta = v/c$) in the l direction).

Now, any matrix can be written as the product of a unitary matrix U and a hermitian positive definite matrix H:

$$(42) A = UH:$$

 AA^* is a positive definite hermitian matrix: $AA^* = H^2 \to \exists$ a unique positive definite square root of H^2 : $H \cdot H^{-1}A \cdot A^*H^{-1} = (H^{-1}A)(H^{-1}A)^* = 1$; since $H^{-1}A$) exists $H^{+1}A$ is unitary: A = HU.

Thus every Lorentz transformation has a unique decomposition into the product of a rotation and a pure Lorentz transformation.

We have also explicitly displayed the 6 parameters of the L^{\uparrow} . Note that f we consider «imaginary rotations» n, $i\omega$ one just obtains the «pure» Loentz transformation l = n, $\beta = \omega$ (see (41) and (41')).

This shows that L_1^{\uparrow} is isomorphic to the complex rotation group $CO_3^{(+)}$ in the same way C_2 is the «complex group» of U_2 . We leave to the reader o prove that C_2 is the covering group of L_1^{\uparrow} with $C_2/Z_2 = L_1^{\uparrow}$.

Complex Lorentz group CL. – If we do not add condition (39) to the conditions (37) and (38) we obtain a representation up to a sign of the complex Lorentz group CL (= complex connected orthogonal group CO_4^+), i.e. the group, for which \mathbf{x}^2 is invariant for all \mathbf{x} with complex co-ordinates. Any $\in CL$ is represented, up to a sign, by a couple of unimodular 2×2 matrices A and B.

Hence the direct product $C_2 \times C_2$ is a representation up to a sign of CL, i.e.

$$CL = C_2 \times C_2/Z_2.$$

Lie algebra of the inhomogeneous Lorentz group. - As we saw, a general element of the group may be written

$$A = \begin{pmatrix} 1 & 0 \\ a & A \end{pmatrix} \equiv A(\dots \alpha^i \dots),$$

where at are the parameters labelling the elements and for the identity

$$I=A(0,0,\ldots)$$
.

We construct the infinitesimal operators in the neighbourhood of the identity defined by (see Prof. RACAH's lecture):

$$D_i = \left(\frac{\partial A}{\partial \alpha^i}\right)_{\alpha^i=0}.$$

For a one parameter abelian group (if it exists) we have

$$A(\alpha_1^i + \alpha_2^i) = A(\alpha_1^i)A(\alpha_2^i),$$

where a_1^i , α_2^i are two values of the same parameter

We solve this functional equation by differentiating with respect to α_i^i holding α_i^i fixed, and then putting $\alpha_i^i = 0$:

$$A_1^i(\mathbf{x}_2^i) = D_i A(\mathbf{x}_2^i)$$
.

Thus we have

$$A(x^i) = \exp\left[x^i D_i\right].$$

We remark that since the exponential of a matrix is well defined there is no difficulty when the operators are matrices; it should be remembered that if

$$[D_1, D_2] \neq 0$$
, $\exp[D_1 + D_2] \neq \exp[D_1] \cdot \exp[D_2]$.

Translation group. – For an infinitesimal translation $A(a,1) \simeq 1 + \mathcal{D}_{\mu} a^{\mu}$, where a^{μ} are the parameters and \mathcal{D}_{a} are the four corresponding infinitesimal operator. For a finite translation we obtain

$$\mathcal{U}(a, 1) = \exp\left[\mathcal{D}_a a^a\right] = \exp\left[iP_a a^a\right],$$

there we have introduced

$$P_{\mu} = -\mathcal{D}_{\mu}$$
.

Thysicists introduce P, because when U is unitary, P^{μ} are hermitian and re-observables. Indeed they correspond to energy and momentum. The transformation properties » of P^{μ} and L^{+} can be obtained by the use of ():

$$U(0, A) U(a, 1) U(0, A)^{-1} = U(Aa, 1)$$

nd (16); one obtains

7)
$$U(0, F)P^{\mu}U(0, A)^{-1} = A^{\mu}_{\ \nu}P^{\nu}.$$

Furthermore the \mathcal{P}^{μ} commute hence

$$[P^{\mu}, P^{\nu}] = 0.$$

Homogeneous group

$$A^TGA = G.$$

The treatment is very similar to that of the orthogonal rotation group. $A \in O_n$, $A^TA = 1$.

Differentiation with respect to a parameter yields (by putting the parater equal to zero)

$$A''|_{x=0}1+1A'|_{y=0}=0$$
,

$$D^r + D = 0.$$

For the homogeneous Lorentz group we have form ()

$$\mathfrak{M}^{r}G + G\mathfrak{M} = 0$$

putting

$$D = G977$$
.

學 海武

We have $D' \mid D$ \emptyset , i.e. D is skewsymmetric. It is 4×4 so there are six parameters.

We define the matrices $\epsilon_{\alpha\beta}$ as before

(51)
$$(e_{\alpha\beta})_{\mu\nu} = \delta_{\alpha\mu}\delta_{\mu\nu}$$

that is

$$e_{\alpha\beta}e_{\alpha\sigma}=e_{\alpha\sigma}e_{\beta\sigma}\,.$$

These e_{ν} provide us with a convenient representation of the $D_{\mu\nu}$ (infinitesimal operator of the rotation in the 2-plane $\mu - \nu$)

$$D_{\mu\nu}=e_{\mu\nu}-e_{r\mu}\;.$$

We have

$$\begin{split} D_{\mu\nu}D_{\rho\sigma} &= (e_{\mu\nu} - e_{\nu\mu})(e_{\rho\sigma} - e_{\sigma\rho}) \\ &= e_{\mu\nu}e_{\rho\sigma} + e_{\nu\mu}e_{\sigma\rho} - e_{\nu\mu}e_{\rho\sigma} - e_{\mu\nu}e_{\sigma\rho} \\ &= e_{\mu\sigma}\delta_{\nu\rho} + e_{\nu\rho}\delta_{\mu\sigma} - e_{\nu\sigma}\delta_{\mu\rho} - e_{\mu\rho}\delta_{\mu\sigma} \end{split}$$

hence

$$[D_{\mu\nu}, D_{\rho\sigma}] = D_{\mu\sigma}\delta_{\nu\rho} + D_{\nu\rho}\delta_{\mu\sigma} - D_{\nu\sigma}\delta_{\mu\rho} - D_{\mu\rho}\delta_{\nu\sigma}.$$

Introducing

$$M = igD,$$

$$[\ M_{\mu\nu},\ M_{\rho\sigma}] = i[g_{\nu\sigma}M_{\mu\nu} + g_{\mu\rho}M_{\nu\sigma} - g_{\nu\rho}M_{\mu\sigma} - g_{\mu\sigma}M_{\nu\rho}].$$

Since the homogeneous Lorentz group is semi-simple we may find the Casimir operato s in a straight forward way (see Prof. RACAH lecture).

So far we have only in (55) the Lie algebra of L^{\uparrow}_{+} . That is, given any two elements, we know their commutator, not their products.

Enveloping algebra of a Lie algebra. - Example L and \mathcal{L} .

This consists of all possible formal polynomials formed from the elements of the Lie algebra.

Centre of the enveloping algebra: – The centre C of the enveloping algebra E is the set of all elements $e \in E$ which commute with every other element:

$$C = \{e \in E | V f \in E \cdot f e = ef\}.$$

Centre of the enveloping algebra of the inhomogeneous group. - It is convenient to define the 3 dimensional «pseudovector»

$$J = (J^1, J^2, J^3) = (M^{23}, M^{31}, M^{12})$$

and the 3-vector

$$(56') N = (N^1, N^2, N^3) = (M^{01}, M^{02}, M^{03}).$$

We have from (55)

$$[J^i, J^j] = i\varepsilon^{ijk}J^k,$$

which physicists write symbolically

$$(57') J \wedge J = iJ.$$

We also obtain

$$(58) N \wedge N = -iJ,$$

$$[J_i, N_i] = i\varepsilon_{ijk}N_k = [N_i, J_i].$$

As is well known

$$[J^2,J]=0\,,$$

but

$$[J^2, N] \neq 0$$
, $[N^2, N] \neq 0$.

For the homogeneous group the invariants (i.e. elements of the center) are

(59)
$$f^2 = N^2 + \frac{1}{2} M^{\mu\nu} M_{\mu\nu} : \quad \mathbf{J} \cdot \mathbf{N} = \frac{1}{2} \varepsilon^{\lambda\mu\nu\varrho} M_{\lambda\mu} M_{\nu\varrho} = \det M_{\mu\nu}$$

They do not, however, commute with the P's and so do not belong to the Centre for the inhomogeneous group.

For the inhomogeneous group we have to include the elements P_μ of the translation group. We find

(60)
$$[P_{2}, W_{m}] = i(g_{2\mu}P_{\nu} - g_{\lambda\nu}P_{\mu})$$

so that using $[AB,C] \times A[B,C] \times [A,C]B$ we find that: $P^2 = P^{\mu}P_{\mu}$ commutes with $M_{\mu\nu}$.

It also communes with the P so that it is one element of the centre. The other buyaciant was found by Pauli: let

then

$$P_{\lambda}W^{\lambda}=0$$

and

$$[P_{\mu}, W_{\lambda}] = 0.$$

We compute

$$\begin{split} \left[\begin{array}{c} W_{\lambda}, \; M_{\mu\nu} \right] &= i (g_{\pmb{q}_{\pmb{p}}} W_{\nu} - g_{\lambda\nu} W_{\mu}) \; , \\ \\ \left[W_{\lambda}, \; W_{\mu} \right] &= i \varepsilon_{\lambda\mu\nu\varrho} P^{\nu} W_{\varrho} \; , \end{split}$$

(note that $\varepsilon^{\lambda\mu\nu\delta} = -\varepsilon_{\lambda\mu\nu\varrho}$ since $\det g = -1$; $\varepsilon^{0123} = 1$). We see that

$$W^2 = W_\mu W^\mu$$

is also an element of the centre of the envelopping algebra.

Summary. - Invariants:

for
$$\mathcal{E}$$
 P^2 , W^2 ,

for
$$L$$
: $J^2 - N^2$, $J \cdot N$.