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ABSTRACT

We first recall the basic concepts for symmetry and broken symmetry and their
general application to crystals and liquid crystals. How that transposes to the
cosmology of our Universe? We show the limitation of the use of Born von
Karman finite groups as crystal symmetry groups. Some interesting physical
phenomenon of topological nature are lost. We found in some space groups,
quasi-invariant subgroups; this weaker equivalence has been very useful in

mathematics. Physicists should be aware of it.

It is a great honor to have been invited at this Walifest. I thank the
organizers to give me the opportunity and the deep joy to celebrate a well known
physicist, founder of a school whose many members are gathered here, a man of
great culture who has remarkably integrated Eastern and Western inheritance, a
very respected scholar and a good writer. We are many here to share this dear
friend: Kameshwar Wali.

Kamesh and I met in Madison in 1960 in the first (but not the last) Summer
Institute organized by Bob Sachs. Since, not only we had many contacts as physi-
cists but we became excellent friends (although we published six papers together in
the last twenty years), and our two families share very good remembrances together.
I learned much from Kamesh with his rich culture and his readiness to help and I am
very pleased to have the occasion to thank him more formally today (not forgetting



to thank also Kashi). This meeting of many friends, students and collaborators of
Kamesh Wali is a marvellous way to celebrate him. Let me add that this meeting
illustrates so well the universality of Scientific Culture that we all share. Indeed we
were born in every part of the world and raised in so many different langages and
backgrounds, but through Science we have so much in common!

I am not trying to minimize the difficulties that physicists have for under-
standing each others! T am too well aware of this handicap since most my research
activity for the last fifteen years has been outside the domain of high energy physics
in which most of you are working. But we all know how much we can learn from
other fields of physics if ...we are able to communicate. Let me remind you how
much the ideas of Goldstone, Nambu ! ..., inspired by solid state physics, influ-
enced our own views on symmetry. Mathematicians and physicists were aware of the
fundamental role of gauge invariance: Weyl, Klein, Pauli, Yang and Mills, Sakurai,
Giirsey,. ... We could also learn from supraconductivity: a physical phenomenon
where a gauge symmetry is broken.

It is time to outline the content of this lecture. Sure we can learn from
other parts of physics, as well from their success than from their mistakes: I will
illustrate both points, taking my examples mostly from condensed matter physics.
In order to make the communication possible I will first recall the basic concepts
to be used for the study of symmetry breaking. And the last part of the lecture
will tell you of a small addition to these basic concepts, that some colleagues and I
found lately, but it was discovered seventy years ago in other domains of science.

1. Basic concepts for symmetry and broken symmetry.

Symmetry groups intervene in physics through their action; such action
might be not linear! Here are the simple and fundamental concepts for studying
the action of a group G acting on a set M:
the little group G,, is the set of elements g € G leaving m fixed: g.m =m
the orbit G.m C M is the set of transforms of m.

Here we will use the notation M |G for the set of orbits (often called the orbit space
because it may have nice geometric properties). The little groups of two points m
and m’ = g.m of the same orbit are conjugate:

G = gGmg~ ! (an exercise is proposed in foot note ? ). The converse in generally
not true. So one defines:

I apologize to those I do not name.

2 Which points of the orbit G.m have exactly the same little group as m? Answer: the
orbit Ng(Gm).m where Ng(H) denote the normalizer in G of its subgroup H, i.e. the largest

subgroup of G which contains H as invariant subgroup.
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a stratum is a set of all points of M with conjugated little groups.

So M is a disjoint union of strata; each stratum is a disjoint union of orbits with
same conjugacy class of little group. That concept is fundamental in physics * and
often M||G, the set of strata, is finite. For instance, the Lorentz group has an
infinite set of conjugacy classes of subgroups, but four only appear as little groups
in its action on the Minkowski space: the corresponding 4 strata are the time-like,
space like, light like vectors and the null one.

The symmetry group of a physical problem acts on the set of its solutions;
the symmetry group of each solution is its little group, so the different types of
symmetry of the solutions correspond to the strata. I emphasize again that most
often the nomber of strata is small; moreover the nature of the strata (or at least
some of them) can often be predicted by the mathematical structure of the problem
only *. That is the case of the famous and rather successful Landau model [3] which
predicts ° the symmetry change in second order phase transitions: the minima of
the free energy potential form an orbit whose little groups are the symmetry groups
of the spontaneously broken symmetry phase. For crystal to crystal transitions, the
orbit has a finite number of minima. Which one is chosen? That is irrelevant: the
choice is generally due to inhomogenities, or impurities or, in very good samples,
fluctuations. The choice differs along the crystal; so it is composed of domains
(called macles by mineralogists) whose symmetries correspond to the different con-
jugated little groups of the minima. For liquid crystals the orbit of minima is a
manifold; in a perfect state the same minimum is chosen over the whole crystal.
But imperfect states are more frequent and the chosen minimum varies along the
crystal: that defines on the space occupied by the crystal a function valued in the
manifold of minima. If the function is homotopic to the constant function, the
state is simply a deformation of the perfect state; if the function belongs to another
homotopy class, the state symmetry (and eventually its defects) can be classified

3 Radicati and I introduced in [1] this name twenty five years ago, because this concept,
although known to the mathematicians, had no name. One had to say “the union of orbits with
same conjugacy class of little groups”.

4 That is the case for the extrema of smooth functions invariant by a compact group:
there are few strata on which every such function has an extremum (for more details, see [2]). If
you find their symmetry from a Lagrangian you have discovered, your result does not prove the

value of your choice: any other Lagrangian would have given the same result!

-

2 It did not explain the critical coefficients, so in the late seventies the renormalisation
group technics were applied to it. How successfully? that might be a matter of opinion; but
again, the symmetry predictions of the renormalisation group can often be obtained from the

mathematical structure only: e.g. [4].



by topological invariants (in particular those of homotopy °).

2. Broken symmetry in our universe.

The concepts of broken symmetry are well known to most of you, perhaps
expressed with a different vocabulary. The fundamental laws of physics are highly
symmetric; outside the U(3) gauge group of unified Q(E + C')D), many of the sym-
metries present in the big bang have disappeared with the cooling of our universe.
And t’Hooft Polyakov monopoles are similarly the illustration of homotopy invari-
ants obtained by spontaneous symmetry breaking. Unhappily they have not yet
been observed and we know only a very low upper limit for their density in our
universe. The exploration of our Universe is progressing rapidly as was progressing
that of our Earth five hundred years ago. Is it not remarkable that in the XVI'h
century, as soon as geographic maps were avalaible, F. Bacon asked if the similarity
between the shapes of the coastlines of the eastern half of South America and the
south-western half of Africa was purely spurious or had to be explained? Until the
beginning of this century no one considered this remark as scientific. And during
his life Wegener did not succeed to convince the scientists to accept his views on
the drift of the continents. We now know when the primordial continent broke up:
200 millions years ago South America and Africa parted from each other.

A similar bold question was that of Dirac: does the value of the gravita-
tional constant G depend on the history of our universe? For more than ten years
some observers are measuring the variations of the distance between a point on the
Moon and several on the Earth, with a precision better than 1071°; that lead to a
good upper limit for the change of value of GG; the binary system of neutron stars
discovered 18 years ago [6] and constantly observed since gives even a better upper
limit [7]: G/G = (1.0 + 2.3)10 'year~!. From the observations in space and in
time we should be able to obtain as precise answer on the constancy of the value
of the fine structure constant . On the other hand it is a very natural question
to wonder if the value of constants due to spontaneous breaking in the history of
our Universe of the large symmetry which unified all the interactions are the same
everywhere in space time. I believe that might be not the case for instance, for the
“Cabibbo” directions of the weak current in the different families, but this state-
ment is not very interesting as long as nobody is able to propose a physical test for
answering such “natural” question. I hope to discuss with Kamesh, and many of
you, these problems.

Another “natural” question has already been asked and a first tentative
answer was given by Sakharov. How to explain the disymmetry between matter

6 For many references in a general review, see [5].
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and anti-matter in our Universe, since it is so natural to believe that the big bang
had zero baryonic charge? To get his answer, in 1967, Sakharov used the observed
fact of the large value of the ratio v = (number of photons / number of baryons)
> 10% in our Universe and C P violation discovered three years before 7. He needed
also proton decay that he was bold enough to predict! It is difficult to have a quan-
titative verification of these ideas. I am astonished that a very natural explanation,
published more than ten years ago by Souriau and collaborators [25], seems to be
unkown to the audience: the asymmetry between matter and antimatter might be
purely local ® and the total baryonic charge of the universe might still be zero.
Indeed we have yet no proof of proton decay; so one could think that from a zero
baryonic charge big bang the small number of surviving nucleons (compared to the
number of photons) is due to a small spatial fluctuation of the density of baryonic
charge: the simplest one is a dipole. Then, the universe expansion has separated
matter and antimatter into two equal part of the Universe. Souriau et al. have
found an observation supporting strongly their proposal. Indeed the farthest ob-
jects we can see in the Universe are the quasars. More than a thousand are observed.
Plot their position in space time; to do it, you need a map of our Universe: the
authors have chosen the one given by the Roberston Walker metric: the Universe
has the topology R x S3 (it has O, symmetry). Their finding: quasars are dis-
tributed rather homogenuously up to the largest distance we see them, except for
a regular gap slightly less than a billon light year wide and forming an equator of
S3. They give the position of this equator ? (the nearest point is 8.10° lignt years
away); beyond this equator, we see about 200 anti-quasars. Three quasars which
are on the brim of this gap have very abnormal spectra. This gap should be an
intense source of v rays, decay products of the 7° produced by nucleon anti-nucleon
annihilation. The energy spectrum of these 4’s (their average energy is around 130
Mev) is easy to predict: it depends continuously on the direction that we look at
them. The observation of such extragalactic v’s is difficult because it is made after
substraction of the large galactic background, but it has begun; so the predictions
of the Souriau et al. model will be submitted to new tests.

3. Can we replace the symmetry group of a crystal by finite groups?

For the last twenty years, with the discovery of modulated crystals [8] and,
more recently, of crystal with icosahedral symmetry '© [9] (an impossible crystal

7 The conservation of CPT' does not forbid a CP disymetry to appear in the evolution

of a system which is not in thermodynamic equilibrium.

8 Remember the macles!
9 Every direction in space meet this equator whose topology is So.
10

They are a very interesting and extreme case of modulated crystals.
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symmetry as explained in all books ! ) our view on crystal structure have to be
drastically modified; there is a great activity to make a new synthesis, not yet
achieved. But periodical crystals, i.e. those crystals with a symmetry group of
translation 7' isomorphic to Z3, are still the more abundant and the more studied!
Exactly one hundred years ago, the mathematician Schonflies and the mineralogist
Fedorov, after correcting to each other small mistakes, agreed on the list of the
230 “space groups”, a short name for symmetry groups of (ideal) periodic crystals.
Such a space group G has the translation group 7' ~ Z3 as invariant subgroup
and the quotient G/T = P is a finite subgroup (the point group of the crystal).
Among the space groups, 73 of them as semi-direct products G = T > P. Most
of the macroscopic properties of crystal depend only of the “geometrical class”, i.e.
the conjugacy class of P in the orthogonal group Os. But there are 73 different
possible actions of point groups on 3 dimensional lattices: they correpond to the 73
conjugacy classes of finite subgroups of Aut Z3 = GL3(Z). These conjugacy classes
are usually called “arithmetical class”; for each one, there is a space group which
is a semi-direct product G = T > P (see foot note '? for more details) while the
others are not.

The space groups of thousands of crystal have been determined. On the
other hand solid state physics is studying many physical properties of crystals. But
the majority of solid state physicists ' study their symmetry properties assuming
some periodic boundary conditions (usually called Born von Karman conditions);
that procedure replaces the infinite space groups G by the finite group G,, (we use
the notation |M| for the number of elements of the finite set M):

n>1, G, =G/nT, |G,|=|Pn® noticethat Gy =G, Gy = P; (1)

where nT is the group generated by the nt with ¢ € T. If n is relatively prime to | P,
then G, is a semi-direct product Z3 > P and it is the same for the different space
groups of the arithmetic class. We explain in a foot note '* a necessary condition

1 Since, 8-fold and 12-fold “forbidden” crystal symmetries (but no higher order) have
also been observed.

12 An arithmetic class defines an action of P s GL3(Z), ¢ injective, on T ~ Z3 and
a group structure Hi(P,T) = second cohomology group) on the set of equivalence classes of
extensions of T" by P, i.e. of groups G which have T as invariant subgroup, P as quotient and
with the action of the inner automorphisms of G on T corresponding to ¢. Then the isomorphism
classes of the space groups belonging to a chosen arithmetic class are given by the orbits of the

normalizer Ngp,(z)(¢(P)) in its natural action on the group Hi(P,T).
13

14

E. Wigner, and his student F. Seitz belong to the distinguished minority.

Obviously, to obtain different G,, for the different GG of the arithmetic class defined
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to be satisfied by n in order that the different groups of the arithmetic class of G
are represented by different Born von Karman groups '® and we call “good n” any
integer satifying this condition (they are all mutiple of the smallest good n).

Few years ago, when we made a classification of the symmetry of energy
bands in crystal, H. Bacry, J. Zak and I thought that if a property is true for the
infinite sequence of “good” G,; it must be true for G. Since, we have proven that
it is not true. Let us explain the problem.

More than thirty years ago, Burneika and Levinson [10], des Cloizeaux [11]
showed that the set of states of an energy band forms the Hilbert space of a unitary
representation of the space group G, induced from a representation of a little group
appearing in the action of G on the Euclidean space (the strata of this action are
called by crystallographers “Wyckoff positions”). Some were tabulated by Kovalev
[12]. Of course band representations induced from equivalent representations of
conjugate little groups (same stratum) are equivalent. However in the eighties,
some equivalence between representations induced from different representations of
a little group , or from little groups belonging to different strata, were found by Zak
[13abc|, and by Evarestov and Smirnov [14abc]. That could be well understood
from the theory of induced representations as we explained in [15] where we gave a
complete classification, up to equivalence, of the elementary band representations
(those which cannot be decomposed into a direct sum of band representations ).

We found that in some crystallographic groups there might exist non con-
jugate finite subgroups H, H' which are isomorphic H — H’, and the corresponding
elements h € H, b’ = «(h) € H' are conjugate: in other words, for every h € H,
on can find an element of G, g, € G, such that ¢(h) = ghhg,:1 but one cannot find
a unique g, independent from h. We call such subgroups quasi-conjugate. Strictly
speaking, conjugate subgroups are also quasi-conjugate; but in the following, except
the appendix, we shall say simply “quasi-conjugate” as a short for “quasi-conjugate
but non conjugate.

We listed in table 4 of [15] the 14 space groups containing a pair of conjugacy
classes of finite subgroups which are quasi-conjugate (3 of them have two such pairs).
We explain here the simplest example of these space groups; that is !7 G = F222.

by ¢, n must satisfies: an(P, T) = 0, i.e. n must be divisible by the order of every element
of Hg(P, T) = 0. (I have never seen this condition written in a book or a paper on solid state
physics). The smallest number which satisfies this condition for all 73 arithmetic classes is 12.

15 Sucha “good choice” may introduce other unwanted features for mimicking the group
G; e.g. G may have a non trivial center although G has not; see the example of F'222 below.

- In [13b], Zak called them “band-irreducible representations” and gave a necessary
condition: they must be induced from irreducible representations of largest little groups.

17 More thatn sixty years ago, the crystallographers Hermann and Maughin have devised
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Given 3 orthogonal vectors, generally of different norms \;:
€;.€; = /\iéij; A > 0, (2)

the translation group 7" is made of the vectors: ), n;e;, with ). n; even. The group
F222 is the semidirect product 7'>1 P with P = {I, Ry, Ry, R3} where the R; are
the rotations of order two around the three basis axes €;; they are represented by
the matrices

1 0 0 ~1.0 0 -1 0 0
Ri=[0 =1 0 ), R=(0 1 0], Rs=|0 =1 0]. (3
0 0 -1 0 0 -1 0o 0 1

So the quotient group P is isomorphic to Z7. The group law of the semi-direct
product 7" > P is written:

a,beT, A,B€ P, (a,A)b,B) = (a+ Ab, AB). (4)

A matrix representation of this group is:

€1 0 0 1

A a\_ | 0 e 0 ny 2 _ _ , .
(0 1) = 0 0 €3 M3 y &5 = 1, E1E92€3 = 1, n; € Z, an €27. (5)

0 0 0 1

To this group presentation (the one given in ITC [16]), we prefer to choose, for
elegance and simplicity, a lattice basis. We define:

Uy =€y +e3, Uy =e3+ey, U3=e;+ e soT:{Zniui}, n; € Z, (6)

K3

i.e. the vectors u; generate the lattice 7. In this basis the three elements of P
different from I are represented by the matrices:

~1 -1 -1 0o 0 1 0 1 0
Ss=l0 o 1], So=|-1 -1 -1}, S3=|1 0 o0
o 1 0 1 0 0 -1 -1 -1

a remarkable notation for the 230 space groups; the label for each group, using 2 to 7 characters:
letters, /, and digits (which can also be used as subscipt or carry a bar over them), contains enough
information for reconstructing exactly the group law. They are used in the International Tables

for Crystallography [16].



We easily verify:
S?=1, S;8;=25;S;, 515253 =1. (8)

S,-ui = —-U; <~ <0, Sz)<~—u1,l> = <’u,i,51'> = <U¢,S¢>2 = (O,I> =/edG (9)

More generally:
(i, I (moug, Si)(ui, I) ™" = ((m + 2)ui, Si) (ug, $:)* =1 (10)

Also:
u = Zui, Siu=u—4u; < (0,5;)(u,I) = (u— 4u;, S;). (11)

With a little work, one shows that all elements # I of F'222 of finite order, are of
order 2; they are of the form (s;, S;) with S;s; = —s;; they are all conjugate to the
elements (mu;, S;). The preceeding equations also show that those elements fall
into six conjugacy classes which are labelled by the values 1,2,3 of the index 7 and
the value of m modulo 2. All that implies that the maximal finite subgroups of
F222 are isomorphic to P ~ Z3.

The maximal finite subgroups of a crystallographic group are stabilizers of
points: they leave fixed the barycenter of each of their orbits. Hence, a problem
equivalent to the determination of the conjugacy classes of F'222 subgroups isomor-
phic to P, is to determine their orbit on the Euclidean space. Let x a point of such
an orbit; it satifies the three equations s; + S;z =z & s; = ([ — S;)z. Let &1, &5, &3
the coordinates of the point x. Since the translation s; has integer coordinates, we
solve these equations modulo 1 for the coordinates of z. The solutions are:

modl: & =86=E8,6+0+0+8=0 6 056 =86=E§<1,4=0. (12)

So there are four orbits, determined by their point in the fundamental domain 2

0<¢ <1

111 111 3 3 3
a: 0,0,0; ¢: -,-,-; b: -, -,—-, d: -, -, -. (13)
44 4 272 2 44 4
We write again that equation in the form:
r: (&= -742), when m =0,1,2,3; = =a,c,b,d. (14)
The corresponding stabilizers are denoted by P,,:
P, ={(0,I), (mu,,S;),i=1,2,3}. (15)

18 The notations a,b,c,d are those of the International Tables of Crystallography for

“Wyckoff positions”; but they use the coordinates defined in Eq.(2),(3).
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The set of points of the orbit G.z is {x + ¢, ¢t € T'} and the corresponding little
groups are conjugate of P,, by the translation ¢. So there are 4 conjugacy classes of
F222 subgroups isomorphic to P: indeed Eq.(11) yields (use also that 7" is Abelian):

m,n € Z, Pp(nu,l)= (nu,I)P,_4,. (16)

That proves P,, and P,, are conjugate. < m = m’ mod4
Moreover Eq.(15),(10) show
m =m'mod2 < P,, and P,, are quasi-conjugate.

For the Born von Karman groups F'222,,, n > 1, one shows easily that:
for n odd, all subgroups isomorphic to P are conjugate,
for n = 2mod 4, the subgroups ~ P fall into 2 conjugacy classes labelled by m mod 2,
for n = 0 mod 4, the subgroups ~ P fall into 4 conjugacy classes labelled by m mod 4,
each pair of conjugacy classes with same parity of m contains quasi conjugate sub-
groups.

We also notice the center of F'222,, is trivial when n is odd,
is Zy((% u,I)) when n = 2mod4,
is Z4((% u,I)) when n = 0mod4.

Representations of finite groups induced from equivalent representations of
quasi-conjugate subgroups are equivalent (in the appendix we give an explicit ex-
pression for the characters of an induced representation). That is the case for those
of F'222,, induced from equivalent representations of Py and P, or from P; and Ps.
But we showed that it is not the case for the space group F222 [17]: the induced
representations are infinite dimensional so we can no longer compare their charac-
ters; two representations induced from equivalent representations of quasi-conjugate
subgroups (e.g. Py and P,) have still the same content when decomposed into ir-
reducible representations of ' F222; however there is a topological obstruction for
constructing a unitary intertwinning operator between them. So there are inequiv-
alent 20 . That has a physical effect: one can measure a Berry like phase depending
only on the symmetry of the band; we predicted [19] that they are different for the
bands corresponding to such a pair of representations.

It is not so astonishing that when we replace our space time by a finite set
of n* points, whatever the large value of n, we loose some physics specially those
phenomena described by topological invariants. I think the still growing crowd of
physicists engaged on computing gauge quantum field effects on finite lattices, might

19 Their dimensions are 1,2,4.
20 Bacry [18] obtained also that result from a detailed study of the dual of F222, i.e.
the topological space canonically built on the set of equivalence classes of unitary irreducible

representations; the explanation comes from its non seperate topology.
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be interested by the limitations I just described of the use of Born von Karman
approach on crystal symmetry. These limitations were quite unexpected by the
large crowd of solid states physicists.

4. Quasi conjugate and almost conjugate finite subgroups of a group.

I was amazed by the existence of quasi-conjugate finite subgroups in 14
space groups. I asked myself many questions: e.g. what is the smallest number of
elements of a finite group containing quasi-conjugate subgroups 2'? As usual my
reaction was to search if other scientists had met quasi-conjugate subgroups. It took
me sometimes to find out if many other examples were known. It will be easy to
explain to you the infinite number of examples published by Gassmann [20] in 1926
(before Kamesh was born!): the quasi-conjugate subgroups are also isomorphic to
72 and are subgroups of the groups S,, of permutations of n objects for n > 6. Since
you all read Dirac’s book on quantum mechanics, you all know that permutation
can be represented as a product of commuting cyclic permutations and those with
the same lengths of cycles are conjugated. Consider the two subgroups of S,,,n > 6:

Hy = {I,(12)(34), (13)(24), (14)(23)}, Ha = {I,(12)(34), (12)(56), (34)(56)}.

(17)

Their elements # [ are all conjugate; since H; acts on 4 elements and Hy acts on
6 elements, they cannot be conjugate in S,,. So they are quasi-conjugate.

These examples were given in order to kill a Kronecker conjecture dating

of 1880 about the fields of algebraic numbers: “isospectral fields are isomorphic”; I

do not wish to explain here the meaning of this statement ?2. But I will explain a
similar one: Isospectral compact Riemann spaces might be non isometric.

For any compact Riemannian space, one can define a Laplace operator

acting on the functions defined on this space with the condition to vanish on the

21 The smallest I knew then was |F2224] = 256; I now know that the answer is 32; I
let to the reader the pleasure to browse by himself through the mathematical literature on the

subject.
22 Letus just say that a prime number in Z, the ring of integers, might be not prime in the

ring of integers of the algebraic number field F; the spectrum of F is defined by the decomposition
(trivial or not), in its ring of integer, of every prime of Z. This seems to be far from physics, but...
Mosseri and Sadoc have guessed a formula giving the number of atoms in the successive shells of
an icosahedral packing. R. Moody and A. Weiss (to appear in J. Number Theory) have establish
the rigourous expression. Its values differs from that conjectured one from 55th layer only! That

is due that 11 can be factorized: 11 = (4 + v/5)(4 — V/5).
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Two isopectral domains in the plane.

This figure is the reproduction of the one which appeared in the paper “One cannot
hear the shape of a drum” by C. Gordon, D. Webb, S. Wolpert, Bull. Am. Math.
Soc. 27 (1992) 134-137. However the original figure gave only the domains. In
dashed lines we have indicated that the two domains are are from identical pieces.
There are 7 for each domains; the construction relies on the existence of two quasi-
conjugate subgroups in the 168 element simple group.

Unhappily this figure could not appear in the printed paper.

boundary when it exists 22 . Isometric Riemannian spaces are isospectral, i.e. their
Laplacians have same spectrum. Is the converse true? In 1966 M. Kac was asking
that question in a more picturesque manner “Can one hear the shape of a drum?”.
He seemed to have ignore that J. Milnor [21] had already given a negative answer:
he had found a pair of isospectral but non isomorphic 16 dimensional Riemann
manifolds. Similar examples were produced regularly from 1979.... In 1985 T.
Sunada [22], by transposing the algebraic method of Gassmann to this problem,
gave a general method for building such pair of Rimannian spaces. One has to find
a Riemann manifold M with a finite group G acting on it by isometries with 0 or a
finite number of fixed points. If G has a pair Hy, H, of quasi-conjugate subgroups
acting freely ?* on M, then the manifolds M|H, and M|H, are isospectral, but not

23 Every result we shall quote is also valid for the Neumann condition ((8f); = 0 on
the boundary) instead of the Dirichlet condition.

4 That is with a unique stratum corresponding to the trivial little group; in that case
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isometric °. P. Bérard (to appear) has generalized the Sunada theorem to the case
when the subgroups H; do not act freely (then the orbit spaces are orbifolds; their
boundaries have singularities). That new theorem has lead to an example in two
dimensions published in a research note of the Bulletin of A.M.S. last year [24].

Those mathematical results extend to a weaker equivalence of subgroups:
that of almost conjugate subgroups, explained in appendix.

So, when you have established the list of strata in your symmetry problem,
look for the strata with quasi-conjugate (and/or almost conjugate) subgroups and
try to tell which physical phenomena they still distinguish and which ones they do
not!

5. Appendix

We denote respectively by [g]a, [H]e the conjugacy class in G of the element
g € G, of the subgroup H < G. Let G be finite, let D be a finite dimensional linear
representation of H, whose character is y5). Then the character Y5 of the induced
representation of G is given by

A=Tndf; D;  xgle)=HI'Cale)l D> xilg). (18)
g'€HN[g]lc

Here C;(g), the centraliser of ¢ in G, is the subgroup of the elements of G com-
muting with g.
When D is the trivial representation (i.e. h € H, x5 (h) = 1) the induced represen-
tation A is called a permutation representation since its matrices are permutation
matrices (all their elements vanish except one per line and per column which is 1).
Definition: two subgroups Hy, Hy of the finite group G are almost conjugate if for
every g € G, Hi N[gle = HaN[glc-
Notice that this implies |H;| = |H2| and these two groups have same number of
elements of a given order.
Definition: two isomorphic almost conjugate subgroups are said quasi conjugate.
Eq. (18) shows that the representations of a finite group, induced from
equivalent finite representations of two quasi-conjugate subgroups, are equivalent.
It also shows that the permutation representations induced from almost conjugate
subgroups are equivalent.
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