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0. -INTRODUCTION

There are many approximate symmetries in particle physics. It is tempting
to consider them as broken higher symmetries. There has been many simplified models
along this lines ; in a large subset of them,tentative explanations of the Cabibbo

angle are suggested, They are not very convincing.

In this lecture I will first present some mathematical facts relevant to
symmetry breaking pertaining to two different approaches. Their application to

particle physics seems rather suggestive,

1.~ WHAT IS A SPONTANEQUSLY BROKEN SYMMETRY?

The general expression "Symmetry breaking" covers different physical
phenomena. So it might be worthwhile to precise which aspect of symmetry breaking
is considered here. We will not consider what could be qualified as "apparent
symmetry breaking"., This is the case for instance of classical systems in the
neighbourhood of an unstable equilibirum which possesses a symmetry group G .
Such systems, very near from each otherl), (and not invariant under G) may then
evolve to very different states, transformed into each other by G ; they may
also tend to the same state invariant only under the subgroup H of G . In
both cases however the symmetry of each system has increased rather than de-
creased since the initial state had a smaller symmetryZ).

Even if the experimentalist prepares them as similar as possible, there are
fluctuations which make them different,
)Apparent symmetry breaking does also raise interesting problems. R. Thom [1]

in his lecture will also distinguish several types of symmetry breaking and
study interesting cases which I do not consider here.



The problem which interests us is of a broader nature. For instance, in
the preceeding example, we would ask the question : "why there exist stable
equilibria with symmetry group H , strictly smaller than G ?" To take a
concrete example : although interactions between atoms or ions are invariant
under translations and rotations i.e. G is the Euclidean group, at some
temperature and pression the lowest energy state might be a crystal ; its
state is invariant under a crystallographic group H , strict subgroup of
G . By Euclidean transformations, this state is transformed into other states
of the same crystal ; the complete set of transforms by G is called an
orbit of G . The interesting problem is not to explain which state of the
orbit will appear (this might be due to any heterogeneity such as crystal seed,
etc...), but why crystals exist ? More generally, which subgroups H of the
Euclidean group G can be symmetry groups of equilibrium states ? As we will

see, one can answer this question,

To summarize, we say that a symmetry is spontaneously broken when for a
physical problem invariant under a group G there exist solutions (which can
be grouped into orbits of G ) which are only invariant under a strict sub-

group of G . We shall omit from now on the adverb "spontaneously!"

The mechanism of symmetry breaking is well understood ; its appears in sta-
tistical mechanic when one goes to the thermodynamics limit for systems for
which one has rigourous solutioms,it also appear in quantum field when one

performs the renormalization. For quantum field theory we refer to early
examples with perturbative renormalization (2] and recent examples in the lec-
tures of Glimm and Jaffé at this conference LSJ . There are even more examples
in statistical mechanics, €.g. models of spontaneous magnetization LA] It

is also a criterion that broken symmetries are well understood when one can

predict that they cannot occur, as Dobrushin and Schlosmann [51 have recently
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proven for a large class of 2-dimensional lattice models invariant ) under

@ compact connected Lie group G

The description of broken symmetry is very simple and natural when one
uses the mathematical frameof ¢¥* algebra. This frame covers both classical and
quantum statistical mechanics, and quantum mechanics and quantum field theory,
The physical states are positive linear formson A ; in the dual A* of A,
they form a convex set whose extremal points are the pure states. Let G be
a locally compact group of automorphismsof A . Let ¢ be a G-invariant state
and u@ s Tré the corresponding Hilbert space and representation of A ob-
tained by the Gelfand-Naimark-Segal construction. When § is not a pure
state, ﬂ@ is reducible . From the assumption of asymptotic abeliannessz) one

proves [7,8] that § is an integral over a subset 6 of the pure states

= f ‘fdp,(‘i’) (1)

6
where du(Y¥) is a G-invariant measure (normalised to ‘/. dy=1) and that
6
the representation n@ is factorial (i.e, ﬁ@ = ,fe; H du(v) and all irre-
¥

S}
ducible representaiorms n& on HY are unitary equivalent) . The symmetry is

broken. Indeed each state V is only invariant under a strict subgroup

GY of G , and the automorphisms g ¢ G , g ¢ GW of A are not unitarily

1)

For more details : Define an action of G on a manifold X . So G acts
(diagonally) on X22 | The potential U ig bounded, has finite range and
is invariant under G . and there are some condition;ofzun-degeneraty. The
proof use the limit theorem for random variables on Lie groups,

2) This assumption, introduced in [5] , 1s

vab €A, vg A" ¢([a,g )] 40 as GOt o w e.g. if G is the

Euclidean group, t is a translation going to infinity).



implementable on EY . Finally one also proves that the only G-invariant sub-

sets of g are either of (j-measure one or of jjI-measure zero,.

When there are G-invariant pU-measure zero subsets, ¢ 1is a ergodic
transitive state. The classification of such sets for the Euclidean group is still
to be done. When there are no G-invariant u-measure zero subsets, ¥ is
called a transitive state. The classification of such states is obtained by
finding all isomorphie classes of G-orbits carrying a finite G-invariant

measure. This has been done in [7] for the Euclidean group. Outside the crystal-
lographic groups, in three dimensions (230), and thosein two dimensions to which
are added continuous translations in the third direction (17), and the extension
of translations by discrete subgroups of S0(3) (oriented homogeneous material, as
ferromagnet ; infinite number), there are two infinite classes of helicofdal sym-

metries with rational or irrational rotation angle (helimagnetic states, choles-

1
teric liquids, etc...) )

It is more simple to classify "possible symmetry breakings" than to
prove that they dynamically occur (or do not occur): for a given system the
latter requires the study of the action of G on the set of pure states,
However there also exists in physics simplified models which predict correctly
the possible symmetry breaking ; I think particularly of the Landau theory of
phase transtisions2 . Since these transitions are reversible it deals not only

with symmetry breaking, but also with enlargement of summetry. However enlar-

gements of symmetry seemed more natural than symmetry breaking (cf the

1)

Of course not all these symmetries classes, in infinite number, are known to
occur in Nature, this is already the case of some of 230 crystallographic
classes. But it seems to me interesting that man has for instance make
borane molecules with the dodecahedron, icosahedron symmetry (e.g. anion

2-
B12 le ) which has never been observed in natural molecules

2) :
It is succently exposed in the Landau-Lifschitz 97 and the Lubarskii LlOi
text books. For improvements and an up to dated rev1ew see Birman '111



pionnier work of Curie in this domain LIZ] ).

It is time now to expose the work I did with L,A., Radicati these last

N

few years on two mathematical models of symmetry breaking.

2.- TWO MATHEMATICAL MODELS OF SYMMETRY BREAKING.

1)

2.1.- Smooth action of a compact Lie group G on a manifold M .

When a group G acts on a set M , we denote by Gm the isotropy

group (or little group) of m €, M :

G = {y cc, gm=m) (2)

and by G(m) the G-orbit of m :
Gm) = {m' ¢ M, Tg €6, m' =gn} . (3)

The isotropy groups of elements of the same orbit are conjugated

-1
1 = -
m g.m= G,=8gGC 8 .

There is a natural definition of isomorphy class of G-orbit ; these
classes are in bijective correspondance with conjugation classes of subgroups
of G . In the action of G in M we call layer = the union of all isomorphic
orbits : elements m' €M whose isotropy group is conjugated to Gm form
the layer S(m) . By inclusion up to a conjugation there is a natural order on
the conjugation classes of subgroupsof G ( we denote by fH1 the class of

H < G) ; it is customary to use the reverse order on the isomorphy classes of

For classical reviews of the subject see L13] . To avoid details we assume
smothness i.e. C® ; most results are valid with weaker hypothesis ; Mostow,
Palais theorem use C' , Palais [14] proved that for a compact M, C'

action is equivariant to C® action.



orbits. Indeed, when G 1is a Lie group!
dim G = dim ¢+ dim G(m) (4)

so the smaller is the subgroup qh the largest is the orbit G(m) . To be on the
same orbit is an equivalence relation for the elements of M ; the quo-
tient is called the orbit space ; we denote it by M/G and by 1 the canonical pro-

jection M —% M/G

For smooth action of compact Lie groups G on manifolds everything is
beautiful. The isotropy groups are closed Lie subgroups. Orbits and layers
are submanifolds, layers are strata (see Thom's lecture), the continuous map
i is open, closed, proper..There is a maximal layer SO (~ minimal iso-

L

tropy group) which is open dense,

Consider some examples : a) M 1is the five dimensional phase space of
three distincts particle with fixed total energy momentum p; G 1is the little
group of p for the Lorentz group, G is isomorphic to 0(3) ; M/G 1is
the Dalitz plot ; there are two layers, whose images by 1T are the interior

and the boundary of the Dalitz plot.

b)blisszznd(;is 0(2) which includes the inversion through the origin ; the rotatio

axis defines poles and equator on the sphere )

N ool
The orbits of the open dense iayer are the two /f//<7ﬁﬁxf)fmnué&ﬁ
paralleles of same N-S latitude ) .0 _ Yy < 90°. | “¥r"":;EqM*GQ
There are two other layers of one orbit each : the
poles and the equator, ‘f‘g/“p.

1) F\(‘«t‘\.(( 1

Remarkable resuts,not usedhere,are those of Mostow, Ffor C1 action , if
M is compact, the number of layers is finite ; if the number of layersis
finite, there is an embedding of M is a finite dimensional vector space
on which the action of G is linear orthogonal,



c) M is S7 » the unit sphere of the octet space, i.e. the space of the
adjoint representation of SU(3); G = Aut SU(3) , isomorphic to the semi
direct product SU(3) o Zy ;3 in physics, outer automorphisms of SU(3)

an generated by charge conjugation. We can use figure 1 again ; the orbit

of the open dense layers contain 2 connected components of dimension 6 . The
equator is a connected orbit of dimension & ; the orbit represented by the
two poles contain 2 connected components of dimension 4, the corresponding

isotropy group is U(2).

There is a G-invariant Riemann metric on M (take any Riemann metric
on M , average it by the group with the Haar measure) and M/G is a metric
space. For any globally G-invariant submanifold 0 of M , there is a tubular

neighbourhood U o () , such that V'm'e U , there exists a unique m € O such

m°  is equivariant

that distance m m' is minima. The retraction map r(m)

VgeG, r(g.m) =g . r(m) = g.m ; hence G, ©G_ . This prove the : (take
Q= G(m))
Theorem 1 : " For every m € M , there is a neighbourhood U

such that v m' ¢ U, G, is larger (not necessarily strictly!) than Gm,"
Taking local geodesic coordinates in m s one sees that the local action of
G'm is linear : this is also the liggap‘gfﬁhogongl representation Dm of Gm on

Tm» M) the tangent vector space at m ; Dm is orthogonal and fully reducible ;
T (8(m)) and Tuﬁc(m)) » the tangent spacesto the layer and the orbit are
invariant subspaces. Theorem 1 proves that the subspace of fixed points of
G, on Tm(m) is included in T (8(m)) . For a G-invariant vector field

mey o€ Tm(M) » V.8 ¢ Gm » 8 Vp = Vv ; hence [16]!

Theorem 2 : " A G-invariant vector field on M 1is at each m tangent to the layer

S(m)" |,



Consider the set & of all G-invariant real valued smooth functions on M .
ie. f ¢ 3=Vvg €G, f(g.m) = f(m) : £ is constant on each orbit ; so its
gradient is orthogonal to the orbit and if the orbit isisolated in its layer
(i.e. m(G(m)) 1is an isolated point of 1(S(m)) ) then grad f = 0 . The
convex is also true ; hence if we call "critical orbits'" those orbits on

which the gradient of every f ¢ ¥ vanishes, we have [16} .

1)

Theorem 3."The critical orbits are the orbits isolated in their layer"

The interest of this theorem for the study of symmetry breaking is
obvious. If the physical G-invariant problem is a variational problem, whatever
the function to be varied, the symmetry is broken on critical orbits which are

not fixed points,whatever the function to be varied,

While our first mathematical model deals with thesmooth action of compact

Lie goupson real manifolds, the second model consider linear action of any group on

real or complexe finite dimensional vector spaces.

2.2.- G-invariant algebras,

Consider two linear representation D and D on two vector spaces

1
€ and €y . We denote by Hom(g ,;81) the set of linear maps from €& to

81 (it is a vector space) and Hom(C,ﬁi)G those maps invariant by G

VYg €6 £f4,D(g) =D1Q)o £ (5)

dim H(c,el)c >0 if D and D1 have in common some irreducible repre-

sentations in their reduction (one says they are not "disjoint")., As a

1)

We can also give conditions implying that all G-invariant vector fields
vanish on a orbit isolated in its layer. The points of G(m) which have
Gm as isotropy group form a submanifold diffeomorphic to the group

H = N(G )/G_  where N(G ) = {h €G, hG ! =G _} is the normalizerof
m m m m m m

i O . -
Gm in G ., Let Hm the connected component which contains the identity
So two such conditionsare
1e) n¢ = ¢
i m

2°) The Euler characteristic of the orbit (G(m)) # O .



particular case, consider the action of G on 51 =& ® & defined by the
tensor representation D1 =D ®D ; then each map f € Hom(e ® ¢ , G)G
defines an algebra on & for which G 1is a group of automorphism. (This
algebra is generally not associative). On can decompose the tensor product

€ ® ¢ into its symmetric and antisymmetric part & ® &= (CQSD e & (Cé £) ;
the corresponding algebras € Hom(@ % e, 8)G and ¢ Hom(¢ é &, 8)6 are
respectively symmetric and antisymmetric, Ex : G 1is a simple Lie group

of the type Bn’ Cn’ Dn 5 D 1is the adjoint representation ; then

dim Hom (& @ e, et =y 1 and the corresponding algebra is the Lie algebra,
while dim Hom(6<§ €, &)G =d =0 . For the Lie algebra of the type

An(n > 2) (e.g. SUGD,SL(nf1)),d =1 and the corresponding symmetric al-
gebra for SU(3)  is well known to physicists. In all physical examples we
shall meet below 4 <1 ,d <1 so the corresponding algebra is unambiguously
defined ; e.g. the symmetric algebra for the (3 , 3)@(5 » 3) representation

of SU(3) x SU(3) is studied in details in [17] . When we need to consider

ore of these algebra we shall denote by T the corresponding law i.e.
f(a®b) = a T b . (6)

In quantum mechanics or quantum field theory, invariance under a

D7 ¢ Home, g(3)C

group G leads to consider "Tensor Operators"
where Y is the Hilbert space of states, £(¥) the vector space of linear
operators on # , and 2 is a finite dimensional vector space on which

acts a representation D of G . When D is irreducible, T 1is an irreducible

tensor operators . € iscalled the variance of the tensor operator. Let

a, b ¢ e, T,» T, € Hom(e, g(u))G , then

afé'rl(a) + Tz(a) is a tensor operator of variance g (7)

1)
Which are not operators on the Hilbert space of states ! but linear functions
with operator value .
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a &b ke’fl(a) Tz(b) is a tensor operator of (8)

variance & ® €,

Any polynomial equation

T,) =0 (9)

P(T),..,T,

involving tenmsor operatorsof the same variance € defines a polynomial
equation in the tensorial algebra Jon & (i.e, J = g‘(éiﬁ)) and also

an equation ¢ = 0 on the quotient Yy of J modulon;ge equivalence re-
lations of the type (6) due to the G-invariant algebras. (When this alge-
bra is the Lie algebra, y is its envelloping algebra). Generally we want
equation P = 0 to be satisfied for any a € e ; however for the so-
lutions of ©(a) =0 , a € ¢, equation P =0 is trivially satisfied and

N

this leads to symmetry breaking "along the direction" a and the symmetry
group is reduced to the isotropy group Ga . For quadratic equations P = 0 ,
corresponding for example to simple bootstrap models, and often, for

higher degree equations, theidempotent (g # 0) or nilpotent (o= 0) of

the algebra

a.a=qa (10)

are solutions of (a) = 0 .

This part 2.2, can be generalized to include multilinear algebras ;
for example trilinear algebras with G as group of automorphisms are
elements of Hom(r 9 g & £ , g)G . In some physical applications discussed in

ref [27] , ldempotents and nilpotents of trilinear algebras appear
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3.- APPLICATION TO PARTICLE PHYSICS.

Since the SU(3) symmetry for hadrons was recognized by Gell-Mann

and Ne'eman, we know that the hypercharge Y , the electric charge Q , the

1
Cabibbo direction of weak-current C+ = C1 + iC2 , the weak hypercharge ) Z

define directions (i.e. unit vectors in the octet space : the space of the
adjoint representation of SU(3). 1t is to be noted q18]and earlier papers
quoted there) that the unit vectors vy, q, z belong to the critical orbit

represented by the polesof Figure 1 while <y and ¢y belong to the

critical orbit of the equator. We also remark that Y, q, z are idempotents

and c , ¢ are nilpotentsof the (complex) SU(3) invariant symmetrical

algebra defined on the octet space 2)3)

These remarks extend naturaly to
G = (SU(3) x su(3)) o (z,(®) x z,(C)) (11)

where the charge conjugation C 1is an outer automorphism for each SU(3)
factor while the parity operation P exchanges them (this is an interes-

ting interplay between geometrical invariance in space time and internal

1)
It is generally admitted that non-leptonic weak interaction is invariant
under a U(2) group, corresponding to the Q -spin of Cabibbo's original
paper.
2) Gell-Mann has denoted d . . the structure constants -of this symmetrical
algebra, Lk
3) It is not clear that physicists should use only the compact form SU(3)
and not its complexified form SL(3,C). Indeed the weak currentsare not
Hermitiany we also know that complexification of the Poincaré group has
been fryitful for the study of analytic properties of field theory and
CPT invariance. In the adjoint action of SL(3,C) the set 8 of semi-
simple elements contains two orbits, one open dense in § and one
exceptional which contains y, q, z ; the set h of nilpotent elements
also contains two orbits, one open dense in h° and the exceptional one
which contains (4, ¢ [19]
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hadronic symmetry). In the action of G on S is the unit sphere of the
adjoint representation space, there are 12 layers ; five of them contains
only critical orbits ; one contains y, q, a second contains z , a
third contains c%) ¢_, a fourth contains what is likely to be the direc-
tion of the CP - breaking interaction in KO decay ; what is the role of

the fifth one ! [18]

G-invariance is broken by semi-strong interaction in a different linear
representation space ; this might be the (3,3) @ (3, 3) representation 1) as
first suggested in LZOj . There are groups containing P and C whose
connected component is SU(3) (the diagonal SU(3)) or SU(2)xSU(2)xu(l) *
chiral invariance for pions). They correspond to each of the two typesof
critical orbits, and also respectively to an idempotent and to a nilpotent
of the symmetric algebra [17,18]. However, in nature, semi-strong interac-
tiomsbreak G wup to the subgroup H = (U(2) O ZZ§C)) X ZZ(P) . (It is not
the isotropy group of the;&p&nd&m&dﬁv&r)zz One can also extend the study of
critical orbits and idempotents or nilpotents for the reducible representations
interesting for the semi strong symmetry breaking. Pegoraro, Subba Rao EZIJ

and then Darzens [22] have shown that the physically interesting schemes

appear when H is the isotropy group of a critical orbit.

More recently, the group G has been extended to
(8U(4) x su(4)) o (Z(p) X %(C)) either for having a unified theory of weak
and electromagnetic interactions[ZS] , to explain the absence of strangeness
changing neutral currents iZQJ or to include the four basics leptons in the
scheme [24, 25, 26| . In a recent preprint Mott LZT] has shown that all
physical directions of symmetry breaking in these papers correspond both to
critical orbits and to idempotents or nilpotents of the involved symmetrical

algebra.3)

————
see foot notes page 13
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CONCLUSION,

Isospin was introduced by Heisenberg [27] in 1932, immediatly after
the discovery of the neutron. For the last forty years, "internal symmetry"
have appeared richer and richer and the interplay of the different typesof
interactions with internal symmetry is fascinating. Of course I believe that
complete understanding of "internal symmetry" breaking will require to solve
the hard dynamical problems of the particle interactions. The concepts of 1)
critical orbits, 2) idempotents and nilpotents of canonical algebra, seem
very useful for the study of this subject. At least they show that many
simplified models made to understand the subject do not shed much light on it,
because their predictions are not at all specific but are mere consequences
of general theorems. Finally we remark that in particle physics, the symmetry
breaking is never maximal (i.e. symmetry is not broken up to the minimal iso-
tropy group of the open dense layer). When the symmetry breaking occurs along
a direction of critical orbit, it is minimal (isotropy groups of critical or-
bits are largest of any completely ordered chain of conjugated classes of

isotropy group which contains them).

FOOT NOTES PAGE 12

L
Remark that the representation is irreducible in the real and it is the
real canonical algebra which is consider here.

2) . .
Indeed the minimal subgroup is U(l) x U(1)

3)

Similarly, the semi-strong breaking, which is in a small strata, is near
a critical orbit corresponding to chiral symmetry and to a nilpotent of
a symmetric trilinear algebrea (there is no bilinear algebra associated
to the (4,%) & (4,4) representation).
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Note added on proof.
After this symposium has appeared a preprint (Scuola Normale Superiore,
Pisa, Italy) from F. PEGORARO with the title
"Three applications to 80(4) invariant systems of a theorem of L. Michel
relating extremal points to invariance properties’.
This author applies the concept of critical orbits to
1) the miXed linear Stark Zeeman effect in a hydrogen atom,
2) perturbations of a finite Robertson Walker metric in general relativity, 3)

in hydrodynamics, to gas evolutions preserving angular momentum and vorticity.
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