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The following discussion is along the lines of a paper by Gufan® who,
more than ten years ago, started to apply invariant theory to study the
Landau theory of second-order phase transitions. Since that work was
completed new results have been obtained for the structure of the
computation of the ring of G-invariant polynomials, when G is a finite
group. For a survey of this mathematical topic, see the excellent review
by Stanley.? I used these results in a work® not very accessible in this
country. In it I studied two physical problems of symmetry breaking
very similar from the mathematical point of view: the Landau theory
and the Higgs mechanism in unified theories of fundamental interac-
tions. I have only little progress to report since Ref. 3 was published.
However, I will give here a self-contained account.

Allow me to start with a few mathematical definitions and theorems.
We consider a linear representation g—%(g) of a group I' acting on a
vector space &. The I'-orbit 2(I')¢ of a vector ¢eé is the set of
transformed ¢ by I

2()¢={2(9)¢, 9T’} (1

The isotropic group T, (physicists often say the “little group™) is the
set of elements gel leaving ¢ invariant

Ty=1{gel’. 2(g)p = ¢} (2)
One shows easily that the isotropy group of %(g)¢ is the conjugate of ',

by g

Fygo=9T0g ™

So the isotropic groups of a I'-orbit form a conjugation class of I'-
subgroups. We denote by [A] the conjugation class of the subgroup A
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<TI'. All orbits with the same conjugation class[ A] of isotropic groups
are said to be of the same type, and their union is called a stratum.

A I'-covariant vector field on & is a function £&%&, which comr.utes
with the group representation

vgel'  D(g)v(¢)=uv(Z(g)d) (14)

Such a covariant vector field is tangential at ¢ to the stratum S(¢) of ¢.

The kernel of the representation Z(g) of I is the set of elements of I
represented by the matrix I, denoted by ker 2. It is an invariant
subgroup of I" and the quotient group

Im 2 =T /ker & (5)

is called the image of &. It is the set of matrices {Z(g), gel'}. The
decomposition of & into I' orbits and strata depends only on Im 2,
which we denote by G, i.e., G=2(I'). To each conjugate class [ H] of G-
subgroups corresponds a unique conjugate class 2~ Y([H]) of I'-
subgroups. If G is a compact (or, as a particular case, a finite) group,
there is a natural order on the set of its conjugate classes of subgroups:
[H]<[H"]toany H'e[ H'] there is a subgroup H of H' belonging to [ H].
We denote by ¢ the set of conjugate classes of isotropic groups of G
acting on & — {0}. There is a minimal class*; when G is finite, this is the
class of the identity, so it corresponds to ker 2 <TI". In all cases, the
corresponding stratum is open dense. We will call it generic. The
crystallographic space group I' of a crystal is discrete but infinite, so it is
not compact. Let & be a representation of I, irreducible on the real,
acting on the real vector space & of dimension #. It is known from the
representation theory of space groups that » divides 48 and that 2 is
equivalent to an orthogonal representation, so we assume (‘<7 reads
here “*subgroup™)

Im 2 <O(n) (6)

Let [A]ex , thatis, let [ A] be the conjugated class of isotropic groups of
an orbit of I', and let K4, be the common intersection of all subgroups
A€[A]. Then K ,,<II" (<J reads “invariant subgroup”); moreover K
leaves invariant every point of the orbit and therefore its linear space as
well, which must be the whole space & since 2 is irreducible. So
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Kx,=ker 2. But by definition of the kernel: kerZ=n I, so K,
=ker 2, and this result is independent of the class [A]e#” we started
from. In other words, ker & is the largest invariant subgroup of I’
contained 1n any isotropic group.

Landau theory?® is probably so well known to the reader that I will
need only to recall here the mathematical computation it eads to. To
study a second-order phase transition in a crystal one has to choose an
irreducible (in the real) orthogonal representation & of its space group
I". (The choice of & is usually guided by the experimental data, e.g., by
the existence of zero modes.) This representation must be active, 1.e., it
must not admit third-degree homogeneous polynomial on & invariant
by I'. At the phase transition, the symmetry I is spontaneously broken
into a subgroup A <T, which is the isotropic group of an absolute
minimum of a I'-invariant polynomial that is bounded below and
possesses a local maximum at the origin. We call such a polynomial a
generalized Landau polynomial. Its lowest possible degree is four. When
this is the case, we simply call it a “Landau polynomial.”

In a second-order phase transition from crystal to crystal A is also a
crystallographic group; its largest I'-invariant subgroup contains a
three-dimensional lattice of translations so ker & is also a crystallo-
graphic group and Im % =G is finite. When the transition is to a
incommensurable structure, the Lifschits condition® is not satisfied;
Im 2 is infinite and therefore it is not a closed subgroup of O(n). We call
G its closure in O(n): then G is compact. The I'-invariants on & depends
only on the image of Z; if, moreover, we exclude distributions and
consider only smooth invariant functions, they depend only on the
closure of Im 2.

From this point on we need only to consider the effective orthogonal
representation of the compact (or finite) group G on &,. For such a
representation, Schwarz’ has shown that every G-invariant smooth (1.e.,
C*) function is a smooth function of invariant polynomials. We could
even consider “‘Landau functions.” For this it is convenient to build &,
the compactified function of &, by adding the point Q at infinity (s G-
invariant). A Landau function is a smooth G-invariant function with
only two local maxima, at 0 and at Q. These are the only two G-invariant
pointsof & .1 Let ¥ =% —[G], i.e., ¥ is the set of classes of isotropic

+ In the same paper counterexamples have also been given for reducible representations.
This is interesting in the actual applications of Higgs polynomials in high-energy physics
and also in some cases of the application of Landau theory.
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groups on &, minus 0 and Q. Let [ H] be a maximal element of #" and
&1 the set of points whose isotropic group contains a group of [ H]: &1
is the union of the strata larger than [ H], that is, the two strata defined
by [H] and [G] (i.e., the points 0 and Q). It is easy to show that &7 is
closed and therefore compact. Let ® be a Landau function and ®/&"! its
restriction on this compact space. It has two maxima onit, at 0 and Q. It
must also have at least a minimum elsewhere (by definition, it is not
constant!) and the isotropic groups of these absolute minima belong to
[H]. The gradient of ® is G-covariant and, as we have seen in Eq. (4), it is
tangent at each point to its stratum, so it vanishes at the minima of
¢/EM; these are therefore extrema of ¢. By a standard trick (due to
Morse) this result also applies to generalized Landau polynomials and,
as a particular case, to Landau polynomials. That is, we have proven

Theorem 1. Any Landau function or (generalized) Landau poly-
nomial has an extremum on each maximal stratum of #”, that is, every
maximal, isotropically strict subgroup of G is the isotropic group of an
extremum of any Landau function or (generalized) polynomial. Are the
absolute minima among those extrema with maximal isotropic sub-
groups? Not necessarily for the Landau function of generalized poly-
nomials: it is easy to give counterexamples (e.g., see Ref. 3).7 There is
even a known counterexample for the (degree four) Landau polynomial
given by the Toledano brothers.® It is based on the four-dimensional
irreducible representation of the space group 14, = C§, built with the
wave vector N of the Brillouin zone.

However, there is an important remark to be made here on this
example: The invariance group of the Landau polynomial is a group G
< O(4), which is larger than G=Im 2 = 2(I'). A mathematical theorem
on the symmetry of the minima of Landau polynomials can be based
only on the exact symmetry group G of the polynomial P, i.e., the
isotropy group O(n), of P for the action of O(n) on &. For example, the
only quartic harmonic polynomial #(¢,$)* (up to an orthogonal
transformation of coordinates) invariant by an irreducible subgroup of
O(3) is ¢+ @3+ ¢35, It could be obtained as invariant of any point
group of the cubic system T, T,, T,, O, O,, but its maximal invariance
group is G=0,. This is the only possible G (i.e., irreducible isotropic

+For Theorem |, we need only this hypothesis and not the irreducibility of the
representation,
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subgroups of O(n) for a non-O(n)-invariant quartic polynomial) for
n=3 just as Cg, is the only possible G for n=2. For n=4 it has been
found in Ref. 9 that the G’s fall into 13 conjugate classes of O(n).

In the Toledanos’ counterexample, the isotropic group of the minima
is a maximal isotropic subgroup for the action of G. Is that always sure
for Landau polynomials? I have been able to prove it only of some
families of G.> But no counterexample is known.

Let me explain now some results of invariant theory. The represent-
ation & of the compact (or finite) group G on & defines also a linear
action of G in the vector space 2 of polynomials on & (i.e.. of n-variable
polynomials). This vector space is the direct sum

oo

=® 2, ()

where £, is the set of all homogeneous polynomials of degree m(#, =R,
#,=46). The linear representation of G on %, is the completely
symmetricized mth tensor power of the representation &. Its character
¥m 1S given by the generating function

Clg.0)= Y, @) =det[1-19(g)] " ®)

Let #¢ the set of G-invariant polynomials: since the sum and the
product of invariant polynomials are again invariant polynomials, 2% is
a ring, and also an algebra on the real, whose vector space decomposes
into

Po= @D #¢ with Pi=2 NP (9)

m=0

Using the orthogonal property of characters, ¢, = dim 2 is given by the
generating function, when G is finite

M(1) = i (= —wzdaf}w; (@] (10)

=} G g

For a compact group, the finite sum 15§§§Z§ is to be replaced by
{¢ du(g). where integration over the G-invariant measure is normalized
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to I for the whole group. The M(¢) function of Eq. (10) was found last
century by Molien.'? Itis a rational fraction in 7, which can be written as
the ratio of two polynomials

N(t)

- ' v 1
,M(s‘}r:g}” , D(!):HU*{""X N(z‘}::z 1%, Go=0, (1)
(1) P=1 2=0

For finite groups n'=n; for compact groups n <n. Such a form
translates exactly the nature of the ring 29, as was recently proven (see
Ref. 2): 29 is a free module of finite dimension v over a polymonial ring
of n’ variables. (It was known from Hilbert'" that 2% has a finite number
of generators when G is finite.) This means more explicitly that there
exists n' algebraically independent G-invariant homogeneous poly-
nomials 0, of degree 4; and v — | G-invariant homogeneous polynomials
@, of degree d, such that any G-invariant polynomial pe?% has a unique
decomposition into the sum

PO= Y Gl0Dh Do) wo=1 (1)

where the g, are arbitrary n’-variable polynomials. For each @, thereisa
smallest positive integer v, such that

0 =00,,....6,) (13)

a polynomial in the 6,’s.

For groups generated by reflections, whose list was established by
Coxeter, v=1and the §s are tabulated. For some subgroups of Coxeter
groups, there are methods for finding the #’s and ¢’s.'? For other finite
groups and for most compact groups this is partly an art.

From now on, we consider only Landau polynomials over irreducible
[c;=1,1e., 0, =(¢, $) the invariant orthogonal scalar product on &1
active (c;=0) representations. For a given image G=2(I") of the
symmetry group one computes, e.g., from Eq. (10), ¢, =dim #?$=N.
One also determines €(£%), the centralizer of 29, i.e., the intersection of
all isotropic groups of the polynomials in 2§, for the action of O(xn) on
#,. Then the most general Landau polynomial can be written

oo L U BT & :
P$)= 1[0 97 + ()] =56, )=00) -5 0.0)  (19)
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where
o[2(@)p]=w(¢),  wlid)=71*w(P) (15)
Ao(d)= ;;@(¢)mé (harmonicity) (15)
i=1 i
(@, ) =1=p(d)=1+w($)>0 (15")

The most general quartic harmonic invariant can be written as a linear
combination of N — 1 harmonic invariants

N1
o($)= T Lod) (16)

The conditions of Eq. (15”) imposes a domain in the space of the 1’s.
The polynomials w, are 0;’s (i>1) or ¢,’s. If these polynomials are
algebraically independent (this will generally be the case when N <n)
then P(¢) has no extrema on the open dense generic stratum. ¥
w(¢) reaches its maximum » and its minimum w,, in the unit sphere
S,-1; from Eq. (15”) and the harmonicity of @ (which is assumed
nonconstant)

—1<w,<0<n, (17)

By means of polarization* P(¢) can be written as a quadrilinear form
PPy, ¢35, D3, ¢4), completely symmetrical into its arguments. This form
defines a map

& x EBL(8) (18)

sge

that is, Ry, ,, is a linear operator on & depending bilinearly on two
vectors of &. This operator is covariant and symmetrical, i.e.,

Roie, 000, = 2 @Ry, 4,2(9)"".  RT=R (19)

¥ This was established in Ref. 3 and by Jaric in Ref 13,



770 L. MICHEL
and, moreover,
{}{ézy fg’z s 4’3 s @54) = {‘?‘31 s R¢3,¢3{?§4} (20)

We can therefore write
P(D)= (0, Ry 40) = (. S5 0) +(, Ty $)=(¢, §)* +(9)  (21)
with
S4p=3(¢, )1 +2P,) (22)
where P, is the orthogonal projector on ¢ and
Tr T, ,=15A0($) =0 (23)

An easy computation yields

%’“‘ (Rop— 12D ={Tyy +[($, §)— u*]1} (24)

2p
3355: 3Ryy— 1 I=3Tyy + [(4.0)— 121 +2(b, $)P,  (25)

If u=¢a, with (i4, d)=1, £ >0 is an extremum:

dgp 2 £2Z #2
ggg{zf}ng;e u, Sk B @ (26)
2 2
Pw=-L-e= -t 27

This shows that the absolute minima of P are the farthest extrema from
the origin.

. H ’

Other local minima, if they exist, require the value wg=w(u) to be
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negative. Indeed from Egs. (23), (25), and (26) the trace of d’p/d¢?{x)
restricted to the space u* is — p’nwy/1 + w,.

If the conjecture were true one would only have to verify, among t'ie
extrema of maximal strata (i.e., corresponding to maximal isotropc
subgroups) which ones were minima. The answer to this questicn
depends on the values of the 4, and leads generally to phase diagra'n
with several phases. However, it 1s always useful to determine the
isotropic groups and the strata of the group of matrices G. For compact
(or finite) groups this problem is studied in Ref. 15. For finite groups <
the problem is simpler. An explicit procedure has been given (without
proof) in Ref. 16. The matrix group G acting on & defines a represent-
ation for all its subgroups. Let ¢(H) be the multiplicity of the trivial
representation of the subgroup H of G. It is the same for all subgroups of
the conjugation class [ H]. The subgroup H is an isotropy group if and
only if for all H'> H, ¢(H') < c¢(H). Moreover ¢(H) is the dimension of
the stratum of H. We have already seen that IeG is the smallest isotropy
subgroup [c(I)=dim &] and the corresponding statum is open dense.
Finally, the intersection of isotropic subgroups are isotropic subgroups
(when G is finite!). And for groups generated by reflections, the isotropic
subgroups are also generated by reflections.

Jaric et al.'” have shown how to write for each stratum a covariant set
of equations for the zero of covariant vector fields. One only needs to
study the Hessian of Eq. (25) for each found zero of the gradient in Eq.
(24).

Here we just give a small remark that may help to find new extrema
from already known ones. Assume that +u and +v are extrema and
have the same length (which will occur if they belong to the same G-
orbit)

R u=p’u, R,,v=u?v, (u, u)=(v,v) (29)
We define
. > plu,u,v,v) R
(u,v)={u,u)cos b, =K (299
p(u, u)

That p(au+ fv) >0 for all a, f implies

2 |
3K — 12+ 2(1 4+ 2ycos8)>0, wi@xgz%isl (30)
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We define
W, =U+EV (31
Then
R, w,=pw,+3eR,,w, (32)
From
(w,,w_,)=0 (33)
and Eq. (29) we deduce to be
(w_., R, . w)=0 (34)

We see that the vectors w and w_ are directions of extrema if R, w,
isin the two-plane spanned by « and v. This happens for instance if u and
v are on an orbit in a maximal stratum and ¢(G,()G,)=2, (G, is the
isotropic group of x). It also happens that if G,=G,=H with ¢(H) =2,
the normalizer of H in G (i.e., the largest subgroup of G which contains
H as an invariant subgroup) acts on the two-plane spanned by u and v,
and it exchanges them. Since ¢(H) =2, H may be a nonmaximal isotropic
group. With this hypothesis on R,,w,, the four new extrema are

+o,w, with  aZ=(1+_cosd)(1+4,cosf+3K)* (35)
We remark that

(%, w,, 2, w,) —(, 1) 1—-3K+2cos*6

= 36
(u, u) 1+3K +4ecosb (36)

From Eq. (30) with y> = | we deduce that the sign of this expression is
independent from ¢, so the two extrema «, w, are both either longer or
shorter than the extrema v and v. Note thatif cos##0,a,w, anda_w_
have different length and therefore are not on the same orbit. As we have
seen, the absolute minimum of P(¢) corresponds to the longest
extremum. Finally, the application of Morse theory may also be very
helpful .18
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Asis well known, one has to complete Landau theory by a renormaliz-
ation group computation for comparing its prediction with an actual
possible second-order phase transition. Then the second-order tran-
sition occurs only if there is a stable fixed point under the renormaliz-
ation group. I have recently proven'? that stable fixed points, when they
exist, are unique. As recalled in Eq. (16), the quartic term of the Landau
polynomial may depend on N parameters. No stable fixed points were
known when N > 3. This led Dzyaloshinskii?® to conjecture that this
result is a topological theorem; I gave counterexamples in Ref. 19,
independently from Grinstein and Mukamel who published the first
counterexample.?!
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Latest news (March 1983): Jari¢ and Mukamel?? have found a counter-
example to the hypothesis of maximality of isotropic subgroups for the
minimum of Landau polynomials in six dimensions.

References

. Y. M. Gufan. 1971, Fiz. Tverd. Tela. 13, 225.

. R.P. Stanley. 1979. Buil. Am. Math. Soc. 1, 475.

. L. Michel. 1980. In Regards sur la Physique Contemporaine. CNRS. Paris.
pp. 157-203,

. D. Montgommery and C. T. Yang. 1957. Ann. Math. 65, 108.

. L. Landau. 1938. Phys. Z. Sowjetunion. 11, 545,

E. M. Lifschits. 1942, Sov. J. Phys. 6, 61, 251.

G. Schwarz. 1975, Topology. 14, 63.

I. C. Toledano and P. Toledano. 1981. J. Phys. 41, 189.

L. Michel, J. C. Toledano and P. Toledano. 198!. In Symmetries and Broken

Symmetries in Condensed Matter Physics. N. Boccara, Ed. pp. 263-277, IDSET.

Paris.

16. T. Molien. 1897. Sirzungber. Konig. Preuss. Akad. Wiss. p. 1152,

11. D. Hilbert. 1890. Math. Ann. 36,473,

12. R.P. Stanley. 1977. J. 4lg. 49, 134

13. M. Jaric. 1980. Lecture Notes Phys. 1358, 12

14. H. Weyl. 1946. The Classical Groups. Princeton University Press. p. 5.

15. L. Michel. 1980. Rev. Mod. Phys. 82, 617, App. A, p. 638.

16. (a)F. E. Goldrichand J. L. Birman. 1968. Phys. Rev. 167,528 (b} M. V. JaricandJ. L.

Birman. 1977, Phys. Rev. B. 16, 2564,

Lad BNGF b

LR VS



774 L. MICHEL

7. M. Jari¢, L. Michel and R. T. Sharp. Invariant formulation for the zeros of covariant
vector fields. XIth International Colloquium on Group-Theoretical Methods in
Physics, Istanbul, 1982. Preprint IHES.

18. L. Michel and J. Mozrzymas. 1978. Lecture Notes Phys. 79, 447.

[9. L. Michel. The symmetry and renormalization group fixed points of quartic
Hamiltonian. To appear in F. Giirsey Festschrift (Yale University).

20. 1. E. Dzyaloshinskii. 1977. JETP. 72, 1930.

21. G. Grinstein and D. Mukamel. 1982. J. Phys. 4. 15, 233.

22. M. Jari¢ and D. Mukamel. 1983. Breakdown of Maximality Conjecture in Cont-
inuous Phase Transition. Preprint IHES.



