Geometry of graphs of multicurves

Katie Vokes

13 September 2019, Ventotene

IHES

 $S = S_{g,b}$ genus g, b boundary components

Curve:

non-peripheral

considered up to isotopy

Multicurve: collection of disjoint curves

Mapping class group: $MCG(S) = Homeo^+(S)/isotopy$

Graph of multicurves $\mathcal{G}(S)$:

- vertices represent multicurves in S
- edges of length 1

Examples

Curve graph C(S):

- vertices: curves in S
- edges: disjointness

 $\mathsf{MCG}(S) \curvearrowright \mathcal{C}(S)$

Masur–Minsky '99: C(S) is δ -hyperbolic and infinite diameter.

Graph of multicurves $\mathcal{G}(S)$:

- vertices represent multicurves in S
- edges of length 1

Examples

Pants graph $\mathcal{P}(S)$:

• vertices: pants decompositions of S

<u>Brock '03</u>: $\mathcal{P}(S) \sim_{\mathsf{QI}} (\mathsf{Teich}(S), d_{\mathsf{WP}}).$

Graph of multicurves $\mathcal{G}(S)$:

- vertices represent multicurves in S
- edges of length 1

Examples

Separating curve graph Sep(S):

- vertices: separating curves in S
- edges: disjointness

Subsurfaces

Essential:

A subsurface $W \subseteq S$ is a **witness** for $\mathcal{G}(S)$ if every vertex of $\mathcal{G}(S)$ intersects W (and $W \neq S_{0,3}$).

We'll say a graph of multicurves $\mathcal{G}(S)$ is **hierarchical** if:

- $\mathcal{G}(S)$ is connected
- the action of $\mathsf{MCG}(S)$ on the set of curves in S induces an isometric action $\mathsf{MCG}(S) \curvearrowright \mathcal{G}(S)$
- G(S)/MCG(S) is compact
- no witness for $\mathcal{G}(S)$ is an annulus.

Examples: curve graph, pants graph, separating curve graph

Theorem (V. '18)

Let $\mathcal{G}(S)$ be a hierarchical graph of multicurves. Then $\mathcal{G}(S)$ is a **hierarchically hyperbolic space**.

Lemma

Up to quasi-isometry, these graphs are determined by their set of witnesses.

Background:

<u>Masur–Minsky '00</u>: studied geometry of MCG(S) using **subsurface projections** to curve graphs of subsurfaces.

- project from a graph quasi-isometric to MCG(S)
- project to curve graphs of all $(non-S_{0,3})$ subsurfaces
- find distance estimate for MCG(S)

Hierarchically hyperbolic spaces (HHS):

- defined by Behrstock, Hagen and Sisto (2014)
- generalisation of Masur–Minsky's work on MCG(S)

- subsurface projections are Lipschitz
- various consistency properties

Hierarchically hyperbolic spaces (HHS):

- defined by Behrstock, Hagen and Sisto (2014)
- generalisation of Masur–Minsky's work on MCG(S)

- relations generalising disjointness, nesting, overlapping
- coarsely Lipschitz projections satisfying a list of axioms
- a point in the HHS is coarsely determined by its projections

Hierarchically hyperbolic spaces (HHS):

- defined by Behrstock, Hagen and Sisto (2014)
- generalisation of Masur–Minsky's work on MCG(S)
- many results that hold for MCG(S) can then be generalised
 - distance estimate in terms of projection distances
 - structure of product regions

HHS structure on hierarchical graph of multicurves

Masur-Minsky subsurface projection G(S)every vertex of GSD intersects L(S) L(W).... cuive gruphs of witnesses &

Consequence: rank and hyperbolicity

We get quasiflats $\mathbb{Z}^n \hookrightarrow_{\mathsf{QI}} \mathcal{G}(S)$ from disjoint witnesses.

Idea:

- pseudo Anosov mapping classes act loxodromically on the curve graph (Masur–Minsky '99)
- when W is a witness, the projection $\mathcal{G}(S) \to \mathcal{C}(W)$ is Lipschitz
- conclude that partial pseudo Anosovs on witnesses act loxodromically on G(S)
- for *n* disjoint witnesses get a quasi-isometrically embedded \mathbb{Z}^n

Rank

$$\operatorname{rank}(\mathcal{G}(S)) = \max\{n \mid \mathbb{Z}^n \hookrightarrow_{\mathsf{QI}} \mathcal{G}(S)\}$$

Corollary

The rank of $\mathcal{G}(S)$ is equal to the maximal cardinality of a set of pairwise disjoint witnesses for $\mathcal{G}(S)$.

Example (Behrstock-Minsky '08)

$$\operatorname{rank}(\mathcal{P}(S_{g,b})) = \max. \# \text{ disjoint} \qquad \text{and} \qquad \underbrace{\bigcirc} = \left\lfloor \frac{3g+b-3}{2} \right\rfloor$$

Rank

$$\mathsf{rank}(\mathcal{G}(S)) = \mathsf{max}\{n \mid \mathbb{Z}^n \hookrightarrow_{\mathsf{QI}} \mathcal{G}(S)\}$$

Corollary

The rank of $\mathcal{G}(S)$ is equal to the maximal cardinality of a set of pairwise disjoint witnesses for $\mathcal{G}(S)$.

Example $Sep(S_{g,b})$

Hyperbolicity

Corollary

If $rank(\mathcal{G}(S)) = 1$ then $\mathcal{G}(S)$ is δ -hyperbolic.

Example: Sep($S_{g,b}$) is δ -hyperbolic if $b \geq 3$.

General question: Given $\mathcal{G}(S)$, how does the geometry of the graph change as we vary S?

Example: Curve graph C(S) is always hyperbolic, Sep(S) is not.

joint with Jacob Russell

Specialise to the separating curve graph.

Theorem

Let
$$S = S_{g,b}$$
 $(g \ge 3)$.

- [V.] If $b \ge 3$, then Sep(S) is δ -hyperbolic.
- [Russell '19] If b = 0, 2, then Sep(S) is relatively hyperbolic.
- [Russell-V. '19] If b = 1, then Sep(S) is not relatively hyperbolic.

Thick metric spaces

Thick:

- defined by Behrstock–Druţu–Mosher
- obstruction to relative hyperbolicity
- inductive definition
- Thick of order 0: Product of infinite diameter spaces. thick of order O Thick of order 1: $\forall x, y$ 00 diameter intersection thick of order 1 Thick of order 2: as diameter intersection

...and so on

 $S = S_{g,1}$: we show Sep(S) is thick of order at most 2.

Product regions (thick of order 0) come from pairs of disjoint witnesses.

 \longrightarrow infinite diameter intersection

Define graph $\mathcal{DW}(S)$

- vertices: multicurves defining pairs of disjoint witnesses
- edges: inclusion

Connected component \longrightarrow thick of order 1 subset of Sep(S)

Want to understand the connected components of $\mathcal{DW}(S)$.

 $F: S \rightarrow S_{g,0}$: cap boundary with a disc

Lemma: The connected components of $\mathcal{DW}(S)$ are exactly the fibres of *F*.

thick of order 1 pieces $\longleftrightarrow \mathsf{MCG}(S_{g,0})$ -translates of (

Thick of order < 2

Want to chain together the thick of order 1 pieces.

Define a graph $\mathcal{F}(S_{g,0})$

• vertices: multicurves

 edges: encode infinite diameter intersection of thick of order 1 pieces

Connected components of $\mathcal{F}(S_{g,0}) \longrightarrow$ thick of order ≤ 2 subsets of Sep(S)

Lemma: $\mathcal{F}(S_{g,0})$ is connected.

 \longrightarrow Sep(S) is thick of order < 2.

- Hierarchical graphs of multicurves are hierarchically hyperbolic spaces.
- Consequence: a criterion for hyperbolicity and formula for rank by considering disjoint witnesses.
- With Russell, work on classifying (relative) hyperbolicity for these graphs in terms of HHS structure.

Thank you!