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Basic objects

Surface: connected, compact, orientable

S = Sg ,b genus g , b boundary components

Curve: simple essential non-peripheral

considered up to isotopy

Multicurve: collection of disjoint curves

Mapping class group: MCG(S) = Homeo+(S)/isotopy



Graphs of multicurves

Graph of multicurves G(S):

• vertices represent multicurves in S

• edges of length 1

Examples

Curve graph C(S):

• vertices: curves in S

• edges: disjointness

MCG(S) y C(S)

Masur–Minsky ’99: C(S) is δ-hyperbolic and infinite diameter.



Graphs of multicurves

Graph of multicurves G(S):

• vertices represent multicurves in S

• edges of length 1

Examples

Pants graph P(S):

• vertices: pants decompositions of S

Brock ’03: P(S) ∼QI (Teich(S), dWP).



Graphs of multicurves

Graph of multicurves G(S):

• vertices represent multicurves in S

• edges of length 1

Examples

Separating curve graph Sep(S):

• vertices: separating curves in S

• edges: disjointness



Subsurfaces

Essential:

A subsurface W ⊆ S is a witness for G(S) if every vertex of G(S)

intersects W (and W 6= S0,3).

Examples: Graph Witnesses

C(S) {S}

P(S) , and bigger

Sep(S)



Hierarchical graphs of multicurves

We’ll say a graph of multicurves G(S) is hierarchical if:

• G(S) is connected

• the action of MCG(S) on the set of curves in S induces an

isometric action MCG(S) y G(S)

• G(S)/MCG(S) is compact

• no witness for G(S) is an annulus.

Examples: curve graph, pants graph, separating curve graph

Theorem (V. ’18)

Let G(S) be a hierarchical graph of multicurves. Then G(S) is a

hierarchically hyperbolic space.

Lemma

Up to quasi-isometry, these graphs are determined by their set of

witnesses.



Hierarchically hyperbolic spaces

Background:

Masur–Minsky ’00: studied geometry of MCG(S) using

subsurface projections to curve graphs of subsurfaces.

• project from a graph quasi-isometric to MCG(S)

• project to curve graphs of all (non-S0,3) subsurfaces

• find distance estimate for MCG(S)



Hierarchically hyperbolic spaces

Hierarchically hyperbolic spaces (HHS):

• defined by Behrstock, Hagen and Sisto (2014)

• generalisation of Masur–Minsky’s work on MCG(S)

• subsurface projections are Lipschitz

• various consistency properties



Hierarchically hyperbolic spaces

Hierarchically hyperbolic spaces (HHS):

• defined by Behrstock, Hagen and Sisto (2014)

• generalisation of Masur–Minsky’s work on MCG(S)

• relations generalising disjointness, nesting, overlapping

• coarsely Lipschitz projections satisfying a list of axioms

• a point in the HHS is coarsely determined by its projections



Hierarchically hyperbolic spaces

Hierarchically hyperbolic spaces (HHS):

• defined by Behrstock, Hagen and Sisto (2014)

• generalisation of Masur–Minsky’s work on MCG(S)

• many results that hold for MCG(S) can then be generalised

• distance estimate in terms of projection distances

• structure of product regions



HHS structure on hierarchical graph of multicurves



Consequence: rank and hyperbolicity

We get quasiflats Zn ↪→QI G(S) from disjoint witnesses.

Idea:

• pseudo Anosov mapping classes act loxodromically on the

curve graph (Masur–Minsky ’99)

• when W is a witness, the projection G(S)→ C(W ) is

Lipschitz

• conclude that partial pseudo Anosovs on witnesses act

loxodromically on G(S)

• for n disjoint witnesses get a quasi-isometrically embedded Zn



Rank

rank(G(S)) = max{n | Zn ↪→QI G(S)}

Corollary

The rank of G(S) is equal to the maximal cardinality of a set of

pairwise disjoint witnesses for G(S).

Example (Behrstock–Minsky ’08)

rank(P(Sg ,b)) = max. # disjoint and =
⌊
3g+b−3

2

⌋



Rank

rank(G(S)) = max{n | Zn ↪→QI G(S)}

Corollary

The rank of G(S) is equal to the maximal cardinality of a set of

pairwise disjoint witnesses for G(S).

Example Sep(Sg ,b)

rank=2 if b ≤ 2

rank=1 if b ≥ 3



Hyperbolicity

Corollary

If rank(G(S)) = 1 then G(S) is δ-hyperbolic.

Example: Sep(Sg ,b) is δ-hyperbolic if b ≥ 3.

General question: Given G(S), how does the geometry of the

graph change as we vary S?

Example: Curve graph C(S) is always hyperbolic, Sep(S) is not.



Classification

joint with Jacob Russell

Specialise to the separating curve graph.

Theorem

Let S = Sg ,b (g ≥ 3).

• [V.] If b ≥ 3, then Sep(S) is δ-hyperbolic.

• [Russell ’19] If b = 0, 2, then Sep(S) is relatively hyperbolic.

• [Russell–V. ’19] If b = 1, then Sep(S) is not relatively

hyperbolic.



Thick metric spaces

Thick:

• defined by Behrstock–Druţu–Mosher

• obstruction to relative hyperbolicity

• inductive definition

Thick of order 0:

Thick of order 1: ∀x , y

Thick of order 2:

...and so on

Product of infinite diameter spaces.



Thickness of Sep(Sg ,1)

S = Sg ,1: we show Sep(S) is thick of order at most 2.



Product regions

Product regions (thick of order 0) come from pairs of disjoint

witnesses.

product region ⊂ product region

−→ infinite diameter intersection



Thick of order 1 subsets

Define graph DW(S)

• vertices: multicurves defining pairs of disjoint witnesses

• edges: inclusion

Edge −→

Connected component −→ thick of order 1 subset of Sep(S)



Thick of order 1 subsets

Want to understand the connected components of DW(S).

F : S → Sg ,0: cap boundary with a disc

Lemma: The connected components of DW(S) are exactly the

fibres of F .

thick of order 1 pieces ←→ MCG(Sg ,0)-translates of



Thick of order ≤ 2

Want to chain together the thick of order 1 pieces.

Define a graph F(Sg ,0)

• vertices: multicurves

• edges: encode infinite diameter intersection of thick of order 1

pieces

Connected components of F(Sg ,0) −→ thick of order ≤ 2

subsets of Sep(S)

Lemma: F(Sg ,0) is connected.

−→ Sep(S) is thick of order ≤ 2.



Summary

• Hierarchical graphs of multicurves are hierarchically hyperbolic

spaces.

• Consequence: a criterion for hyperbolicity and formula for

rank by considering disjoint witnesses.

• With Russell, work on classifying (relative) hyperbolicity for

these graphs in terms of HHS structure.



Thank you!


