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Surfaces

Surface:

2-dimensional real manifold, connected, oriented and finite type
Classification of surfaces — S = S, ,: genus g surface with p points
removed (p punctures), g and p finite (in Z>o)
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Definition of mapping class group

Homeo™ (S) = {orientation-preserving homeomorphisms S — S}
Homeo™ (S) forms a group under composition, but it is uncountable.
Mapping class group: MCG(S) = Homeo™(S)/ ~

f ~ g if f and g are isotopic. This means that there is a homotopy
F:S x[0,1] — S so that:

e F(-,0)
e F(,1)=g

e F(-,t) is a homeomorphism for all t

f‘



Definition of mapping class group

Mapping class group: MCG(S) = Homeo™(S)/ ~
f ~ g if f and g are isotopic.

The mapping class group is a countable group, in fact it is finitely
presented.

We will call an element of the mapping class group a
mapping class. That is, a mapping class is an isotopy class of
orientation-preserving self-homeomorphisms of S.
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Surfaces with boundary

Sometimes we will allow surfaces to have boundary as well as/instead
of punctures.

In this case, when defining MCG(S), we restrict to homeomorphisms
that fix the boundary S pointwise. The isotopies should also fix 95

pointwise.

MCG(S) = Homeo™ (S, 0S)/ ~



Example: MCG(D)

Let D be the closed disc.
MCG(D) =

That is, every homeomorphism f: D — D which fixes 0D pointwise
is isotopic to Idp.

This is sometimes called the Alexander trick.



Example: MCG(D)

The fact that MCG(D) is trivial turns out to be very useful. We will
see later an important tool that involves cutting a surface into

topological discs and then applying the fact that discs have trivial
mapping class group.

If we remove one point from D (add a puncture) the mapping class
group is still trivial.



Example: braid groups
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The braid group on n strands is equal to the mapping class group of

the n times punctured disc.



Example: MCG(T?)

We can think of T2 as a quotient R2/ ~, where (x,y) ~ (x + 1, y),
() ~ (x,y +1).
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It turns out that: MCG(T?) = SL(2,Z).



Studying the mapping class group: curves

A curve in S is an embedding of the circle a: S* — S.

simple essential non-peripheral

9

A curve c is separating if S — ¢ is disconnected, and
non-separating if S — ¢ is connected.

Example:
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Studying the mapping class group: curves

We typically consider curves up to isotopy. Two curves a,b: S — S
are isotopic if there is a homotopy between them so that every
intermediate map is an embedding.
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Studying the mapping class group: curves

We typically consider curves up to isotopy. Two curves a,b: S — S
are isotopic if there is a homotopy between them so that every
intermediate map is an embedding.
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e Homeomorphisms take curves to curves.

e If ¢1, ¢o are isotopic homeomorphisms (i.e. representing the
same element of MCG(S)) and a1, ax are isotopic curves, then

¢1(a1) is isotopic to pa(a2).

— There is a well defined action of MCG(S) on the set of isotopy
classes of curves in S.



Minimal position

e 1 and ¢ (isotopy classes of) curves in S
e 71, 72 fixed representatives of the isotopy classes c1, ¢,
i.e. actual embeddings of ST not considered up to isotopy

We say «1 and ;2 are in minimal position if the number of
intersections in 1 N ~2 is the minimal possible for two curves in the
isotopy classes of ¢; and .
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Minimal position

e 1 and ¢, (isotopy classes of) curves in S
e 71, 72 fixed representatives of the isotopy classes ¢;, ¢,
i.e. actual embeddings of S* not considered up to isotopy

We say 1 and 7, are in minimal position if the number of
intersections in 3 M ~7 is the minimal possible for two curves in the
isotopy classes of ¢; and c.

Fact: If ¢q,..., ¢k is a collection of curves in S, we can realise them
so that every pair is simultaneously in minimal position.

Exercise: 1. Prove this for the torus T2. (Hint: we can realise T2 as
a quotient of the Euclidean plane, and in each isotopy class of curves
there is a representative which is a straight line.)

2. Try to prove for surfaces of negative Euler characteristic using the
fact that these admit a hyperbolic metric.



Dehn twists: the building blocks of the mapping class group

Next week we will see how to generate MCG(S) using Dehn twists.
To define a Dehn twist about a curve a, we consider an annular

neighbourhood of a.




Dehn twists: the building blocks of the mapping class group
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For each curve, we have a left Dehn twist and a right Dehn twist,
and these are inverses of each other.



When is a mapping class trivial?

The identity element |d € MCG(S) is the class of all
self-homeomorphisms of S isotopic to the identity homeomorphism.

If f =1d € MCG(S) then f(a) is isotopic to a for every curve a in S.

If we know that f fixes certain curves (up to isotopy), can we
guarantee that f = Id?



The Alexander method: set up

Let’s try to understand mapping classes of S by cutting S up into
smaller pieces.

Recall: Let D be the closed disc and D* the once punctured disc.
Then MCG(D) and MCG(D*) are both trivial.

So does this mean that if we add enough curves to cut S into discs
and once punctured discs then a mapping class f fixing all of these

curves must be trivial?
Well, not quite: f could still permute or rotate the discs.

Let's see some examples.



The Alexander method: set up

The curves are preserved but the two discs swap places.



The Alexander method: set up

Each disc (square) is preserved, but each is rotated by a half turn.



The Alexander method

Let ci,...,c, be distinct oriented curves in S.

Assume ci, ..., c, are realised in minimal position and let I = |, ¢;.

This is an oriented graph in S. Also assume:

e [ cuts S into a disjoint union of discs and once punctured discs
e for any distinct /,j, k, one of ¢; N ¢j, ¢j N ck, ¢, N ¢; is empty
— we can realise I in a canonical way (up to isotopy)

Let f € MCG(S) and suppose that f preserves the collection of
curves ci,...,Cp as a set. Then after possibly applying an isotopy, f
preserves the graph I, and induces a graph automorphism f.: I — I,

Remark: There is something to check here. Namely, we are given
that a representative homeomorphism ¢ of the mapping class f takes
each ¢; to a curve isotopic to some ¢;. But we need that there is a
single isotopy that works for all ¢; at once, so that we can take ¢(I")
to I by an isotopy.



The Alexander method

Let ¢1,...,c, be distinct oriented curves in S.

Assume ¢, ..., cp are realised in minimal position and let I = |, ¢;.

This is an oriented graph in S. Also assume:

e [ cuts S into a disjoint union of discs and once punctured discs
e for any distinct /,j, k, one of ¢; N ¢j, ¢ M ck, ¢k N ¢; is empty
— we can realise ' in a canonical way (up to isotopy)

Let f € MCG(S) and suppose that f preserves the collection of
curves ci, ..., Cn as a set. Then after possibly applying an isotopy, f

preserves the graph I, and induces a graph automorphism f.: I — I,

1. If £, is the identity, i.e. preserving each each edge of I with
orientation, then f = Id € MCG(S).

2. The set {f € MCG(S) | f preserves | Jc;} is a finite group. In
particular, any f preserving the set of ¢; has finite order.



The Alexander method

Exercise:

1. (Part of the proof of item 1.) Let cy,..., ¢, be a collection of
curves as in the statement of the Alexander method. Suppose
that ¢ is a homeomorphism of S that acts as the identity on
| ¢i (actually fixing the curves pointwise, not up to isotopy).
Use the fact that MCG(D) and MCG(D*) are trivial to deduce
that ¢ is isotopic to the identity.

2. Use item 1. to prove that the map
{f € MCG(S) | f preserves Uc,-} — Aut(l")

is injective, and deduce item 2.



The Alexander method: back to first example
I \

The oriented graph is preserved, but the individual edges are not.

Alexander method — this mapping class has finite order: indeed we

can see it has order 2.

If every edge of the graph was preserved with orientation, then we

would have the identity.



Example: relations in the mapping class group

We can use the Alexander method to check relations in the mapping
class group.

Alexander method — we only need to check the relation on a finite
collection of curves, and the graph they form.

NB: We apply mapping classes from right to left.

NB: | will use the convention that a positive (not inverse) Dehn twist
will twist left in the picture.

Example: The “braid relation”. If a and b are two curves
intersecting once, and T,, T, are the Dehn twists about a, b
respectively, then T, T T, = TpT,Tp.



Aside: “change of coordinates”

Example: Braid relation. a, b intersect once — T, TpT, = Tp T, Tp.

Crucial observation: We don't need to check every pair a, b of
curves intersecting once.

Claim: for any two pairs a, b and &', b’ with each pair intersecting
once, there exists f € MCG(S) so that f(a) = a’ and f(b) = b'.

Assuming the claim, we have:
o Ty = Tf(a) = Tafil
o Ty = Tf(b) = be_l
And hence T, Tp T, = TpT,Tp < Ty Ty Ty =Ty TyTy.

Exercise: Use the definition of Dehn twist in terms of an annular
neighbourhood of a to check Ty(,) = f T,f .



Aside: “change of coordinates”

Sary

e Classification of surfaces — there exists a homeomorphism
¢ Sap = Sar by
e |sotope ¢ so that it
e takes arcs of a to arcs of &’
e takes arcs of b to arcs of b’

e respects how the arcs are glued up

e glue back together, and we have a homeo. taking a, b to &', b’



Example: relations in the mapping class group

Example: Braid relation. a, b intersect once — T, TpT, = Tp T, Tp.

For simplicity assume S has no punctures. Fix a set of curves cutting

S into discs, with no three curves pairwise intersecting.




Example: relations in the mapping class group

Exercises:

1. Make an oriented graph I' from the curves in the braid relation
example and check what happens to this when we do the twists.
Check the induced automorphisms of I are the same for T, T, T,
and TpT,Tp.

2. Check the case where S has genus at least 1 and might have
punctures (add some more curves to satisfy the hypotheses of
the Alexander method).

3. Convince yourself that two curves on a surface of genus 0 cannot
intersect exactly once — so there is nothing to check here.



