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Abstract

We study the Masur—Veech volumes MV ;, of the principal stratum of the moduli space
of quadratic differentials of unit area on curves of genus g with n punctures. We show
that the volumes MV, ;, are the constant terms of a family of polynomials in n variables
governed by the topological recursion/Virasoro constraints. This is equivalent to a formula
giving these polynomials as a sum over stable graphs, and retrieves a result of [15] proved
by combinatorial arguments. Our method is different: it relies on the geometric recursion
and its application to statistics of hyperbolic lengths of multicurves developed in [3]. We also
obtain an expression of the area Siegel-Veech constants in terms of hyperbolic geometry. The
topological recursion allows numerical computations of Masur—Veech volumes, and thus of
area Siegel-Veech constants, for low g and n, which leads us to propose conjectural formulas
for low g but all n. We also relate our polynomials to the asymptotic counting of square-tiled
surfaces with large boundaries.
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1 Introduction

We consider two facets of the geometry of surfaces. On the one hand, hyperbolic geometry with associ-
ated Teichmiiller space and Weil-Petersson metric, and on the other hand, flat geometry associated with
quadratic differentials and the Masur—Veech measure. We will show that invariants of flat geometry of
surfaces, namely the Masur—Veech volumes and the area Siegel-Veech constants, can be expressed as
asymptotics of certain statistics of multicurves on hyperbolic surfaces. Using the geometric recursion
developed in [3] for these statistics, we prove that the Masur—Veech volumes satisfy some form of topo-
logical recursion a la Eynard—Orantin [24].

1.1 The Masur-Veech volumes

We will let £ denote a smooth, compact, oriented, not necessarily connected surface, which can be
closed, punctured or bordered. We consider those cases to be mutually exclusive and we shall indi-
cate which situation is considered when necessary. When I is not closed, the punctures or boundary
components are labelled 0;%,...,0,X. We assume that X is stable, i.e. the Euler characteristic of each
connected component is negative. We say that X has type (g, n) if it is connected of genus g with n
boundary components. We use P (respectively T) to refer to surfaces with the topology of a pair of
pants (resp. of a torus with one boundary component).

The Teichmiiller space Ty of a bordered X is the set of hyperbolic metrics on X such that the boundary
components are geodesic, modulo diffeomorphisms of X that restrict to the identity on 9Z and which
are isotopic to Ids among such. The Teichmiiller space T fibers over R and we denote the fiber
over L = (Lyi,...,Ly) € RY} by Ts(L). For a surface of type (g,n), Tz(L) is a smooth manifold of
dimension 6g — 6 + 2n. Here R, is the positive real axis, excluding 0. In several places, we will also
consider L; = 0, which means that the i-th boundary corresponds to a cusp for the hyperbolic metric.
The slice T5(0,...,0) = ¥5 is the Teichmiiller space of complete hyperbolic metrics of finite area on
L — 0%, which is then considered as a punctured surface. Ts can also be seen as the space of Riemann
structures on the punctured surface. The cotangent bundle to Ts is isomorphic to the bundle Q%5 of
holomorphic integrable quadratic differentials on the punctured surface. For any (o,q) € Q%s, the
quadratic differential q has either a removable singularity or a simple pole at each puncture of X. These
spaces also exist for closed surfaces.

The mapping class group Mody is the group of isotopy classes of orientation-preserving diffeomor-
phisms of Z. It admits as subgroup the pure mapping class group Mod2, consisting of the isotopy
classes of diffeomorphisms that restrict to the identity on 9Z. The pure mapping class group acts on
the Teichmtiller spaces 75 (L) and on Ts and on the space of quadratic differentials Q¥5s. This action
is properly discontinuous and the quotient spaces My (L), M5 and Qs are smooth orbifolds, called
respectively the moduli space of bordered surfaces, the moduli space of punctured surfaces, and the
moduli space of quadratic differentials. The moduli spaces for all surfaces of given type (g,n) are all
canonically isomorphic and simply denoted by Mg (L), My and QNig .

The spaces Tz (L) for L € R%} and T5 are endowed with the Weil-Petersson measures uwp. These mea-
sures are invariant under the action of the mapping class group and descend to the quotients Mgy (L)
and My ,,. If Yrisa Modg—invariant function on T5, we denote by Y , the function it induces on Mg,
and we introduce

VWnl(L) = /M | Yon(o)dunr(o) @)

if this integral makes sense.

Likewise, if L is a closed or punctured surface, Q95 is endowed with the Masur—Veech measure pyy
coming from its piecewise linear integral structure. The function which associates to a quadratic differ-
ential q on I its area [; |q| provides a natural way to define an induced measure on the space Q'
of quadratic differentials of unit area (see Section 3.1). By a theorem of Masur and Veech [36, 49] the
total mass of this measure is finite. Its value is, by definition, the Masur—Veech volume and it is denoted



by MV . Its computation is relevant in the study of the geometry of moduli spaces and the dynamics
of measured foliations and has been the object of numerous investigations [5, 15, 20, 30, 41].

1.2 Topological recursion for Masur—Veech volumes: overview and results

In Section 2, we review the definition and main properties of the geometric and topological recursion,
mainly taken from [3].

In Section 3, for each connected bordered surface * of genus g with n > 0 boundaries, we construct
a Mod2-invariant continuous function OMV: Ty — R. It is such that the integral VQE’{X(LL R
is a polynomial function in the variables Ly, ..., L,, and the Masur—Veech volume MV ., of Qli)ﬁg,n
consisting of unit area quadratic differentials satisfies

24972t (4g 4 4 n)!

MV
MV, = TR vaMy(o,...,0). (1.2)

The family of functions QMY can be defined via the geometric recursion, with initial data found in
Proposition 3.7. The polynomials VOMY, which we call Masur-Veech polynomials, have five different
descriptions:

(1) they are sums over stable graphs (Section 3.3), which we reproduce in (1.4) below;

(2) they encode the asymptotic growth of the integral (against puwp) of statistics of the hyperbolic
lengths of multicurves on a surface of type (g,n) with large boundaries, see Section 3.2 for the
precise statement;

(3) they are obtained by integration of OMV in coherence with the notation (1.1);

(4) they satisfy the topological recursion — which is equivalent to the Virasoro constraints stated in
Theorem 1.2 below - for the spectral curve

2 2
z MV 1dzi®dz, 1 m*dz; ®dz
x(z) = — z) =—z, wyy (z1,20) = = = .
(=) vl o2 (71,22 2 (z1—2)% 2 sin(n(z1 — 20))

(5) they govern the asymptotic counting of square-tiled surfaces with large boundaries, see Section 6
for the precise statement.

The identity between (1) and (2) is proved in Theorem 3.5, which is the crux of our argument. The
identity between (1), (3) and (4) is proved in Proposition 3.7 and follows from general properties of
the geometric and the topological recursion. In Corollary 3.6, we prove the relation (1.2) between the
constant term of these polynomials and the Masur—Veech volume. Lemma 3.4 implies that the value of
the Masur—Veech volumes for closed surfaces of genus g > 2 can be retrieved from VQZ{Y.

In Section 4, we extend these arguments to show in Corollary 4.5 that the area Siegel-Veech constants
can be expressed in terms of asymptotics of certain derivative statistics of hyperbolic lengths of multic-
urves. Our current proof of Corollary 4.5 uses Goujard’s recursion [29] (here quoted in Theorem 4.1) for
the area Siegel-Veech constants of the principal stratum in Q!9 ., in terms of Masur—Veech volumes.
It would be more satisfactory if one could obtain an independent proof of the identity of Corollary 4.5,
as our Section 4 would then give a new proof of Goujard’s recursion for the principal stratum. Section 5
is devoted to explicit computation of Masur—Veech volumes and conjectures that can be drawn from
them.

In Section 6, we discuss the enumeration of square-tiled surfaces with boundaries, via generating series
including a parameter q coupled to the number of tiles. We show in Proposition 6.7 that sending q — 1
while rescaling the boundary lengths by 1/In(1/q) retrieves the Masur-Veech polynomials, i.e. give the
identity between (1) and (5). In absence of boundaries, a related asymptotic enumeration of square-
tiled surfaces with a number of tiles < N — oo was the crucial ingredient in the proof of (1.2) given



by [15]. We also prove in Proposition 6.11 that — before taking any asymptotics — the g-series counting
square-tiled surfaces are governed by Eynard—Orantin topological recursion for the spectral curve

WZEz(Q))
3

1dzi®dz, du ®@duy

x(z)—z+1 (z) =2z woa(z1,22) = = + (W —w;q) +
= o yiz) =z, 02 2] =5 Ty 5 el —uz;q

where z; = e o is Weierstraf3 elliptic function and E, the second Eisenstein series. In the q — 1
limit, we show that it retrieves the topological recursion for Masur—Veech polynomials mentioned in
(4), thus giving a second proof of the identity between (1) and (4).

Main results for the computation of Masur—Veech volumes and polynomials

Concretely, our results lead to two ways of computing Masur—Veech volumes. Firstly, the Masur—Veech
polynomials are expressed as a sum over the set G4 of stable graphs (see Definition 2.9). Stable graphs
encode topological types of primitive multicurves, which naturally appear via (2). Let us introduce the

polynomials
n Lz
VO¥ (L., L) = /ﬁ exp (Z > q)i), (1.3)
gm i=1

which from Kontsevich’s work [33] compute the volume of the combinatorial moduli spaces. The ap-
plication of Theorem 3.5 to the computation of Masur—Veech volumes can be summarised as follows.

Theorem 1.1. For g,n > 0 such that 2g — 2 +n > 0, the Masur—Veech polynomials can be expressed as

1 f.dl
VQZ{X(LL,Ln) = Z m/Er H VQ{(L(V),k(V)((Ee)eEE(V]/“—)\)?\E/\[v)) H eeee 721/ (14)
T€Ggn Ry vevr ecEr

where Vr is the set of vertices of T and E(v) (respectively, A(v)) is the set of edges (respectively, leaves) incident
tov. In particular the Masur—Veech volumes can be computed as

24972 (4g — 4 4 n)!

MVyn =
o (69 —7 + 2n)!
1 K 0.de. (1.5)
Z \Autl"\ Er H VQh(v],k(v)((KE)eeE(v]/(O))\e/\(v)) H ole — 1
FreGgn R vevr eckr

Formula (1.5) was obtained prior to our work in [15] by combinatorial methods. It was presented by
V.D. in a reading group organised by A.G. and D.L. The discussions which followed led to the present
work where, in particular, we give a new proof of formula (1.5).

Secondly, the coefficients of the Masur—Veech polynomials satisfy Virasoro constraints, expressed in
terms of values of the Riemann zeta function at even integers. This is summarised by the following
theorem, which combines the results of Lemma 3.4, Corollary 3.6, Theorem 3.7 and Section 5.2 of this

paper.

Theorem 1.2. Forany g > 0 and n > 0 such that 2g — 2 +n > 0, we have a decomposition

n Lgdi
MV _ Tt
VO (Ly,..., Ly) = > Fomldi,...,dn] [ ] G 71
dy,.,dn >0 i=1
di+tdn <B3g—3+n
Let us set Fo1[d1] = Foald1, d2] = 0 forall di, dx > 0. The base cases
(2 1
Fosldi, d2, ds] = 84,,d,,d5,0, Fi1ld] =84y 7(2 ) + 84,1 3



determine uniquely all other coefficients via the following recursionon 2g —2+n > 2, for dy,...,dn >0

n
Fonldy, ..., dnl =) > B  Fgnola,da...,dm,..., dnl+
m=2a>0

1
+ 3 Z Cﬁ}b <F91,n+1[0, b,dy, ..., dn] + Z Frityila, ]l Fh',1+]/[b,m>,

a,b>0 h+h’=g
JuJ'={dz,...,dn}

where

},k =(2j+1) ditjk+1 + 0150 C(2k +2),

i 2j+2a+1)!1¢(2j+2a+2 2k+2a+1)!1¢(2k+2a+2 .
C},k = 61,j+k+2 + 2j+ l(lzijJr)l)C!((z]an! at2) 5i+a,k+1 + (2t &tﬂglig((za}rg at2) 6i+a,j+1 + C(ZJ + 2)C(2k+ 2)6i,0

For surfaces of genus g with n > 0 boundaries, the Masur—Veech volumes are identified as

249-24M (4g — 4 4 n)!

MVon = (69— 7 + 2n)!

FonlO,...,0,

while for closed surfaces of genus g > 2 they are obtained through

249-2(4g — 4)!

MVao =g —e1

Fgalll.

We use Theorem 1.2 to compute many Masur—Veech volumes and Masur—Veech polynomials for low
g and n (Section 5). Based on numerical evidence, we propose polynomiality conjectures for MV ,,
for all n and fixed g (Conjecture 5.4), with explicit coefficients up to g < 6. Conditionally on this
conjecture, we discuss the consequences for area Siegel-Veech constants in Corollary 5.5 and for the
n — oo asymptotics in Section 5.6.

The paper is supplemented with three appendices. In Appendix A, we establish a closed formula for
all 1V classes intersections in genus one, which we have not found in the literature and which we use
for computations of VQMY via stable graphs. In Appendix B, we illustrate the computation of Masur-
Veech polynomials and generatmg series of square-tiled surfaces from Propositions 3.8 and 6.11 using
the original formulation of the topological recursion a la Eynard—Orantin, via residues on the associated
spectral curves. Appendix C contains tables of coefficients for the Masur—Veech polynomials and area
Siegel-Veech constants.

Remark 1.3. Since the first arXiv release of our work, our polynomiality Conjectures 5.4 and thus 5.5
have been proved via intersection-theoretic methods by Chen, Méller and Sauvaget [14]. This proof
opened up a parallelism between Masur-Veech volumes and the Euler characteristic of the moduli
space of smooth curves, discussed in [28].
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2 Review of geometric and topological recursion

We review some aspects of the formalism of geometric recursion developed in [3] and its relation to
topological recursion which are directly relevant for the analysis carried out in the present paper, in
Section 3 and onwards.

2.1 Preliminaries

Let S$ be the set of isotopy classes of simple closed curves in the interior of X, M the set of multicurves
(i.e. isotopy classes of finite disjoint unions of simple closed curves which are not homotopic to bound-
ary components of £) and M§ the subset of primitive multicurves (the components of the multicurve
must be pairwise non-homotopic). By convention My and M{ contain the empty multicurve, but S§
does not contain the empty closed curve. In particular

M; = { (v, m) ‘ve Mg, mezY }

where Z, is the set of positive integers (it does not include 0).

2.2 Geometric recursion

In the present context, the geometric recursion (in brief, GR) is a recipe to construct Mod2-invariant
functions Qs on Tx for bordered surfaces Z of all topologies, by induction on the Euler characteristic
of Z. The initial data for GR is a quadruple (A, B, C, D) where A, B, C are functions on the Teichmdiller
space of a pair of pants, and D is a function on the Teichmidiller space of a torus with one boundary
component. Since Tp = R3, the functions A, B and C are just functions of three positive variables. We
further require that A and C are invariant under exchange of their two last variables. In the construction
we need that initial data satisfy some decay conditions. Let [x].. = max(x,0).

Definition 2.1. We say that an initial data (A, B, C, D) is admissible if
e A is bounded on Tp and D is bounded on T,

e Forany s > 0and somen € [0,2),

sup (1+0—1L— Lzh)s IB(Li, Ly, £)| €1 < 400,
11,1530

sup (14 [0+ ¢ —LiJ+) " [C(Ly, & )] (¢¢)" < +oo.
Ly,8,'2>0

Let us now briefly recall the recursion introduced in [3], which relies on successive excisions of pairs of
pants. Assume that X has genus g and n boundary components such that 2g —2 +n > 2. We consider
the set of homotopy classes of embedded pairs of pants ¢: P — L such that

e 0;Pis mapped to 0;%,

e 0,P is either mapped to a boundary component of £, or mapped to a curve that is not null-
homotopic neither homotopic to a boundary component of Z.

Let Py the set of homotopy classes of such embeddings. It is partitioned into the subsets PZ and P
for m € {2,...,n}, consisting respectively of those classes of embeddings such that 9,P is mapped to
the interior of Z, resp. mapped to 0.,Z. Given a hyperbolic metric o with geodesic boundaries on Z,
each element of Ps has a representative P such that ¢(P) has geodesic boundaries. We denote by 7, (dP)
the ordered triple of lengths of ¢(P) for the metric 0. Removing this embedded pair of pants from X
gives a bordered surface X — P. Our assumptions imply that © — P is stable. It is also equipped with
a hyperbolic metric o|z _p with geodesic boundaries. We decide to label the boundary components of
L —P by putting first the boundary components that came from those of P (respecting the order in which



they appeared in 0P) and then the boundary components that came from those of £ (with the order in
which they appeared in ).

The GR amplitudes Q5 are now defined as follows. For surfaces with Euler characteristic —1, we declare
Qp =A, Q1 =D.
For disconnected surfaces, we use the identification Ts,ys, = Tx, X Ty, to set

Qs us,(01,02) = Q5 (01)Qx(02),
and for connected surfaces with Euler characteristic < —2, we set

Z Z B(C )) Qs _p(olz—p) Z C(, )) Qs _p(ols—p). (2.1)

m=2 [PlePT [P]e?’a

The latter is a countable sum and its absolute convergence was addressed’ in [3]. We recall the main
construction theorem of that paper here. Let F(Tz, C) be the set of complex valued functions on Ts.

Theorem 2.2. If (A, B, C, D) is an admissible initial data, then £ — Qjs € F(Tx,C) is a well-defined assign-
ment. More precisely:

e the series (2.1) is absolutely convergent for the supremum norm over any compact subset of Ty ;
o Qs is invariant under all mapping classes in Mods which preserve 91Z;

e if the initial data is continuous (or measurable), Q5 is also continuous (or measurable).

2.3 Two examples

We describe two examples of initial data which play a special role for us. The first one appears in
Mirzakhani’s generalisation [38] of McShane identity [37], which is a prototype of GR and which we
can formulate in GR terms as follows.

Theorem 2.3 (Mirzakhani & McShane). The initial data

AM(L,1,,15) =1,

cosh () + cosh (L1+e))
cosh (2) + cosh (24) /)’
% EJE(/ (2.2)
CM(L,,0,0') = Lll (Hﬁ)
e 2 e 2
== Z CM(ZO‘(aT)/eO'(‘Y)red(’Y))I

YEST

BM(Ly, Ly, 0) =1— l1n (
Ly

are admissible, and for any bordered X the corresponding GR amplitude Q¥ is the constant function 1 on Tz. B

The second example is obtained by rescaling all length variables in Mirzakhani initial data as follows

XK(Ly, Ly, Ly) = Jim XM(BLy, BLy, BLs), X €{A,B,ChL (2.3)
—00

I The notion of admissibility adopted in the present paper is more restrictive than the one appearing in [3], but is sufficient for
our purposes.



More explicitly
AR(Ly, Ly, L) = 1,

BX(Ly, Lo, €) = Li—L—ty — L+ L—0+ L +L—0),

o1, (
1
CR(Ly, 0,0 = " L —e—10],,

— Z CX(ts(dT), Lo (), Lo (V).

YEST

2.4)

It is easy to check that these initial data are admissible, and we call them the Kontsevich initial data.
Unlike the previous situation, the resulting GR amplitudes Q¥ are non-trivial functions on Ts. Their
geometric interpretation and basic properties are studied in [1].

2.4 Hyperbolic length statistics and twisting of initial data

Let D C C be the open unit disk. Let f: R, — C and f: R, — D be two functions related by

fO) =Y (fO)* = —=—. 25
(0 é(()) - (25)

Definition 2.4. We call f: R, — C an admissible test function if f is Riemann-integrable on R and for any
s>0

sup (1+0)°[f(0)] < +oo. (2.6)
>0

This condition is stronger than what is needed in [3], but is sufficient here.
Following [3], we consider multiplicative statistics of hyperbolic lengths of multicurves
o= J[ fstv)=> ] f 2.7)
ceME yem(c) cEMsx yem(c)

It can be written either as a sum over all multicurves or as a sum over primitive multicurves only, the
two expressions being related via the geometric series (2.5). According to our conventions, the empty
multicurve gives a term equal to 1 in this sum.

In fact, these statistics satisfy the geometric recursion. If (A, B, C, D) are some initial data, we define its
twisting

Alfl(Ly, Ly, L3) = A(Ly, Ly, L3),

B[fl(Li, Ly, €) = B(Ly, Ly, €) + A(Ly, Ly, £) £(£),

Clf] (lee ') = C(Ly, ¢, 0") + B(Ly, £, €")f(0) + B(Ly, ¢/, OF(L") + A(Ly, £, L) F(0)F (L"), (2.8)
) =D+(0) + Z A(Ls(0T), s(v), ts(v)) F(Le(¥)).

YEST

I7(o

Theorem 2.5. [3] If we choose (A, B, C, D) to be Mirzakhani initial data (2.2) and f is an admissible test function,
the twisted initial data (2.8) are admissible and the resulting GR amplitudes coincide with the assignment L —
Nz (f; -). [

The idea of the proof is, for each ¢ € Mg, to multiply the product in (2.7) by 1, seen as a function on
the Teichmiiller space of £ — c. Then, one decomposes 1 using Mirzakhani’s identity on J5_., and
interchanges the summation over primitive multicurves with the summation over embedded pairs of
pants. As the curves do not intersect the pair of pants, the structure of the geometric recursion (2.1)
appears again, but the initial data are modified as in (2.8). It is important to consider only simple closed
curves, as otherwise £ — ¢ would not be anymore a bordered surface and the recursive procedure could
not be carried out in this way.



2.5 Relation to the topological recursion

Being invariant under the pure mapping class group, the GR amplitudes Qs descend to functions on
the moduli space My, and we denote them by Qg,. The structure of the geometric recursion is
compatible with factorisations of the Weil-Petersson volume form pwp when excising pairs of pants.
This means that, if we integrate GR amplitude against uwp, the outcome will again be governed by
a recursion with respect to the Euler characteristic, which is called the topological recursion (TR for
short). The (countable) sum over homotopy classes of pairs of pants is replaced with a sum over the
(finitely many) diffeomorphism classes of embeddings of pair of pants.

Recall the notation
VQgn (Lo L) = [ Qg n(0) duwp(0),
Mg,n (I—l I—n)

,,,,,

whenever the integral on the right-hand side makes sense; by convention, we set VQg,, = 0 when
2g—-2+n<0.

Theorem 2.6 (From GR to TR, [3]). If (A, B, C, D) are admissible, VQ g is well-defined as the integrand
is Riemann-integrable, and it satisfies the topological recursion, that is for any g > 0 and n > 1 such that
2g—24+n=2

VQg,n(I—ll LZ/ M4 Ln)

= Z/ B(L1, L, OVQgn 1(4La,..., Loy, L) de
m=2 Ry

1
+ 5 C(Ll/ g,e/) (Vle,nJrl(e/e// LZ/ .. ‘an) + Z VQh,lJr\ﬂ(Er I)VQh’,1+|]’|(E/rI/)>e€/ d¢ de/
B2 h+h'=g
JuJ'={Ly,...Ln}
(2.9)
The base cases are
VQos(Ly, Ly, L3) = A(Ly, Ly, L3), VQi,(L) = VD(Ly) :/ ( D(o) duwp(0).
My (Ly)
[ ]

We call any sequence of functions VQ g, satisfying a recursion of the form (2.9) TR amplitudes. Let us
come back to the two examples of Section 2.3.

According to Theorem 2.3, VQI;;[,n (Ly,...,Ly) is the Weil-Petersson volume of My (L1,..., L), and the
topological recursion (2.9) in this case is Mirzakhani’s recursion for these volumes [38]. To be complete,
we should record the Weil-Petersson volume for M; 1 (L;)

2 2
M _ T L
VDY(L,) = 3 + T

which is also mentioned in [38]. Mirzakhani also expressed the Weil-Petersson volumes via intersection
theory on the Deligne-Mumford compactified moduli space of punctured surfaces Mig .

Theorem 2.7. [39] The Weil—Petersson volumes satisfy

n L2
M i
VQg/n(Ll, v, la) = /im exp (2712K1 + igzl > 11%)-

gm
|

Similar considerations applies to VQX. Actually, the topological recursion for VQX is equivalent to the
set of Virasoro constraints for the intersection of 1\ classes on Mg ..

10



Theorem 2.8 (Conjecture [52], theorem of [33] and [16]). The amplitudes VQX satisfy

n L%
va¥ (L., L) :/7 exp(Zzﬂ)i).

gm i=1
. K L2
In particular, VD* (L) = 2. |

This is also a corollary of Theorem 2.7, as can be seen if we multiply all length variables by 3 in Mirza-
khani initial data, let 3 — oo and recall definition (2.3). The main analysis carried out in this paper
consists in rescaling length variables by 3 — oo in the twisted GR amplitudes to understand properties
of the asymptotic number of multicurves.

There are several other ways to see that Theorem 2.7 implies or is implied by Theorem 2.8, see [7, 17, 43].
They will be discussed in the broader context of the geometric recursion in [1].

Symmetry issues

The GR amplitudes Qs are a priori invariant under mapping classes that preserve 9;Z (see Theo-
rem 2.2). Therefore, after integration, the TR amplitudes VQg,(Ly,...,L,) are symmetric functions
of Ly, ..., Ln. The topological recursion also gives a special role to the length L, of the first boundary.

The framework of quantum Airy structures [34] provides sufficient conditions for the invariance of
TR amplitudes under all permutations of (L;,...,L,). These conditions are quadratic constraints on
(A,B,C, VD) which are explicitly written down in [2, Section 2.2]. They are satisfied by the Mirza-
khani and Kontsevich initial data obtained from spectral curves in the Eynard-Orantin description
(Section 2.7.3), and they are stable under the twisting operation [2]. Therefore, all TR amplitudes that
considered in this article have the full &,,-symmetry.

The situation is different at the level of GR amplitudes. For instance, one can prove that QF is not
always invariant under mapping classes that do not respect 01X [1].

2.6 Twisting and stable graphs

If (A, B, C,D) are admissible initial data, the upper bound on the number of multicurves of bounded
length directly implies that the twisted initial data (A[f], B[f], C[f], D[f]) remain admissible when f is an
admissible test function (2.6). Therefore, the integrals

VQqn(fiLs, L) = [ Qg (f; ) diiwe(o)
Mg,n (L1/~ Ln)
of the GR amplitudes Qg ., (f; - ) satisfy TR (2.9) for the initial data (A[f], B[f], C[f]), completed by

VD(f;L;) = VD(L;) + %/R f(€) A(Ly, ¢, £) ede. (2.10)

The function VQg . (f; -) can also be evaluated by direct integration, exploiting the factorisation of
the Weil-Petersson volume form when cutting along simple closed curves — which is clear from its
expression in Fenchel-Nielsen coordinates. The result is that, while Q4 (f; - ) is a (countable) sum over
primitive multicurves, its integral VQg,.(f; -) is a sum over the (finitely many) topological types of
such multicurves. The latter are described by stable graphs.

Definition 2.9. A stable graph T" of type (g, n) consists of the data
(Vl"/ Hr, Ar, h,v, I)
satisfying the following properties.

1. Vr is the set of vertices, equipped with a function h: Vi — N, called the genus.

11



2. Hr is the set of half-edges, v: Hr — Vr associate to each half-edge the vertex it is incident to, and i: Hr —
Hr is the involution.

Er is the set of edges, consisting of the 2-cycles of i in Hr (loops at vertices are permitted).

Ar is the set of leaves, consisting of the fixed points of i, which are equipped with a labelling from 1 to n.

AT R

The pair (Vr, Er) defines a connected graph.

6. Ifvis a vertex, E(v) (resp. E(Vv)) is the set of edges incident to v including (resp. excluding) the leaves and
k(v) = [E(V)| is the valency of v. We require that for each vertex v, the stability condition 2h(v) —2+k(v) >
0 holds.

7. The genus condition

Q—Zh )+ by (I

vEVT
holds. Here b1(TI") = |[Er| — |Vr| + 1 is the first Betti number of the graph T.

An automorphism of T" consists of bijections of the sets Vi and Hr which leave invariant the structures h, v, and
i (and hence respect Er and Ar). We denote by AutT the automorphism group of T.

We denote by Gy the set of stable graphs of type (g,n). It parametrises the topological types of
primitive multicurves on a bordered surface X of genus g with n labelled boundaries:

Ggn =M% /Mod?.

The stable graph with a single vertex of genus g corresponds to the empty multicurve. The other
stable graphs are in bijective correspondence with the boundary strata of 904 .,; more precisely I' €
Gy, refers to a boundary stratum of complex codimension |Er| that contains the union over v € Vr of
smooth complex curves of genus h(v) with k(v) punctures, glued in a nodal way along punctures that
correspond to the two ends of the same edge.

By direct integration, we have that

Theorem 2.10. [3] Assume VQ g, is Sy-invariant for any g > 0 and n > 1 such that 2g —2 +n > 0. Then,
for any admissible test function f: R, — C we have

VQgn(fiLy,..., L) = \Autl“\ /Er H VO k) ((Le)ect ) (Laeam)) T Cef(e
re ng ve ecEr

We record two useful combinatorial identities, valid for any I' € G ..

Lemma 2.11.

Xr = Z (2—2h(v) —k(v)) =2—2g—n,
veVr

dr= ) (3h(v)—3+k(v)) =3g—3+n—[Er|.
vEVP

Proof. The claim follows by combining edge counting with the definition of the first Betti number by (T"),
namely

> k(v)=2[Erl+n,  1-[Ve[+[Efl+ ) h(v)=g.
veVr vEVr

12



2.7 Equivalent forms of the topological recursion

In this section, we describe equivalent forms of the topological recursion (2.9), which can be convenient
for either carrying out calculations or for exploiting properties proved in the context of Eynard—Orantin
topological recursion.

2.71 Polynomial cases

Let 1 : Ry — Rand ¢, : R4 x Ry — R be measurable functions. The operators
BlonL L) = [ BLuLa0oi0ed,  Cloall) = [ ClLutt) galt,t) (' dede’ @1)
R, R?,

play an essential role in the topological recursion (2.9). It turns out that for Mirzakhani or Kontsevich
initial data, these operators preserve the space of polynomials in one (for B) or two (for C) variables
that are even with respect of each variable (we call them even polynomials). Since in both examples the
base cases (g,n) = (0,3) and (1,1) are even polynomials in the length variables, it implies that Vﬂlgfn
and VQI;n are even polynomials.

Definition 2.12. We say that an initial data (A, B, C, D) is polynomial if (B, C) are such that the operators B
and C defined in (2.11) preserve the spaces of even polynomials and A and VD are themselves even polynomials.

For polynomial initial data, it is sometimes more efficient for computations to decompose VQ 4, on a
basis of monomials and write the effect of B and C on these monomials. For instance, let us decompose

n de
VQgn(Ly,...,Ln) = > Fgnldy,...,dnl [ Jea, (Ls), eall) = Ga v

and
Blea,)(Ly, Lo) = E de a4, €d; (L1)eq, (L2), Cleq, ® eq,](L1) = E Cdz d4;€a, (L
dr,d20 &30

The topological recursion (2.9) then takes the form, if 2g +n—2 > 2

Fg,n [dlr ccy dn]

n

—

ZBdl gn 1ad2/ --/dm/---/dn]

>0 2.12)
Z ( g-1n+ila,b,dy, ..., dn] + Z Frisyila,J] Fh’,1+]’|[b/]/])-

,b2>0

h+h’'=g
Juj /:{d2/~~/d11}

3

I\JM—\ 8

For the sake of uniformity, we introduce a similar notation for the base cases of the recursion
F0,3 [dll dZ/ dS} Ad1 dS Fl,l [dl] - Dd1 .

For the Kontsevich initial data, we have in the chosen basis

Fonldy, ..., dn] = 2d 41 u/ Hﬂ)

gnl 1

which vanishes unless d; + --- + dn, = 3g — 3 + n. Translating the Virasoro constraints of [52] — or
computing directly with (2.4) — we find

o
Fosldi, do, ds] = 04,,d,,d5,0, Fi10d] = %- (2.13)

and
Bl g, = 22+ 1)8a,1aras,  Cdlg, = 8aartasia- (2.14)
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A similar computation for Mirzakhani initial data can be found in [38] and is reviewed in [10] with
notations closer to ours.

Other bases of the space of even polynomials are sometimes useful to consider. For instance, the linear
isomorphism given by the Laplace transform

cl? — Clp~2ldp
¢ — (Ju, e o0 de)dp

makes the bridge towards the Eynard-Orantin form of the topological recursion (see Section 2.7.3).

L:

2.7.2 Twisting

The operation of twisting (2.8) preserves the polynomiality of initial data. Indeed, the condition (2.6)
guarantees that all moments of the test function f exist and if we set

2di+2d>+1
= f(€)de, 2.15
v /nh (2d1 + 1)!(2dy + 1)! () (2.15)
we obtain
d d
A[f]d; ds - Ad; ds”
d d
B[ﬂ dyds de ds + Z Ad;,a Uq,ds,
a=>0
Clda, = Clpa, + Z Glas Yo, + BElg, Ua,a,) + Z Al Ua,d, Wb,y (2.16)
a=>0 a,b>0
1
DI =DU + 2 5 Aliuap.
a,b>0

Let us denote by Fg ., [f; -] the coefficients of decomposition of the twisted TR amplitudes. According to
Theorem 2.10, it can be expressed as a sum over decorated stable graphs

Fonlf;d, ..., dn] = § A || Upn | | Friv) de) ect(v)- (2.17)
utFI
FreGgn ec vEVr
d: Hr—N e=( hh )

In this sum we impose that the decoration of the i-th leaf is d;. Similar twisting operations appear in
the context of Givental group action on cohomological field theories, see [3] for the comparison.

2.7.3 Eynard-Orantin form

Originally, the topological recursion was formulated by Eynard and Orantin as a residue computation
on spectral curves [24]. We present it in a restricted setting adapted to our needs. A local spectral curve
is a triple (x,y, wo2) where

e x and y are holomorphic functions on a smooth complex curve C;
e the set a of zeros of dx is finite; each zero « € a is simple and such that dy(«) # 0;

e wyy is a meromorphic symmetric bidifferential on €2 with a double pole on the diagonal with
biresidue 1. The latter means that for any choice of local coordinate p on C, the bidifferential

wop(z1,22) — % is holomorphic near the diagonal in 2.

We consider x: € — C as a double branched cover in a neighbourhood of « € a; it admits (locally) a
non-trivial holomorphic automorphism T, exchanging the two sheets, i.e. 7% = id and x o T, = x, but
Ty 7 id and T4 () = . We introduce the recursion kernel

fTZ“(Z) wO,Z('/ Zl)

1
Koc(Zl, Z) = E (H(Z) —y(Tcx(Z)))dx(Z),
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and proceed to define multidifferentials wgn(z1,...,2zn) for g > 0 and n > 1 as follows. We set wq,;1 =
ydx, further wy, is part of the data of the local spectral curve, and for 2g —2 + n > 0 we define
inductively

Wgn(z1,22,...,2n) = Z Res Ky (21, 2) (wgl,n+1(z, To(2),22,. .., 2Zn)

xea

no (0,1) (2.18)
. whm(z,n@whf,w(T“(z),J’)),

h+h’=g

JuJ'={z2,....zn}

no (0,1)
where )  means that the sum excludes the cases where (h,1+|]J|) = (0,1) or (h/,1+]]’]) = (0,1). For
n =0and g > 2, we also define the numbers

1 z
g0 = 55 3 Res ( / ydx>wg,1(z). (219)
xE€a &

As in the (A, B, C, D) formulation, there is an operation of twisting in the Eynard-Orantin topological
recursion, which consists in shifting wy .

Theorem 2.13. Let (C,x,y, wop2) and (C,x,y, W) be two local spectral curves, wgyn and Wy the respective

outputs of the Eynard—Orantin topological recursion. We define two projectors &7 and 3 acting on the space of
meromorphic 1-forms on C, by the formulas

and likewise & with Wo,p. We denote v == Im 2. We assume there exists a 2-cycle € C C* and a germ Y of
holomorphic function at € such that

Wo2(z1,22) — wop(z1,22) = / Y(z1,25) woa(z1,21)wop (22, 25).
3
We define a linear form € on ¥*? by the formula

O@] :LY(Z{,Zé)a)(z{,zé).

Then, we have

. 1 N
Dgnlzi,...z) = ) |Autl’|(®<@z‘ ® ) ﬁz’g,z’g) [ Q) wni k) ((28)ect vy (2A)renw)) |-
-1

reGgn eckEr veVr

In this formula: E(v) is the set of oriented edges pointing to v; each oriented edge € carries a variable zl ; to each
e € Er corresponds two oriented edges € and —&; we indicate in subscripts of the operators which are the variables
they act on.

Sketch of proof. When C is a compact Riemann surface and @, = wyp +th where h is a fixed symmetric
holomorphic bidifferential, [23, Theorem 6.1, proved in Appendix B] establishes a formula for the first
derivative of wg with respect to t. Integrating this relation with respect to t yields the result — in
that case ¢ is an element of SymzHl(G,(C) and Y = (2ir) 2. The same proof in fact works under the
assumptions of the theorem. Notice that the order of integration of the variables z¢ is irrelevant, by the
assumptions on (%, Y) and the fact that wp, x only has poles on a* C €*. O
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2.7.4 Equivalences

The correspondence with Section 2.7.1 appears if we decompose the w ;, on a suitable basis of 1-forms.
We explain it when dx has a single zero, which is the only case where we are going to use this corre-
spondence. Let us choose a coordinate p near « such that x = p?/2 + x(«). We introduce the 1-form
globally defined on €
z
€azo) = Res P2, ([ sl ). (220)
We also introduce

£h(z) = (2d + D)p(2)*¢H,

—2 p(z)*
0(z) = ~ 0 ,

&) = PN e 2, * iz

Upo = lim < Woa(21,22) 1 >
T mon \dp(z)dp(z2)  (plz) —p(22))? )

Theorem 2.14. [2] For 2g — 2+ n > 0, we have
Wgn(z1,...,zn) = > Fonldi, ..., dn] ) a,(20),
dq,...,dn >0 i=1

di+-+dn<3g—3+n

where the Fy s are given by the recursion (2.12) with
Adha, = Res &5, (2)deg, (z)dEg, (2) 0(z),

BY.a, = Res &5, (2)d&s, (2)Ea,(2) 6(2),
Clla, = Res &4, (2)8a, ()64, (2) 0(2),

90 + U 0671 671
VDd = =25 —— 8q1.
3 a0+ g Vdl
[ ]
The Fy ’s associated with Kontsevich or Mirzakhani initial data are described by Theorem 2.14 for the
spectral curve € = C, x(z) = z%/2 and wop(z1,22) = ?zl?fzz)é, for which 1(z) = —z and
K M sin(271z)
. _ _smlemz) 2.21
P =z yME) = @21)
In other words 1 5
K(y _ M) _ 7
07z = z22dz’ 07z zsin(2mnz) dz’ (2.22)

More generally, if we assume that a polynomial GR initial data (A, B, C,D) leads to TR amplitudes
described by Theorem 2.14 for a certain spectral curve, then wgyn(z1,...,zn) and VQgr(Ly,..., L)
are two equivalent ways of collecting the numbers Fy ,’s, which are related by the Laplace transform.
Indeed, we notice that £4 = p~(24+2)dp+0O(dp) and p~(24+2)dp = L]eq]. Let us introduce the projection
operator

$(z)
P = Res ————,
[b](po) = Res oy p—

which takes as input a meromorphic 1-form on € and outputs the element of Clp, Ydpg such that ¢(zo)—
Pldl(po) is holomorphic when zyg — «. Hence P[&4] = Lleq] and

LOMVQgnl(p1, .-, pn) = PP wgnl (1, -, Pn)- (2.23)

Furthermore, twisting the GR initial data amounts to shifting [3]
wop(z1,22) — wop(z1,22) + LIf](£p(z1) £ p(z2)) dp(z1)dp(z2), (2.24)

where the two choice of signs + are independent and arbitrary — they do not affect the right-hand side
of (2.23).
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3 Asymptotic growth of multicurves

3.1 Preliminaries

We review some aspects of the space of measured foliations which play a key role in this article. For a
more complete description we refer to [26].

Let X be a closed or punctured surface. A measured foliation is an ordered pair A = (F,v) where: F
is a foliation of £ whose leaves are 1-dimensional submanifolds, except for the possible existence of
isolated singular points of valency p > 3 away from the punctures and univalent at the punctures; v is
a transverse measure invariant along J. Two measured foliations are Whitehead equivalent if they are
related by a sequence of isotopies (relatively to the punctures), and contraction or expansion of edges
between two singularities (that should not be both punctures). We denote by MFs the set of Whitehead
equivalence classes of measured foliations. For each o € T5, MFs5 is equipped with a hyperbolic length
function which we denote by {;: MFs — R_..

The space MF; is endowed with an integral piecewise linear structure, and the set of multicurves Myx
is in (length-preserving) bijection with the set of integral points of MFs. One can then define a measure
urh by lattice point counting, which is called the Thurston measure in this context; we normalise py,
such that My has covolume one in MFs. Let us emphasise that our normalisation differs from the
Thurston symplectic volume form by a constant factor, see [4, 42].

The space of quadratic differentials Q¥ is intimately linked to MFs by considering the horizontal and
vertical foliations associated to a quadratic differential. More precisely we have a homeomorphism
Q(Sz — MF): X MFZ \A):
q — ([vIIm(q)l], [v/IRe(q)]])

(3.1)

where
As = { (M, A2) € MF3 | 3n € MFs, tn, M)+, A2) =0},

and 1: MFz x MFs — Ry is the geometric intersection pairing, which extends continuously the topo-
logical intersection of (formal Q. -linear combinations of) simple closed curves, see e.g. [8].

The subset of QT;y made of quadratic differentials with only simple zeros, the so called principal
stratum, has an integral piecewise linear structure defined in terms of holonomy coordinates. The
Masur—Veech measure v is defined from this structure by lattice point counting [36, 49]. We define
the Masur-Veech measure on the bundle Q!'Ts of quadratic differentials of unit area as follows. If
Y C Q'T5, we put

piy(Y) = (12g — 12 +4n)uy(Y),  Y={tq|te(0,}) and qeY}
when Y is measurable. This normalisation follows the one chosen in [5, 15, 29]. Then the Masur—Veech
volume is by definition the total mass MV, = pn (Q'Mgn) < co.
Finally, we need to discuss Teichmdiller spaces with zero boundary lengths. We introduce the space
Te= U Tl La),
L1 Ln >0

which is a stratified manifold. Its top-dimensional stratum is Ts and lower-dimensional strata cor-
respond to some of the boundary length L; equal to zero. The lowest-dimensional stratum Ts =
T5(0,...,0) is identified with the Teichmiiller space of punctured Riemann surfaces on £. The quo-
tient of the action of Mod2 on Ts obviously respects the stratification, and is denoted by ﬁ[g,n. Inside
this moduli space, the lowest-dimensional stratum Mg, = Mg (0,...,0) is identified with the usual
moduli space of complex curves with punctures.

Following Thurston [47], we consider an asymmetric pseudo-distance on T s defined for 0,0’ € fz as

/ ec’(Y))
dm(o,0’) = sup In .
ml ) yesl:‘);_ ( 6%
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The fact that this quantity is finite follows from the compactness of the space of projective measured
foliations. We emphasise that S¢ does not include boundary curves and hence dry, is constant equal to
zero on the Teichmiiller space Tp of the pair of pants P. It is expected that, on any other stable surface,
dy, is actually an asymmetric distance, but this is irrelevant for our purposes. We will simply use the
facts that dry, is non-negative, continuous and vanishes on the diagonal, i.e. d (0, o) = 0.

3.2 Masur-Veech volumes

In this paragraph, g, n are non-negative integers and 2g —2 4+ n > 0. Let ¢: R, — C be an admissible
test function and X a surface of type (g,n). We introduce the additive statistics for o € Tx

Ni(d;0) = Z (Lo (c)).

cEMs

We are interested in some scaling limit of the additive statistics N{ (¢; o). Namely, we define for f > 0
the scaling operator

Ppd(x) = d(x/B). 3.2)

and we want to understand the behaviour of N{ (p?5 ¢; 0) and its integrals over the moduli spaces with
fixed boundary lengths.

The result (Lemma 3.2 below) will be governed by two ingredients. First, the dependence on the test
function will involve the following linear forms, for k > 0

k—1
culd] = [y el 63)

Note that co[¢] is not always well-defined; we will assume it is only when necessary. Second, the
dependence on the metric will be governed by the function

‘/J\‘}: — R +

Xs: .
o — (69— 6+2n) um({A € MFx [ {5(A) < 1})

The function Xy is an important ingredient in [38], where most of its properties are proven. In particular,
its integral over moduli space is proportional to the Masur—Veech volumes.

Lemma 3.1. The function Xx descends to a function Xy, on the moduli space ﬁg,n. Further, the following
properties hold.

o The logarithm In(Xx) is Lipschitz with respect to dty, namely

Xz (o)

< e(6gf6+2n)dTh(0',6’)
Xs(o’)

o The average VXgn(Li,..., L) exists and is a continuous function of (Ly,...,Ly) € (Rxo)™

o We have that sg-2m )
2%975 1 (4g — 4 4+ n)!

MV, = VXgn(0,...,0).

gm (6g —7 +2n)! o )

Lemma 3.2. Let 0 € Ty and ¢: R, — C be an admissible test function. Then

[511130 B 6976 NT (ph d; 0) = Cog—642n ] Xz (0),

and further, the following limit exists and it equals

lim B9 M VNE (ppd;Ly,..., Ln) = cog—stanldl VXgn(Ly, ..., Ly).

B—o0

forall (Ly,...,Ly) € RZ,.
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Proof of Lemma 3.1. The first property follows from the inclusion of the unit {5-ball in a {4/-ball:
{AeMFs [ o(\) <1} C {?\ € MFy \ U/ (M) < edmloo”) }
The integrability of Xy is proven in Theorem 3.3 of [41, p. 106]. Namely, the function X;x is bounded by

the function 1
Ks (o) =« H
vesy oY)

to(v)<e

for appropriate constants k, € > 0 that depend only on g and n. The function Ky is invariant under the
action of the mapping class group and we denote by K ,, the function it induces on the moduli space.
Mirzakhani showed that K , is integrable with respect to pwp over My (L) for any L € R;‘O (see her
proof of Theorem 3.3 in [41, pp. 111-112]).
We now prove that the integral VX (L) is a continuous function of L. Let us choose a pair of pants
decomposition of X and consider the corresponding Fenchel-Nielsen coordinates ({;, Ti)?i;Hn realis-
ing Ts (L) ~ (R x R)?973 " By continuity of Xs (o), for any compact set Z C (R x R)3973t™ the
following function is continuous

L+— Xz (o)dpwe(0).

{L}xZ

In order to show the continuity of VX, , it remains to show that the contribution coming from the set
M;fll (L) € Mg,n(L) of surfaces with a non-peripheral curve of length smaller than e’ is uniformly small
in e’. We use again the function Ky , for which

/ Xg,n(g)dHWP < / Kg,n(o—)dHWP-
Mse' (1) Mge (L)

The set J\/[;fl/ (L) is covered by the (3g — 3 +n)23974" ™ gets

50 {0 {

by <€, l<e e, b <bgn(L) Vi, ogrigei}),

where ] isa subset of {1,2,...,3g—3+mn}, ig an integer in the complement of ], 7t: Ts — My is the projec-
tion map, and by (L) is the Bers constant of T (L). It is shown in [6] that by ,, (L) is uniformly bounded
for L in compact subsets of RY,. Now, given a point in M;fll, one can always choose a hyperbolic
structure in its m-preimage so that all curves shorter than e are contained in the pants decomposition.

Hence

3g—3+n

1
/M;;’(L) Kan(0) dpr(0) < Z/Y< HI [ dtdw

io,] Y g jeJ ) oi=1
<k Z e/€|]\ (bgn(L))2(39*4+n*|]|)
o]
< K(3g—3+mn) 294 (b, (1)) Ve,
This concludes the proof of the continuity.

The proportionality with the Masur—Veech volume is derived in [40] for closed surfaces and extended
to punctured surfaces in [15]. We only sketch the idea. Associated to any maximal measured foliation
A, Thurston [47] and Bonahon [9] constructed an analytic embedding

G7\Z fz — H):()\),

where Hy (A) are the transverse Holder distributions on (the support of) A. The transverse Holder
distributions form a vector space of dimension 6g — 6 + 2n which plays the role of the tangent space at
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A in MF;, see [9]. Mirzakhani then proved that G, factors through the space of measured foliations as
G)\ = I}\ o F)\, where
Fa: Tx — MFyx (7\) Ix: MF):U\) — Hs (7\)

are respectively the horocyclic foliation and shearing coordinates, and where
MFs(A) ={n € MFxz | Vy €S%, uAy)+1tn,y)>0}.

It is shown in [9, 40] that these maps are symplectomorphisms with respect to the Weil-Petersson sym-
plectic form on T5 and the Thurston symplectic forms on Hy (A) and MF;s. As a consequence, on the
subset MF7® of maximal foliations — which has full measure in MF5y — we obtain a map

Z; XMF?aX — MFZ XMF):
(@A) —  (AFa(0)

which is again a symplectomorphism.

On the other hand, the homeomorphism (3.1) Q¥z — MFz x MF;z \ Az maps pmv to prp ® Hrn, up
to a constant factor. In order to match our normalisation of pyy one has to include the factor that
corresponds to the ratio between the Thurston symplectic volume form and the measure obtained via
integral points in MFs, see [4, 42]. O

Proof of Lemma 3.2. Since ¢ is Riemann integrable, we have

lim B %9 "2"N{ (pgd; 0) = $ o ls(N) dprn(A). (3.4)
B—ro0 MFsx

Now, we can desintegrate the Thurston measure with respect to the function {;. We denote by [t the
projectivised measure on PMF; defined by

B(A) = pm({A € MFs | Al € A and €:(A) < 1}),
where [A] denotes the projective class of A. Then we have the “polar form” of the Thurston measure
wrp = (69 — 6 +2n) t977 2" dt djL.

The right hand side in (3.4) hence can be rewritten as

(69 —6+2n)(/ o977 (1) dt) wrn({A € MFz [ €:(A) <1}).
Ry

The above is equivalent to the first part of the Lemma.

To complete the proof, we should justify that the limit  — oo and the integral over the moduli spaces
can be exchanged. We will do so by dominated convergence. Let us denote

Az (R;0) ={c €Mz | ls(c) <RJ.
By [41, Proposition 3.6 and Theorem 3.3] we have
Az (R; 0) < Kz (o) RO9O+2,

Now we have

Bf(6gf6+2n) N;(p?jd)/ O') _ Bf(6gf6+2n) Z Z d) (eo(c)>

k>0 ceEMyx
Bk<lo (c)<P(k+1)

<Kelo)( X (e 190702 sup (910

>0 k<l<k+1
< Ke(0) (Y0 1)) sup 64204200
>0 00

The right hand side is bounded by the decay assumption (2.6). By Lemma 3.1, for any L € RY, the
right-hand side is integrable against the Weil-Petersson measure over My ,,(L). It is independent of 3,
so the conclusion follows by dominated convergence. O
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3.3 Definition of the Masur—Veech polynomials
We introduce the Masur—Veech polynomials, for any g, n > 0 such that 2g —2 4+ n > 0, by setting

fedl
VQIQ\IJ/{YL(LL ~-/Ln) = y G IAut r| /Er I | VQK f )eEE(V]/ (L?\)?\E/\(v)) IEEI eeee 721. (35)
gmn e€Er

These are polynomials in the variables (L2)T; of total degree 3g — 3 + n. Its terms of maximal total
degree come from the stable graph with a single vertex of genus g with n leaves; therefore coincide
with the Kontsevich volumes of the combinatorial moduli space VQI;/n (Lq,...,Ly). In order to evaluate
the sum over stable graphs, we need the following integral.

Lemma 3.3. The function fMV({) =

/ MYOE de = (2k + D12k + 2).
Ry
Proof. We compute

(2k + 1)1¢(2k + 2)

1 —t 4 2k+1 / —nt p2k+1
— t dt = negktlqg
Z n2k+2 /R Z R,

nz1 n>1

_ / - eiezilZ €2k+1 de :/ eg £2k+1 de.
Ry +— Ry -

O

Forn=0and g > 2, VQMB’ is a number, which can also be extracted from VQMV(Ll) as a particular
case of the following forrnula

Lemma 3.4. Forany g,n > 0 such that 2g — 2 +n > 0, we have the dilaton equation
[ ] VO (L, L) = (20— 24 1) VOMY (L, L),
where [%] extracts the coefficient of 5 & in the polynomial to its right. In particular, for g > 2 we have that
(L] vadlY (L) = (2g —2) VOl

Proof. We introduce
Gyn={(V)ITE€Ggn and veE Vr}

and the surjective map m: Ggni1 — Gg, which erase the (n + 1)-th leaf from the stable graph, but
records the information of the vertex v to which this leaf was incident. In general 7 is not injective, but
one can check that forany I' € Ggn, v € Vr and I" € 7 1(T',v), we have

|AutT| = |7 }(T",v)| [Aut T (3.6)
The dilaton equation for the 1 classes intersections yields, for 2h —2 + (k+1) >0
Sl vaK, (0. Ge) = 2h— 24 K) VOK, (0, ¢
[ 2 ] h_,k+1( I VERRW] k+1) ( + ) h,,k( 1re+s k)/

and this expression vanishes when 2h — 2 4 k = 0. Therefore

[ ml] V-O'g n+1“—1r Ln+1)
2h(v) —2 + k(v £, de
= Z W/Er H VQK w) () ecEw)s (LA )aenw)) H ﬁ,

(TVv)EGY Ry wevr ecEr
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where [ is any element of w1 (T",v), E(w) and A(w) are the sets of edges and leaves incident to w in the
graph I' (and not in ). Using (3.6) we deduce that

[%] VQI;/I,YL+1(L1/--~/I—11+1) = Z ( Z 2h(v) —2+k(v))

reGgn “VveVr
1 K £ dl
* TAutn| /]REr H VO () k(w) (Le) ecEw)s (L)aen ) H egee _21-
+ WEeVr eckrp
By Lemma 2.11, the sum of Euler characteristics at the vertices is 2g — 2 4+ n, hence the claim. O

3.4 Main result

In [15], V.D., Goujard, Zograf and Zorich obtained by combinatorial methods a formula for the Masur—
Veech volumes as a sum over stable graphs, exploiting the relation between Masur—Veech volumes and
lattice point counting in the moduli space of quadratic differentials. Our proof is different and relies
on ideas of the geometric recursion reviewed in Section 2. Our method gives access to more general
quantities, which we introduced under the name of Masur—Veech polynomials. We now prove that they
record the asymptotic growth of the number of multicurves on surfaces with large boundaries, after
integration against the Weil-Petersson measure. As a consequence of Lemma 3.2, we then show that the
Masur—Veech volumes arise as the constant term of the Masur—Veech polynomials, up to normalisation.

Let us denote ¢[¢p]: C[t™1] — C the linear operator sending t* to ck[¢] for k > 0, and t° to ¢(0) when
it exists. Recall the definition (3.2) of the rescaling operator pj.

Theorem 3.5. Let ¢ be an admissible test function admitting a Laplace representation
d(0) = / O(t) et dt
Ry

for a measurable function © such that t — |O(t)| is integrable on R. In particular, $(0) = limg_,o (€) exists.
Then, for any g,n > 0 such that 2g — 2 + n > 0, we have that

lim B~ 962N VN | (phd;La, -, Ln) = Cog6:2n[0] VO (0, ..., 0),

B—o0

lm B9~ 62 VNE (ks BLy, ..., BLn) = &[] (t~ 09702 VMY (t1,,.. ., tLy)),

B—o0
and the convergence is uniform for L; in any compact of R>.

Notice that the contribution of the test function factors out for finite boundary lengths. The assumption
that ¢ has a Laplace representation is not essential. It could be waived by an approximation argument,
if we had an integrable upper bound for the number of multicurves whose lengths belong to a segment
[BL;, BL2]. This is not currently available in the literature and we do not address this question here.

In particular, comparing the last formula of Lemma 3.1 with the second formula in Lemma 3.2, we
obtain

Corollary 3.6. Forany g,n > 0such that 2g—2+4n >0, VXgn(Li,...,Ln) = VQ%YL(O, ..., 0) is independent
of L1, ..., Ly € Ry, and the Masur—Veech volumes are
B 249-24n(4g — 4 4+ n)!

MV
MV = = oy Vom0, 0.

It would be interesting to provide an a priori explanation of why VXg ,, is independent of the boundary
lengths Ly, ..., Ly; for us it is merely the consequence of a computation.
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Proof of Theorem 3.5. We fix once and for all g and n such that 2g —2 + n > 0. In the admissibility
assumption, we will only use a weaker form of decay

sup (14 €)°97 221 (f)] < +oo, (3.7)
>0

with 6 = 1.

The Laplace representation of ¢ allows us to convert additive statistics into multiplicative statistics. We
are going to apply many times the Fubini-Tonelli and the dominated convergence theorems.

Admissibility implies convergence of the series

(pd;0) Zd)( ) Z/ e ttele)/Byy,
cEMs

ceEMsx yeﬂo c)

By Fubini-Tonelli theorem applied twice, we have

N{ (05 s 0) = /R O(NYP (o) dt, (3.8)
VN;,n(pzqmsLl,...,Ln):/ (1) VNYE(BLy, ..., BLy) dt, (3.9)
R

where

ZHe” ZHete

ceEMs yem(c ceMi yem(c

VN;(Ll,...,Ln):/M . )Ng,n(o)duwp(o),
gm 1 n

are now multiplicative statistics, to which we can apply the theory reviewed in Section 2.

For t > 0and n > 1, by Theorem 2.10 we have
VNYP(BLy, ..., BLy)

- / NY/8 (o) duwe(o)
qn(BLl BL )

¢, de
_ M e “te .10
-3 |Autr|/Er T VOMuiui (t)ecrin (Btahenw) TT Gaie 5 (3.10)
gmn r
(B/12Er v te de,
= ¥ e [ T VO (Bte/tecin (e BLy/thenw) TT o5
FeGgn + ovevr ecEr

This formula is also true for n = 0, as can be shown by returning to the computations proving Theo-
rem 2.10.

We remark that B’(69’6+2“)VN;{E (BLy,...,BLy) is a polynomial in t~! and B! of bounded degree.
We observe that

/ (1) dt = $(0),
Ry

which here is assumed to exist, while for k > 1

1 - A, _
/llhtkcp(t)dt/ﬂhq)(t) /}R+ T dedt = ck[d].

The assumptions on ¢ guarantee that cy [¢] are finite for all k > 0. Hence (3.9) is finite for a fixed 5 > 0.
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We now study the 3 — oo limit. For 3 > 1, we can bound the aforementioned polynomial by a f3-
independent polynomial in t ! and integrating the latter against ®(t)dt gives a finite result. Therefore,
by dominated convergence, we have

D(t) ( lim p—(69—6+2n) VN;{E(BLl,...,ﬁLn)) dt.

B—o0

lim B(69-6+20) YN (o5 i BLy, .., BLy) = /

B—ro0 Ry
Comparing Theorems 2.7 and 2.8 yields

Jim 2RI VO (B4 /., Bl/t) = £ 2OMPTIVOR, (6, ),
and the limit is uniform for ({1, ..., &, t!) in any compact of R];gl. Thus, uniformly for (Ly,..., Ly, t™1)
in any compact of R’;gl, we have that

lim B9~ VNG R (BLy, .., BLn)

B—o0

1 £, dt @3.11)
= 69 612n > /REF IT VOXa ko ((€)ecemy, (ttadreaw) T1 egec _el,

FreGgn + veVr ecEr

where we recognise the Masur—Veech polynomials introduced in Section 3.3. We arrive at

B—o0

lim [3469*6*2“)VNgn(pg;stl,...,stn):/ D(t) t~ C97 2 VOMY(tL,, ..., tLy) dt 512
' E, 3.12

= e[ (t b9 VOMV(tLy, .., tLy)).

Using finite boundary lengths L; instead of rescaling them by 3 amounts to replacing L; by L;/f in
(3.10), and by the aforementioned uniformity we then have

lim B9 VNG (545 Ly, Ln) = elo] (t~ 972N VAR (0, ..., 0)
P ’ ' (3.13)
= C6g—6+2n [d)] VQIE\]/{YL(O, . ,O)

This concludes the proof of the theorem. O

Proof of Theorem 1.1. The expression of the Masur—Veech polynomials in terms of stable graphs is ac-
tually our Definition 3.5. Note that this is not a circular argument: in the beginning of the paper we
stated that Masur—Veech polynomials have four different equivalent formulations, we then chose the
formulation in terms of stable graphs to be their definition, and we show in the rest of the paper that
the same polynomials are expressed in the remaining three formulations. Therefore, the only non-trivial
statement left to prove is the second part of the theorem, i.e. formula (1.5), which follows immediately
from Corollary 3.6. O

3.5 Expression via geometric and topological recursion

By comparison with Theorem 2.10, the structure of this formula implies that the Masur—Veech polyno-
mials satisfy the topological recursion.

Proposition 3.7 (Geometric recursion for Masur—Veech volumes). Let QMY be the GR amplitudes produced

24



by the initial data

AMV(Lll LZ/ L3) = 1/

1 1
e —1) +E<[L1—L2—ﬂ+—[—L1+L2—€]+—|—[L1+L2—ﬂ+),

BMY(Ly, 1, 0) =

1 1

MWL, e t) = =+ —
C (1// ) (ez—l)(eel—1)+l_1

L — -],

1 1 / / / (3.14)
+2L1<ee—1([h =0 —[-Li+0—0] + L1 +¢ €]+)
1 / / /
o (L= = = FL = e+ O+ [ =+ 2 ) ),
et —1
1
MV _ 1K
DT ((7) = DT(U) + Z m
YEST
Then, for any g > 0 and n > 1 such that 2g — 2 +n > 0, the Masur—Veech polynomials satisfy
VO (Ly, ..., Ly) :/ OYY duwe.
Mg,n (Lll"'lL'\ )
In particular, they are computed by the topological recursion (2.9). |
Notice that the notation VOMV is consistent with its use in (1.1). The above initial data is obtained by
twisting the Kontsevich initial data (2.4) by the function fMV(¢) = e@171 — it is admissible according to

Definition 2.1 with n = 1. The function Qg/f}’l is a non-trivial function on Tz, which is not equal to
the function Xy, from Lemma 3.1. For instance, we saw in Corollary 3.6 that VXg (Ly,..., L) does
not depend on Ly, ..., L, while VQZ{X (Ly,..., L) are non-trivial polynomials whose constant term is
VXgn-

Recall the decomposition

n
VoW (Ly,..., L) = > Fomldy o dnl [ ] oy
di+-+dn<3g—3+n i=1

By Section 2.7 we can give two equivalent forms of Proposition 3.7, in terms of the Fg ,’s. The first one
is the recursion of Theorem 1.2, of which we give a proof in the following. This recursion is spelled out
explicitly in Section 5.2.

Proof of Theorem 1.2. From the topological recursion in Proposition 3.7, it follows that the F ;,’s are com-
puted by the recursion (2.12), by twisting the Kontsevich initial data (2.13)-(2.14) with fMV(¢) = S ,{171,
that is, by

= ¢(2d; +2d; + 2)

o / (2d1+2d2+1 de (2d; 4 2d, + 1)!
wh = L R+ DI2dy + 1) et =1 (2d; + 1)!(2d, + 1)!

according to Lemma 3.3. O

The second equivalent form is the topological recursion a la Eynard-Orantin. Let us introduce the even
part of the Hurwitz zeta function, for k > 1

1 1 1
Noz)= 4= Y
l2kz) = o + 35 > (z+ m)2¥

mezZ*
and define the multidifferentials
mn
wym (21, 2n) = > Fonldy, ..., dn] Q) Cu(2di +2;2i) dzi.
di+---+dn<3g—3+n i=1
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Proposition 3.8. For g, > 0such that 2g—2+n > 0, the w (zl, .., zn ) are computed by Eynard—Orantin
topological recursion (2.18) for the spectral curve

1 2 ) dz; ® dz,

e=C,  xa=3,  yE--z ol -(; .

+ —
21 —22)%  sin®m(z1 — 20)

Proof. Recall the spectral curve (2.21) associated with the Kontsevich initial data. The effect of twisting

amounts to shifting wf,(z1,2) = ?Zzl@d’f according to (2.24). We compute, for Rez > 0

etz (z+m) 1
/Rehl “ede—Z/ mede = Zm. (3.15)

m>1 m>1

As the choice of signs in (2.24) is arbitrary, we can also take

1 1 1
MV
wyy (z1,22) <(21 my: + > m§>1 CEPEE + CErae m)2> z1 ®dz

_ < 1 2 ) dz; ® dzp

+
(z1 —22)%  sin®7(z1 — 20) 2

The sector of convergence for the integral (3.15) is irrelevant, as we only need the (well-defined) Taylor
expansion when z; — 0 to compute the wg . Finally, we compute the differential forms &4 defined in
(2.20) and which are used in Theorem 2.14 to decompose the w}'y:

&al(zo) dz 1 1
:R —_— — p—
dz ZSSZZ‘”Z zofz+2mz>lzofzfm+zo—z+m

_ 1l iy 1
Z%d+2 2 = (ZO + m)2d+2 (ZO _ m)2d+2

= (x(2d + 2; zp).

Forn =0and g > 2, Lemma 3.4 gives

1 Fgall]
mMv _ 1 Tga
VQgo = 2g—2 3

This agrees with the definition (2.19) of wg/{g by the following computation

1 : 1 z
MV o MV
(/ s Jaa(2) = 357 Res -
23
- Res — (u1(2d +2; F

_ 1 Fg,l[l]
2g—2 3 7

where we used that (;(2d + 2;z) = z~(24+2)dz + O(1) when z — 0, which implies that only the d = 1
term contributes to the residue. O

3.6 Equivalent expression in intersection theory

We can express Masur—Veech polynomials as a single integral over moduli space of curves of a certain
class, which involves boundary divisors. This is just another way of expressing the sum over stable
graphs (i.e. boundary strata of Mg ).

We first introduce some notations. Consider the set G4 of stable graphs of type (g,n). For every
I' € Ggn, we have the moduli space Mr and the maps &r and p:

Mr= [T Py, & T = Mgn, Py D = Mingu -
veEVr
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The image of &r is the boundary stratum associated to the graph I', while p,, is the projection on the
moduli space attached to the vertex v. We also define the map

o Er*
1= 2w
reGy
where Gf | is the set of stable graphs of type (g,n) with k edges. In other words, ) is a sum over

boundary divisors of Mg ,,. Further, denote by P, and 1, the cotangent classes at the nodes, so that it
makes sense to consider the push-forward by j of any monomial in {, and ..

Recall that the even zeta values are related to Bernoulli numbers by

m B2m+2 (27.[)2m+2

¢(2m+2) = (-1) Toemia)n

with B, = %, By = —%, etc.

Proposition 3.9. For 2g — 2 + n > 0, the Masur—Veech polynomials VQY'Y satisfy

1 ~ 12
VQIE\;{YL(Lllu-,Ln) = /ﬁ Z AutT| Erx H 5(—ﬂ)h—¢h/)exp< Z 2111)7\> (3.16)
ecEr

9 TeGgn e=(h,h’) -
for
N Bopi2 p
Ew) =) ()P SER P,
Z 2D +2
or equivalently
n L2
VO (L, ..., Ly) = /7 exp <Eg,n + Z ‘11)1> (3.17)
Mg,n =
for
Zgm = 1E (e — o) € H* (M), elw) = in (14 32 ).

k>1

Once the spectral curve for a certain enumerative geometric problem satisfying topological recursion
is known (here Proposition 3.8), one could apply Eynard’s formula [22, Theorem 3.1] to obtain such a
representation for wg/{\,{(zl, ...,2Zn), and thus the Masur—Veech polynomials. To be self-contained, we
prove the result by direct computation.

It would be interesting to obtain this formula by algebro-geometric methods. A first hint in this direction

would be to express =4 ,, in a more intrinsic way, as a characteristic class of a bundle over M ,,, maybe
obtained by push-forward from the moduli space of quadratic differentials.

Proof. We shall examine the contribution in Equation (3.5) of a given I' € G ., before integration over
the product of moduli spaces at the vertices. Given a decoration d: Hr — N, an edge e = (h,h’)
receives a weight (2dw, +2dn- +1)!¢(2dw +2dn- +2). We remark that it only depends on the total degree
D, = dn + dn’ associated to this edge. On the other hand, the contribution of the \ classes at the ends
of the edge is

Pn ()

2D € dh' dh/! '
Therefore, we can replace the sum over decorations of half-edges d: Hr — N by the sum over decora-
tions of edges D: Er — N, and attach to each edge a contribution of

(2D, +1)! {(2D, +2)
2D D!

B
() 7 = (272) 2 BB (—hn — )

27



In other words,

2
VO (L, L / > |Autr| H € wh—wh/)exp<zrgm)

Mgn e €Ggn (hh | AEAT

for

. B
_ 5 2)D+1 P2D+2 D
&u) DZ>O( S D2

This proves Equation (3.16). The equivalence between Equation (3.16) and Equation (3.17) is shown via
the following lemma. O

Lemma 3.10. Consider two formal power series € € C[x,y]®2 and T € Clu], T(w) = 3}, 5o tmu™, and
define the cohomology class

n

Ogn = exp(1.E (s, o)) exp(T(k)) [ [wit (3.18)

i=1

on Mg n, where T(K) = 3~ 5o tmkm. Then

@g,nzrz TARtTi Aum H EWnn) T exp(Tpix)) TT wi (3.19)

€Ggn ecEr veVr AEAT
—(hh/)

for & € C[x,y]®? defined by
~ 1 — e~ (xTy)&lxy)
Ex,y) = —— . (3.20)

Conversely, consider a class Og4 ,, given by Equation (3.19) for certain formal power series & € C[x,y]® and
T € C[u]. Then ©gr, can be expressed by Equation (3.18), for € defined as

1
X+y

Ex,y) = — In(1—(x+y)E(xy)). (3.21)
Proof. Firstly, notice that (3.20) and (3.21) make sense because (x +y) formally divide 1 — e~ (x*+Y)€(xy)
andIn (1—(x+vy )E(x,y )), respectively. Further, the contribution at the vertices follow from the projec-
tion formula and the relation
&F Km = Z Pf, Km,
veVr
while the legs contribution follows from the correspondence between legs of I' and markings. Com-
puting the edge contribution amounts to understand how to intersect push-forwards of classes via
boundary maps. Let (I', A) be a stable graph in G4 together with a decoration of each edge e of the
form
Al bn, ¥ns) € Clbn, k], e = (hh).

The associated class on My, is

I[I Atvndn).
eckEr
e=(h,h')

In general, for two decorated stable graphs (I'a,Aa) and (I's, Ag) in Gg, the intersection of the corre-
sponding classes is determined as follows: enumerate all decorated stable graphs (I', A) whose edges
are marked by A, B or both, in such a way that contracting all edges outside A yields (I'a,Aa) and
contracting all edges outside B yields (I's, Ag ). Notice that each edge e = (h, h’) that is marked by both
A and B corresponds to a boundary divisor in the Poincaré dual of both 'y and I. To such an edge is
therefore assigned a factor that is corresponding to its self-intersection, namely, the first Chern class of
the normal bundle N, (of the gluing morphism) associated to the edge e:

c1(Ne) = —bp — Y.

28



Summing up the push-forwards over these decorated graphs of the product over edges of the associated
decorations, represents the intersection of the classes associated to (T'a,Aa) and (I's, Ag).

Let us apply this general argument to our case, that is, to the class exp().€(s, Vo). Notice that
1+€(We, o) is a sum over stable graphs with a single edge, decorated by a factor of €. In the k-th term
of the exponential expansion, we have to consider the sum over stable graphs whose global decoration
involves exactly k factors of €, distributed in all possible ways on k edges counted with multiplicity
(me)e, taking into account the self-intersection of the edges with multiplicity m. > 1. This results for
each edge e = (h, h’) into the factor

Z 1 (_wh _ 1I)hl)‘mefl 8(Il)h Ibh’)me — 1- eXP(—N’h + wh’)e(wh/wh’))

me! b =&, brr). (3.22)

me>1

Therefore we obtain

E» * o
eXP(]*g(IP.,ll)o)) = Z ‘Al:t I—\‘ H 8(11)}1/11)}1’)-
Notice that the relation (3.22) can be inverted as (3.21). This concludes the proof of the lemma. O

4 Statistics of hyperbolic lengths for Siegel-Veech constants

4.1 Preliminaries

The area Siegel-Veech constant SV ;, of Q9 is a positive real number related to the asymptotic
number of flat cylinders of a generic quadratic differential. Given a quadratic differential ¢ € QMg n,
we define

1
Narealq, L) = Areald) ;q Area(c),
w(c)<L

where the sum is over flat cylinders ¢ of g whose width w(c) (or circumference) is less or equal to L and
Area refers to the total mass of the measure induced by the flat metric of q. By a theorem of Veech [50]
and Vorobets [51], the number

1 1
n = 31\, 19 areall, L)d \
Svgr Mvg,n 2 /Qlfmg,n i (q ) HMV(q)

exists and is independent of L > 0. It is called the (area) Siegel-Veech constant of QMg .

4.2 Goujard’s formula

Goujard showed in [29, Section 4.2, Corollary 1] how to compute SV , in terms of the Masur—Veech
volumes. Her result is in fact more general, as it deals with all strata of the moduli space of quadratic
differentials, while the present article is only concerned with the principal stratum.

Theorem 4.1. [29] For g,n > 0 such that 2g +n — 2 > 2, we have

SVgn - MVg
_ 1 (49—4+n)(4g—5+n)
~ 4 (6g—7+2n)(6g—8+2n) Mvgflfnﬂ @4.1)
1 n! (4g—4+n)! (6g1—54+2m11)!(6g2—5+21,)! ’
+ 8 Z nin,! (4g1—3+m1)!(4g2,—3+n,)! (6g—7+2n)! MV91,1+111 Mvgz,1+nz'
g1+9g2=g
ni+ny=n
|
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In [29] the contribution of MV{3 - MV, ,,_1 was written separately, but this term can be included in the
sum if we remark that MV 3 = 4 (see Section 5.3) and

@n-5)1 . Ten-4) 1

M—3) I n> Tn—2) 2

The structure of this formula becomes more transparent if we rewrite it in terms of the rescaled Masur—
Veech volumes that are sums over stable graphs

24972 (4g 4 4 )

— oMVio,...,0).
MVgn (6g —7+2n)! v 9'“(0’ 0)
Corollary 4.2. For g,n > 0 such that 2g + n —2 > 2, we have
1 1 n!
SVn - VOYNI0) = 1 (VO a0+ 1 3 val Vel 0). 62
gi+92 9
ni+ny

We can give an even more compact form to this relation, in terms of generating series. If we introduce

MV
- 1 x™ VQg,n(O)
X) = exp (Z h9 Z F W ’ (43)
g=>0 n>1
2g—2+n>0
then Corollary (4.2) is equivalent to
Corollary 4.3. We have that
nSVyn - VOMY (0 h202 ./
Zhg Z X71 > 6gf4+291,1 9 = % X/70@%0()' (4.4)
g=0 n>0 n. 7 fépﬁ (X)

2g—2+n>2

Proof. Let us write 25 (x) = exp (X ;5o h97" F4(x)). For a € C, we compute

h202 2,%(x)
2 (x)
=) h9(ad’Z 0x.Z, “O0xFg, (x
g ( sald+ et ) al ol )> (4.5)
920 g1+92=9
x™" n!
_ Zhg Z (chQg Lna2(0) + o Z n'ivg 11+nl(O) vVQ anz(O)),
g=>0 n>0 n! gitgz=g ' n,!
2g+n>0 ni+nz=n

where we noticed that the restriction 2g —2+n > 0 in (4.3) implies that there are no terms for 2g+n < 0
in (4.5). The relative factor of  between the two types of terms in (4.2) is reproduced by choosing o = 3,
and we need to multiply (4.5) by an overall factor of a J to reproduce the prefactor 1 in (4.2). The factors

of 7t also match since
6(g—1)—6+224+n)=691 —6+2(1+n)+6g —6+2(1+n;,) =6g—4+2n. (4.6)

They have been included so that the coefficients of h9x™ in the generating series are rational numbers.
O

The contributions in (4.2) correspond to the topology of surfaces obtained from I of genus g with n
boundaries after cutting along a simple closed curve. It is important to note that the (somewhat un-
usual) feature that separating curves receive an extra factor of a , which is reflected in the squareroot
in the right-hand side of (4.4). Such sums (without this relative factor of a %) can be obtained by dif-
ferentiating a sum over stable graphs with respect to the edge weight. Therefore, they also arise by
integrating over the moduli space derivatives of the statistics of hyperbolic lengths of multicurves with
respect to the test function. We make this precise in the next paragraphs.
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4.3 Derivatives of hyperbolic length statistics

We define two natural derivative statistics for which we are going to study the scaling limit. First, if
Yo € S§, we denote
1 ifyy is separating,
1(v0) = e
0 otherwise.

Let 1, ¢ be admissible test functions, and consider

NE(dw;0)= > > 27079t (v0)) - dLs(c)), (4.7)
CEMs yo€mo(c)
Sdwo)= )Y > 270%(k(vo) - d(Lelc —0)). (4.8)

cEMx yoemy(c)

Theorem 4.4. Assume that ) is bounded, { — ¢~1({) is integrable over R, and recall that co\p] = fR+ % P (€)
Assume that ¢ has a Laplace representation

¢ 0 :/R O(t) e tdt

for some measurable function © such that t — | (t)| is integrable over R.. For g,n > 0 such that 2g4+n—2 > 2
and fixed Ly, ..., L, > 0, we have

lim B (6g=6+2n) VN+(pB¢ ll') BI—ll sy BLn)

B—o0

— L eoleigl [t%gﬁ““)

1
: (vag“_an(o,o, LiesLn) + 5 > Va0 7)) Va0, ]2))],

g1+9g2=g
IlUIZ {L1,., L}

and

lim B (69—6+2n) VN+(pﬁ¢) II) Ll/ -'/L )

B—o0

1 1
= E Co [IM C6g—6+2n [(M (VQyV1,2+n(O) + E Z

g1+9g2=9g
ni+n;=n

MV
m'nz vaMy | (0) VQQZ,HM(O))

In particular, this last expression is independent of Ly, ..., L. Furthermore, replacing N with N gives the same
limits.

By comparison with Goujard’s formula (Corollary 4.2), we deduce that

Corollary 4.5. Under the assumptions of Theorem 4.4, for any fixed Ly, ..., Ly € RY, we have

VN+ (p* d)lll)/Lll '/L )
2 W= lim B .
lb]SVon = lim s o &Ly oo L)

The same equality holds if N in the numerator is replaced with N. |

The corollary gives a hyperbolic geometric interpretation of the area Siegel-Veech constant. However,
our proof is done by comparison of values from Goujard’s formula. It would be desirable to find a di-
rect and geometric proof of this identity, which would give a new proof of Goujard’s formula. The
derivative statistics of hyperbolic lengths N;n(d);ll); Ly, ..., L) is indeed reminiscent of the Siegel-
Veech transform. Via the Hubbard-Masur correspondence [32], the multicurve ¢ € My is associated to
a holomorphic quadratic differential q and the component v is the core curve of a cylinder of q. The
difficulty, however, lies in comparing hyperbolic and flat lengths.
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Proof of Theorem 4.4. The assumption 2g + n — 2 > 2 is made so that Mz does not only consist of the
empty multicurve. If we encode multicurves as a pair consisting of a primitive multicurve and integers
k remembering the multiplicity for each of its component, we have that

NEpbrbio)= Y Y 270 miye) bltalyo (ﬁlzm W), @9

ceEMs Yo€Emo(c) YEmM(c
m: (¢ )—)N*

since yp in (4.7) can be any of the m(yo) component of the multicurve.

As in the proof of Theorem 3.5, we rely on the Laplace representation for ¢
d() = / O(t) e tdt (4.10)
R

to convert additive statistics into multiplicative statistics. As their application is similar to the proof
of Theorem 3.5, we will silently use the Fubini-Tonelli and dominated convergence theorems at many
places — the estimates necessary for their application use that 1 is bounded and co[\p] exists.

The Laplace representation allows us to convert (4.9) into derivatives (with respect to the test function)
of multiplicative statistics, namely

(c)/P

R {s(v0)) e tlo
Ng(pﬁ‘b’q"“}_/ (Z 2 (7o) 1_e—tz c(v)/B) 11 1_e—tecm/rs)dt

ceME{ yoem(c) YET(c) (4.11)

:/R (1) 0o (NY B (1; o)) dit

where

bz 2P (s (y))
NEwio= ) ] G <1+2m>(1_e—tea(v)))

ceEMg yem(c)

is a polynomial of degree (3g — 3 4+ n) in the variable z. Integrating over the moduli space, we obtain a
sum over the topological types of primitive multicurves, that is, over stable graphs:

VNG (Wi Ly, .., L)
1 zY(Le)
N |AUtr|/EFH QM ) ((Le)ece ), (M)aenwm) H otle 1(1+2h(1 o tle ))E dee,

FEGq ecEr
(4.12)
where j. =1 if e is separating and j. = 0 otherwise. The coefficient of z in this sum reads
% Ntz(tb Ly,...,Ln))
_ M P(Le,) e e le dle
Z |AutF| /Er H VQ (E )eeE (L?\)AE/\ )meeodeeo el;! otle _1°
ety 0
(4.13)

Let Gé,n be the set of ordered pairs (T, eg) where I' € G4 and ey € Er. We introduce the map

|_| Gg1,1+n1 X G92,1+n2) i Gé ns
{(g1,J1),(g2,J2)}
g1+92=9g
JiUJ2={1,..n}

glu: (Ggl,n+2 (]

which consists in adding an edge between the two special leaves — the two first leaves in the connected
situation and the first leaf of each graph in the disconnected situation. This map is surjective, but not

32



necessarily injective. More precisely, if (T, e9) € Gg .., let us cut ey to create the stable graph I'" with n
labelled leaves and 2 unlabelled leaves. Let ar+ be equal to 2 if I' is invariant under the permutation of
the two unlabelled leaves, and ar: = 1 otherwise. If I'’ is disconnected, we must have ar: = 1 because
the two connected components can be distinguished by the subsets J; and ], of leaves of the initial
graph that they contain. Furthermore, the number of automorphisms of T" is the product of the number
of automorphism of its connected components. If I'" is connected, it must have genus g — 1. If ar» =1,
there are two distinct graphs in Gy_1n42, that differ by the labels of the two first leaves, which lead
to (T, ep) after application of glu. If ar. = 2, these two graphs are actually isomorphic. So, when I'" is
connected, we always have

2

ar: '

|g1u (T e0)| =
Finally, we notice that for (T, eo) € G ,, and Ie glu_1 (T', e0), we always have
|[AutT| = ar/ |Autf].
Partitioning the sum (4.13) according to the fibers of glu we obtain

az:O (VN:_[;’Zn (l-')/ Ly,..., Ln))

B P(lo) e
_/R+(1_et%)eodeo

1 M {o die
«{; ¥ ‘Aum / o T Va0t Lnenw) TT 25
reGgy 12+ ecEr
+1 § | | § / | | VO e ((€) 1 (L) )| | fe dle
2 |Autr | ecEy( AEA; (V) etle — 1 ’
(g1, ]1) (g2,J2)} i=1 VEVT, ecEr,
g1+g2=9g EGqJHI [

J‘l L’Iz:{l,...,‘n}

where E;(v) and A;(v) are the set of edges and leaves of I}, and if A is a special leaf we set L, = {;. We
stress that 7 in the last line comes from j., = 1. We recognise the sums over stable graphs

(. dl

t (T Ty — M €
VNh_,k(Lll .. '/Lk) - |Aut r| /EF H VQ e )eEE (LA)AE/\( ]) H etee — 1/
re ng ve ecEr

which already appeared in the proof of Theorem 3.5. We can replace the last sum over pairs with a sum
over ordered pairs up to multiplication by an extra factor of 3. All in all,

1 ? —te
a (VNtZ (1]) Ll/ .,, )) :E/R (;l)(_)eete)Z(VNg 1n+2(€ E,Ll,...,Ln)

1 (4.14)

t t
T 2 Z VN91,1+|]1\(E’ JUVN 92,1+|]2|(€’ 12))&“'
+ =
]1'—']2 {Lzlrm?[—n}

We multiply the boundary lengths by 3 and divide t by  in order to insert this formula in (4.12).

Notice that the quantity in parenthesis in (4.14) now contributes to an even polynomial in ¢, such that

the monomial (™ is a polynomial in (B/t), of top degree 6g — 6 + 2n — (2m + 2). We recall that the

B — oo leading behaviour of VN ;‘l/ f from (3.11) is expressed via the Masur—Veech polynomials VOYY.

Since e
lim B2 Yl)e

1 _

is finite for any m > 0, only the m = 0 terms will contribute in the leadmg 3 — oo behaviour of (4.12),
in which case (4.15) is equal to t 2 co[\p] which exist since { — £~ !(¢) is integrable. We arrive at the
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formula

lim B~1°97CVVNE | (ppd;W; BLy, ..., BLn)

B—o00
1
— 5 o] g1~ 1o0-er2)
1
(vag 1ni2(0,0,tLs, - ) o+ 5 > VQg{Ymh(o,Jl)vag@Yth(o,Jz)ﬂ,

g1+92=9g
JilJo={Ly,..,Ln}

which is the first desired formula. To obtain the second formula, we remark that all 3 — oo limits used
in the previous arguments are uniform for Ly, ..., L, in any compact of R>(. Hence

lim B9 CP2VVNY | (phd; ;L. .., L)

B—o00
1
— 1 ol el [t—%g—é”m
1
(vgg 1nr2(0) + 5 > VQg{Ylﬂl(O)VQg@YlHIZ(O))}
gi1+9g2=g

JiuJa={L1,....Ln}

The effect of ¢[¢] factors out to give ceg—642n[Pp] and the sum over the partition J; U Jo = {Ly,..., Ly}
yields binomial coefficients, hence the formula we sought for.

The statistics N are perhaps more natural. Their expression slightly differs from (4.11) by one factor
e /P less in front of \ — this factor was previously due to the contribution of yy to the total length that
was included before evaluating ¢. Namely, we have

N (01055 0) = /R (1) 9.0 (NYP* (; 0)) dt

with

bz 2P (Lo (y)) ette )
NEwo = ¥ T o (1 oo )

ceEME yem(c)

All the previous argument can be carried over, except that we use instead of (4.15) the limit

lim p2 / (&em“ d€:t—12 P(0)eem1dy,
Ry

B—o0 R 1— efte/ﬁ)z

which yields the same result. O

5 Computing Masur-Veech polynomials

The Masur-Veech polynomial VO}'Y has degree 6g — 6 + 2n. As explained in Section 2.7.1, we decom-
pose it as follows

VoMY (Ly,..., Ly) = > Fonldy,...,dn] [ (’7 (5.1)

dy,...,dn >0 j=1
di+-+dn<3g—3+n

In this section we drop the superscript MV on the Fy,’s as it will always refer to the coefficients of
(5.1). By symmetry, Fg, can be considered as a function on the set of partitions of size less or equal to
3g — 3 +n. It is convenient to give a name to the value of Fy  on partitions with a single row

Hgnldl =Fgnld,0,...,00 and  Hy[d] = Hgnldl.
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By convention, if some d; is negative or if 2g —2 +n < 0, we declare Fy,[dy,...,dn] = 0. We are
particularly interested in the Masur—Veech volumes which — up to normalisation — are the values of this
function on the empty partition:

219247 (4g — 4 4 n)!

MV, =
9n T T (6g — 7 + 2n)!

Hg,n[0]. (5.2)

In this section, we are going to illustrate some computations of Hg ,, that can be done with stable graphs
(Section 5.1), give explicitly the Virasoro constraints for the Fg;, (Theorem 1.2, detailed in Section 5.2)
and the recursion it implies for Hg—on (Section 5.3). These computations lead us to conjecture some
structural formulas for Masur—Veech volumes for fixed g but any n (Section 5.4). We study their conse-
quence for area Siegel-Veech constants in light of Goujard’s recursion (Section 5.5) and their behavior
when n — oo (Section 5.6).

5.1 Leading coefficients via stable graphs

We denote H ,[d] = Hgn[3g —3 + n — d] and consider low values of d. In other words, these are
the coefficients appearing in front of the terms of high(est) degrees in the Masur—Veech polynomial
VQI;’{YI(L, 0,...,0). They can be computed efficiently with the stable graph formula, or equivalently
with Equation (3.16). We give a few examples of such computations, starting from the expression

(6g—5+2n—24d)! p—(3g-3tn)+d

H* [d] =
onld = o3 ) 8
BZD+2 3g—3+n—d
> ) IT (D) =25 (—bn — ) )] ?
k>0TeGk |AutF| [ f(ehErrl') <D20 2D +2 2(d—k)
_ (6g —5+2n —2d)! 9—(3g—3+n)+2d 2d o
(3g—3+n-— d)!
B 34—
=T k| I (Bw )] e
k>0TeGk | Er D>0 2(d—k)

h,h')

where [ -]z extracts the component of cohomological degree 2k and we recall that G§ ,, is the set of
stable graphs with k edges.

5.1.1 Genus zero.

To compute the vertex weights, we will use the formula [52]

ms (n—3)!
/9;71 Hlb _5Zlmln 3d' d, 1

on {=1
which is a consequence of the string equation for 1 classes.
o d = 0. The computation of the integral is trivial and we have

(2n—5)! _3 (2n—5)!
HE[0) = —— s o)
n(0) 23(n—3)! Jam, . ¥ 2n—=3(n — 3)!
e d =1. The only contribution comes from the stable graph with one edge joining two genus zero
vertices (Figure 1). As the P} * carried by the first leaf saturates the dimension of the moduli space at
its incident vertex v, this edge must have degree 0 and receives a weight 52. Then, the contribution
from each vertex after integration is equal to 1. It remains to distribute the leaves labelled 2,...,n
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n—3
=

E n—1
w{l*‘l 2 2

Figure 1 - Stable graph contributing to H} [1].

between a first group of n — 3 which will be incident to v, and a second group of 2 which will be
incident to the second vertex. Hence

v Cn=7)1 (n—1)(n—2)
Halll = 2n—2(n —4)! 3 .

o d =2. We have to consider stable graphs with vertices of genus zero with 1 or 2 edges (for cohomo-

logical degree reasons the graph with no edges does not contribute). There are four cases (Figure 2).
la- Two vertices are connected by an edge, the extra 1 class lies on the same vertex as }]* . There
are (";1) ways to pick two leaves carried by the second vertex. The contribution of the first vertex

is fﬁo,nfl PP = n — 4, and the contribution of the second vertex is fﬁo,a 1 = 1. The edge

. . . B
contribution is %.

1b— Two vertices are connected by an edge, the first vertex carries {]' > and the extra P class lies on
the second vertex. There are (”;1) ways to pick three leaves to the second vertex. Both vertex

contributions are equal to 1, and the edge contribution is %.

2a- A central vertex carrying }]*  is connected to two other vertices carrying no 1 class. There are
(5 ;‘;15) ways to pick two leaves for each of the two non-central vertices. The contribution of

each vertex is 1, each edge contributes to a factor %2 and we get an extra factor of a 1 from the
automorphism of the graph (exchange of the two non-central vertices).

2b- There are three vertices connected by two edges and ] is carried by an extremal vertex. There
are n — 1 choices for the leaf on the central vertex, and (“;2) ways to pick the two leaves for the
second extremal vertex. The contribution of each vertex is 1, each edge contributes to a factor of

%, and there are no automorphisms.

Summing up all contributions we obtain:

sy (2n—9)! Byl n—1 n—1
Hal = o (9 (2 )+ (7))

“(3) Glints) ()

2n—9)! (m—1)(n—-2)(5n%+17n—120) ,

= n7(n_5)! 5760 T
5.1.2 Genus one
Here we will need the classical formula
by = (5.3)
o, 24 :

which is sufficient to compute Hj | [d] for d = 0,1. More general { classes intersections in genus one
would be necessary to push the stable graphs computations further. For instance, we will compute
below Hj | [2] using

n—1

B = (5.4)

ﬁl,n 4
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P

s o 305 wa Lo (%) -1)("?)

Figure 2 — Stable graphs contributing to H}, [2].

We present in Appendix A a closed formula for arbitrary genus one 1 classes intersections (including
(5.3) and (5.4)), which we prove in an elementary way using well-known facts, but for which we could
not find a reference.

e d = 0. The only stable graph contributing has a single vertex, and with (5.3) we obtain

HE (0] = 1 (2n+1)!
’ 24 2mnl!

e d =1. We have to consider the stable graphs with a single edge, which is either separating or non-
separating (Figure 3). This edge cannot carry 1 classes and its contribution is 2. In the separating case,
there is a vertex of genus one which carries the ]!, which is connected to a second vertex of genus
zero. There are (";1) ways to distribute the two leaves on the genus zero vertex. The contribution of
the genus zero vertex is 1 and the contribution of the genus one vertex is fﬁmq P! = L. In the
non-separating case, there is a single vertex, which has genus zero; its contribution is 1, and we have an
automorphism factor of  (exchange of the two ends of the edge). Hence

o n=2l Bagl 1 no
Hl,n[l]_2n72(n_1)!7[2 2 <2+24( 2 >)

2n—2)! (n*—3n+26) 2

T 2(m_1)! 576
n—1 n—3
PN A=

N[ —

B, By m—1\ 1
Pt 2 P! 2\ 2 )24
Figure 3 — Stable graphs contributing to Hj , [1]. The black vertices have genus zero and the green ones
have genus one.

e d = 2. We have to consider stable graphs with one or two edges (Figure 4). When there is a single

edge, its contribution is % as we have an extra 1 class to distribute at one of its ends. Four cases

appear.

la- There is one non-separating edge on a single vertex of genus zero. The extra 1 class is carried by
one extremity of the edge, forbidding non-trivial automorphisms. The contribution of the vertex

is fﬁo,nﬂ 11){1_211) = (n —1), and the contribution of the edge is @.
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1b-

lc—

1d -

The vertex carrying "2 has genus one and also carries the extra 1\ class. It is connected to a
genus zero vertex, which has two leaves and there are (" 1) ways to choose them. The contribu-
tion of the genus one vertex is fzm 1|){‘ 2 = T 2 using (5.4), the contribution of the genus zero
vertexis 1.

e vertex carryin 1 o as genus one an iS connecte O a genus zero vertex carryin e extra
Th t n—2h d ted t t the ext

1 class. We can pick the 3 leaves incident to the genus zero vertex in (“;1) ways. The contribution
of the genus one vertex is [oz W™ > = . while the contribution of the genus zero vertex is 1.

The vertex carrying "2 has genus zero and is connected to a genus one vertex carrying the extra
P class. The contribution of the genus zero vertex is 1 and the contribution of the genus one vertex

: _ 1
is Jon,, ¥ = 2

When there are two edges, each of them contributes by a factor of 22 and there is no extra 1 class.

2a-

2b-

2c—

2d-

2e—

The vertex carrying "2 has genus zero, is incident to a non-separating edge forming a loop,
and the second edge connects it to another vertex of genus zero. There are (™ 1) ways to choose
the two leaves on the second vertex. The loop is responsible for a symmetry factor of a 1, and the
contribution of both vertices is 1.

The vertex carrying "2 has genus zero and is connected to another vertex of genus zero which
carries a loop. The latter yields a symmetry factor of a 3 and the contribution of both vertices is 1.

The vertex carrying ' 2 has genus zero and is connected to another vertex of genus zero by two
edges. To the second vertex should be assigned a leaf and this can be done in (n — 1) ways. There
is a symmetry factor of a § for the exchange of the two edges, and the contribution of both vertices
is 1.

The vertex carrying " has genus one, it is connected to a vertex of genus zero with one leaf,
which itself is connected to another vertex of genus zero with 2 leaves. There are (n —1)(" _2)
ways to assign the leaves. The contribution from the genus one vertex is fﬁl Ut 2= L and
the contribution of the genus zero vertices is 1.

There are three vertices, the central one has genus one and carries "2, the extremal ones have
genus zero and carry two leaves each. There are (2; ! 5) ways to assign the leaves but there is
a symmetry factor of a 1 for the exchange of the two extremal vertices. The contribution of the
genus one vertex is fﬁl, P72 = L and the contribution of the genus zero vertices is 1.

Summing all contributions, we obtain

*

5.2

2l = (2n—3)! f (B 2 n—1 +1+n— +n—1 n—=2) 11( n-1
T ond(m—2)! 2 2 2 24 2 242\2,2,n—5
B 4| —2(n-1), 1
Slin-1 —
e () T
5n +2n% 4 127n% + 1162n — 768 -y
138240

Virasoro constraints

In this paragraph, we write down explicitly the recursion of Theorem 1.2 for the coefficients of the
Masur—Veech polynomials. It is obtained by inserting the Kontsevich initial data (2.13)-(2.14) and the
twist Uy p given by Theorem 1.2 into the general formula (2.16) and recursion (2.12). It is equivalent
to Virasoro constraints, obtained (see e.g. [10]) by conjugation of the Virasoro constraints for 1 classes
intersections, with the operator

h (2a +2b 4+ 1)1(2a + 2b +2)
Z = Ua,b axaaxb

u_e"p( tab = 2a+1)(2b+1)!

a,b>0
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Figure 4 — Stable graphs contributing to Hj | [2]. The black vertices have genus zero and the green ones
have genus one.

BASE CASES — When 2g —2 +n = 1 we have

(2 1
Fosldi, da, ds] = d4,,d,,d5,0, Fi1ld] =840 % + 84,1 3

We assume 2g + n — 2 > 2 in what follows.

STRING EQUATION —

Fg,n[ol d2/- s dn] = Fg,n—l [d2/~ s di - 1/' 7 dn] + 6di,0 Z C(za + Z)Fg,n—l(a/ d2/' M4 a\-i/' M4 dn))

a>0

+

N = o
S EMe
7 N\

WV

( (2a +2b +4)!
o \(

2a+2)!(2b +2)! ((2a+2b+4) + ((2a +2)5(2b + 2)>

b

X (Fgl,n+1 la,b,dy, ..., dn] + Z Froisiyila, JIFns 1457 [b, ]/])
h+h'=g
JuJ’'={da,...,.dn}
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DILATON EQUATION —

n
1 (2a +2b +2)!1{(2a + 2b + 2)
Fonll do,..., dn] = (Z(zdﬁlJ)Fgm1[dz,...,dn] +5 >
— 2 &=, (2a+1)!(2b + 1)!
!/
X (Fgl,nJrl[a/b/ dZI'--/dn] + Z Fh,l_H”[Cl, ”Fh’,]+|]’\[brl })

h+h’=g
JuJ'={da,....dn}
For d; > 2

n

Fg,n[dll" '/dn] = Z(Zdl + 1)Fg,n71[d1 + di - l/ d2/" '/d/'\i/" '/dn]

i=2
1 (2a +2b +3—2d;)!¢(2a + 2b + 4 — 2d;)
50 o+ 8aza,
+abZ>O(2 w2 ¥ Sezdin (2b+1)!(2a + 2 —2d;)!

X (Fgl,n+1[a, b,dy, ..., dn] + Z Froitipila, JIFns 14457, ]’])
h+h'=g
JuJ’={dz,...,dn}
In genus zero, the string equation (i.e. the first member of the Virasoro constraints) gives a recursion
which uniquely determines all Fo,[ds, ..., dn]. Indeed, this number could be non-zero only when d; +
-+ -+ dn < n—3, which implies that at least 3 of the d;’s are zero. By symmetry we can take one of these
zeroes to be d;, and apply the string equation.

5.3 Recursion for genus zero, one row

If we specialise the Virasoro constraints to g = 0 and d, = --- = d,, = 0, we obtain a recursion for the
H,.[d] = Fonld,O,...,0l.

Corollary 5.1. We have that

Hal0] = 8n3+ (n—1) ) ¢(2a+2)Hn 1la]
a0
1 m—1)! [(2a+2b+4)1¢(2a+2b+4)
( (2a +2)!(2b +2)!

+C(2a+2)¢(2b + 2)> HijlalHn—j[b],

1 (n—1)! (2a+2b+2)!¢(2a+2b+2)
2 lm—1—j) (2a+1)!(2b + 1)!

HiyjlalHn—5[b]

and for d > 2

(n—1)!

Holdl = (m—DHpald=1+ > e —

2<j<n -3
a,b>0

(2a+2b +3—2d)1¢(2a + 2b + 4 — 2d)
(2b +1)!(2a +2—2d)!

1
X (25a+b,d—2 +0aza-1 >H1+j [a]H,—5[b].

The last equation could also be written so as to give symmetric roles to a and b in the last term, and it
is then easy to see that it is also valid for d = 1. This recursion determines uniquely the H[d], and a
fortiori the genus zero Masur—Veech volumes

2" 2(n —4)!

MVor = = =71

H,, [0].

40



We have not been able — even using generating series — to solve this recursion. It can however be used
to generate efficiently the numbers H,, [d].

From intersection theory on the moduli space of quadratic differentials, a closed formula is known for
area Siegel-Veech constants in genus zero [19] and then the Masur—Veech volumes in genus zero [5].

Theorem 5.2. We have that

MVo, = 235 n gy, — M2
’ ’ 612

In fact, using Goujard’s formula® (Theorem 4.1), it is easy to see that the formula for SV;,, and the
formula for MV, ,, are equivalent. If one could guess a closed formula for the Hy[d], it should be
possible to check that it satisfies the recursion of Corollary 5.1, and by uniqueness deduce a new proof
of Theorem 5.2.

Based on numerical data, we can guess the shape of a formula for fixed d but all n.
Conjecture 5.3. For each d > 0, there exists a polynomial P4 of degree d with rational coefficients such that

(2d+1) Pa(m) 2m—3—d)! >ns-a)

Hnld] = 2d— 1) 2(n—3—d) (n—3—4d)!

(5.5)

The formula for d = 0 uses the convention (—1)!! = 1. Equivalently, there exists Pq € QI[x] such that

n—1
H(x;d) = Z ﬂzl(_]llgdjd) (T)E_ i [ﬁd(x)(l —X)3/2}

n>d+3

>d+2

where [ - 1> a42 means that we only keep monomials of degree greater than d + 2.

The formula is true for d = 0 with Py(n) = 1 according to Theorem 5.2. For low values of d, we can
find polynomials P4(n) interpolating the values Hq3[d], ..., H2443[d] (see Table 5). Formula (5.5) then
gives the correct values H,,[d] for the n > 2d + 3 that appear in Table 11.

5.4 Conjectures for Masur-Veech volumes with fixed g

For fixed g, the number of a priori non-zero coefficients Fy,[d1, ..., dn] grows faster than any polyno-
mial in n, and the Virasoro constraint determines them by induction on 2g — 2 + 1. If one is interested
primarily in obtaining F4 [0, ..., 0], there is a more efficient way to use the Virasoro constraints.

In genus zero, we already saw that it implies recursion for the values of Fy ., on partitions with one row.
More generally, if k > 0 and we specialise dx+1 = -+ = dn, = 0, we also get a recursion expressing
the values of Fg,, on partitions with at most k rows, in terms of the values of Fy,/ for n’ < n on
partitions with at most k rows. The same specialisation in genus g > 0 expresses the values of Fy
on partitions with at most k rows in terms of the values of F4/ ,, on partitions with at most k rows for
29’ —24n’ <2g—2+mn, and the values of Fy_; 1 on partitions with at most k + 1 rows. In this way,
reaching Fy ,[0,...,0] only requires the computation of a number of values of the F, ,’s which grows
polynomially with n.

Based on numerical data, we could guess general formulas for MV , for low values of g but all n. We
start by defining the generating series

Hg (0]
Hy(x) = 7-(69976+2n

n>l1

Xn
F + 69/0 JZ{(X) (56)

2The reader looking at Theorem 4.1 may think that to derive a formula for M Vj ,, from the knowledge of SVy,, one also
needs the data of M V(3. Actually, in the literature M V{3 is ill-defined, while for us, in the context of statistics of length of
multicurves, it makes perfect sense and is equal to 4. In the formulation of her result [29], Goujard wrote separately the terms
that we included as contributions of (0,3) in Theorem 4.1. Therefore the extra value of M V(3 = 4 can be seen as a convention
and the two formulas for SV, and MV, are indeed equivalent.

41



d Pd(n)

0|1

1 | n—3

512 — 34n + 52

2(32n3 — 367n% + 1307n — 1392)

%(4138714 — 70496n> 4 41996912 — 1002721n + 751506)

N G| =] W[ N

L(1766m° — 41536n* + 365383n° — 1459754n> + 2493951n — 1221210)
35(6377776m° — 197270496n° + 2385358645n* — 14079371820n° + 40768140229n>
—48501218874n + 9190581840)

7 % (52783968n7 — 2073237920n° + 32861488488n° — 2667675481251 + 1152274787382n3
—2422330473875n2 + 1627352271762n + 713960984880)

8 55—6 (3504015400n® — 170178415232n7 + 3416784683368n° — 36378043869776n° + 217683482202865n*

—701967732545618n3 + 976060154881647n? + 86564417888466n — 937368548035920)

Table 5 — Polynomials appearing in Conjecture 5.3 for Hy, [d].

where we allow for a conventional choice of a quadratic polynomial &7 (x). Theorem 5.2 implies that we
can take

—(1—x)%? M(x):i—éx+x2

15 ’ 15 3

where the role of &7 (x) is to cancel the coefficients of x°,x!,x? in the expansion of ./%(x), since they do
not correspond to Masur—Veech volumes. The MAPLE command guessgf recognises that the values of
Hi,1[0] that we have computed for n =1, ...,20 match with the expansion of

_ln\/l—x _ VvV1—x +l
12 12 12°

Hy(x) =—

S (x) =
It suggests that, for g > 2, J7;(x) could be a polynomial of degree 5(g — 1) in the variable (1 — x)~1/2
with rational coefficients. Although the command guessgf fails for g > 2, we are on good tracks. If we
attempt to match this ansatz for g = 2 and 3 with the data of Table 13, we discover that this polynomial
has valuation 4(g — 1). This leads us to guess that the generating series we look for may have the form

_Iny
12
where Qg is a polynomial of degree g with rational coefficients. We then determine the polynomials Q4

such that (5.7) reproduces correctly the values Hgy ,[0] for n < g + 1, and checked that they predict the
correct values Hg ., [0] for higher n that we computed in Table 11 with the recursion of Section 5.2.

Hy(x) = 81 +Y° 179 Qqly)  with  y=v1-x (5.7)

Empirically, we recognise the top coefficients of these polynomials
coeff of y9 in Qq4(y) =229 (4g —7)!!by (5.8)
where by = (21729 —1)(—1)9 % are the coefficients of expansion in

z/2
sin(z/2) Z by 2.

g=0
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g | Qgly)

0 | -

1| —5y+5

2 | %Y+ maY + o

3 | sy’ + mea¥  ieesY Tt e

4 52411%8094 + 8824572316093 + 1726%35;2092 + 26857482508y + 73232320

5 301696;9388895 + 311485974298094 + 5%2%%1093 + 1%;%?5;4142 + 53;%?3;613 + 81439%1465556

6 67232%}18?2096 + 181573423563830095 + 1592522022()9%739535120y4 + 8246993240:586101‘}3
+igrsssY. Tt ToatenieY T T5siess6o60

Table 6 — Conjectural generating series for Masur—Veech polynomials.

Equation (5.8) is also valid for g = 0 and g = 1, if we use the values (—7)!! = —1—75 and (—3)!! = —1 given

by the analytic continuation of the double factorial via the Gamma function, and if g > 2 we discard
the coefficients of x°, x! and x2.

Returning to the coefficients of the generating series and then to the Masur—Veech volumes (5.2), Equa-
tion (5.7) is equivalent to the following structure for the Masur—Veech volumes. Let us first define

1
Yk—4k k)

Conjecture 5.4. For any g > 0, there exist polynomials pg4, qq € Q] of degrees

_J lg—1)/2] ifg>0 B
degpg - { — 00 if g= 0 and deg g = LQ/ZJ
such that, for anyn > 0,
MVgn n(2g—3+n)!(4g—4+n)!
g 6o = 2 (69—7+ 2n)! (Pg(n) +V2g-34n qg(n)). (5.9)

For g = 0, formula (5.9) agrees with Theorem 5.2 if we choose pp(n) = 0 and qo(n) = %. Up to genus
5, the conjecture is numerically true in the range of Table 11 for the following choice of polynomials
(which can be deduced from Table 6).

5.5 Conjectures for area Siegel-Veech with fixed g

Area Siegel-Veech constants SV, can be computed from Masur-Veech volumes thanks to Goujard’s
formula, see Section 4.2. The correspondence between the notations of Section 4.2 and the present one
is Fg(x) = Hy(x) — 64047 (x). If we insert the conjectural formulas for the Masur—Veech volumes, we
can obtain conjectural formulas for the area Siegel-Veech constants.

Corollary 5.5. Assuming Conjecture 5.4, for any g > 0, there exist polynomials pg, qg € Q[n] with degrees

« _ f llg+3)/2] ifg>0
degpg{ —0 if g=0
such that, for any n > 0 such that 2g —2+n > 2

SVan MVgn _ ,n (29—3+n)!(4g—4+n)! pgy(n)
még—8+am (6g —7 +2n)! 2g—-3+n

and degqy =1+ g/2]

+ Y2gf3+n qz (Tl)) ’
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g | pg(n) qg(n)

010 i

15 §

2 | 2 Bn+%

3 %n + 101 %n + gg%

4 | 25N+ i s+ S + 39630

5 | g™ + iemeren™ T Gesass0 Togsss ™t Gseszorsre ™ + Saeaomas

6 50406613 112 | 11411443987, | 61888029881 2562397434368 13 | 185272085982144,.2 | 900828325822789%6 1) | 1636294928657
3325639680 27713664000 26453952000 | 352859220016875 640374140030625 2470014540118125 110827591875

Table 7 — Polynomials conjecturally appearing in the Masur—Veech volumes.

or equivalently
pg(n) + *(n)
1 29—3+n Y2g-3+n qgN

us pg(n) + Y2g—3+n qg(n) ’

The expression of the polynomials is displayed in Table 8: it is deduced, after computation of the sums

SVyn =

(4.1), from Table 7. For g = 0 the conjecture matches with Theorem 5.2 with p; = 0 and q} = %2.
* *
g | pgn) qg(n)
n+>5
010 T
1.2 1 1
1 N N N+ 1
5 24 20 811 14 2 35 329
2 | g™+ M 1080 0™ — 3t 5
245 3 143 2 , 355 11861 892 2 | 52907 69617
3 | 5™ — 7™ Tt o 355151 1 51030 T 18255
1757 3 | 14282892 , 514241 4368611 503264 3 322892 _2 | 480686827 14820167
4 | 13906™ T 3299200 T+ T29600™ T 55500 70366725 Y 164189025 " T 1970268300 '* T 2592700
38213 4 | 867413 113 35399723 0
5 20155392 50388480 3527193600 41816032 n3 4 48489191848 n2 + 1269997838947n 4 957632944
3588702975 125604604125 251209208250 44778825
| 124054303, | 128194553
55112400 10497600
50406613 1.4 | 63937638461 |13 | 8797861897271 2 1281198717184 .4 | 9317074320854 .3 | 6702081021375716 1,2
6 | 19953838080 198845952000 3491921664000 1058577660050625 51870305342480625 51870305342480625
7511464839971 1 | 1021213098113 | 302389725584280713 ||, 1719710639461433
317447424000 123451776000 103740610684961250 79130900598750

Table 8 — Polynomials conjecturally appearing in the numerator of SV ;..

Proof. We already mentioned that an equivalent form of Conjecture 5.4 is

Hg(x)=)_

n>0

x" Hgnl0]
n! qbg—6+2n

In _
I 0

We recall from Table 6 that Qo(y) = —% and Qi(y) = 1%29 Therefore

Ox Hg(x) = 93759 Qgi1(y),

0 Ay (x) =

y' 79 Qqaly),

44

y=v1l—x

I (x)0xH(x) = y* %9 Qq125(y)

(5.10)



where Qg;; are polynomials of degree g with rational coefficients:

¥ if g=0
Qgaly) =<¢ ¥ ifg=1

%(Q_UQQ(U)—%QQ(H) ifg>2

—% ifg=0
Qgaly) = B2 ifg=1

2(9—1)(59—3)Qq(y) + (9 —109)Q4 (y) + Y*QU(y)  ifg>2

Qg+23(y) = 2(% _92) Qgaly).

With 74 (x) = 5 (x) — 84,047 (x), we recall from the proof of Corollary 4.3 that

SV - Hgn[0] X™
Sox)= ) I S

0xFg, (x) - axﬁgz(x)).

g1+92=9g

From (5.10) we deduce for any g > 0 the existence of Rgy3 € Qg[y] such that .74 (x) = y> 9 Rg.35(y),

thatis
g+3

Tg,k
SQ(X) = Z (1— X)ggf3+k/2 (5'11)
k=0

for some rational numbers 1y € Q. For g > 2, (5.11) contains only negative powers of y = v/1 —x.
From the expansions

1 (b+n)! x™
(1_x)b+ > bl !’
n>0
1 ¢« bl (2b+2n)! (x/4)"
(1—x)p772 = & 200 (o+n)

it easily follows that

(4g—6+2n)!
429-3+n(2g — 3 4+ n)

SVg,n Hg,n 0] = (29 —4+n)! ﬁ; (n) + ' qz (m)

for some polynomials py and §g with rational coefficients and degrees as announced. Multiplying by
the prefactor of Equation (5.2) yields the claim, with polynomials py and qj differing from pg and g
by prefactors that only depend on g. The cases g = 0 and g = 1 can be treated separately, with the same
conclusion. O

5.6 Conjectural asymptotics for fixed g and large n

Let us examine the asymptotics when n — oo assuming the conjectural formulas for Masur—Veech
volumes and area Siegel-Veech constants. Since v ~ (7tk) /2 when k — oo, we obtain when n — co

0 if g is even
_n—m 6g—6+2n+e(g)/2.,9/2 g
MVgn~2""m nd’ < mg, e(g) = { 1 if gis odd ’ (5.12)

where 26977my € Q is the top coefficient of qg4 if g is even and the top coefficient of pg if g is odd,
see Table 9. We observe that the coefficients which we could recognise in (5.8) are not relevant in this
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g Mg Sg
0 32 0
1
1 1 6
7 225
2 080 3
3 245 171264
7962624 8575
4 37079 24227775
96074035200 2712064
5 38213 85639233536
28179280429056 2322395075
6 5004682489 19363429564990875
369999709488414720000 1311947486396416

Table 9 — Constants in the conjectural asymptotics of MV, and SV .

leading asymptotics, as they rather appear proportional to the constant term in pg or q4. For the area
Siegel-Veech constants, we find when n — co

_n+5-—5¢g Sg

-1
SVgn = = S/arelaIni/ +0(n), (5.13)
where sy € Q are given in Table 9 for g < 5.
By [19, Theorem 2] we have that
i n+5-5
T SVan = e+ AL (5.14)

where AJ , are the sum of the g Lyapunov exponents of the Hodge bundle along the Teichmiiller flow
on the moduli space of area one quadratic differentials Q'0g .. In particular AJ . € [0, g] and we can
observe the coincidence of the main term in (5.13) and (5.14). Based on extensive numerical experi-
ments, Fougeron [27] conjectured that for each g we have /\g,n =0(MmY2)asn — co. The conjectural
asymptotics (5.13) provides a refined version of Fougeron’s conjecture.

We notice that the power of 7t appearing in the asymptotics depends on the parity of g. Both for MV
and SV .., we have an all-order asymptotic expansion in powers of n~1/2 beyond the leading terms
(5.12)-(5.13).

5.7 Conjectures for H; ,,[d]
We can generate the numbers H; ,[d] in the following way (see Tables 15-16).
(i) We record the H[d] = Fo[d,0,...,0] computed in Section 5.3.

(ii) The specialisation of the Virasoro constraints to genus zero and dz = - -- = d,, = 0 gives a recur-
sion (on the variable n) for Fo,[d;, d2,0, ..., 0] using (i) as input.

(iii) The specialisation of the Virasoro constraints to genusoneand d, = - - - = d,, = 0 gives a recursion
(on the variable n) for Hy ,,[d] = F1»,[d,0,...,0] using (i) and (ii) as input.

Notice that obtaining Hj ,,[d] requires from (ii) the knowledge of Fom[di, d2,0, ..., 0] for arbitrary d;, do
(they can be non-zero only for d; + d, < m —3) and m < n + 1, and from (i) the knowledge of H,,/[d]
for arbitrary d < m—3and n’ < n.

The data we have generated leads us to propose the ansatz, forn > d +1

Hinld =242 (n—1-a)!(pa(n—1)--- (" —d) + Yn_1_aTa(n)) (5.15)
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d | pa | Ra(n)

0| & |5

1 Il in-1

2| B | A0 -Fnt+

3 | EZnd—2n24 Bn 4 18

4| 5% | Bont S+ G+ S — B0

5 | B | B T A — T — T

Table 10 — Parameters of the conjectural formula (5.15) for Hy  [d] with d < 5.

for some rational constant py and some polynomial r4(n) of degree d with rational coefficients. This
formula makes sense even though the arguments of the factorials can be negative. Indeed, the first term
yields (n —1)!p4, while for the second term, if k is a negative integer, we use

i iy — g F2MED 1 (1)
g Y = I Tt 1) 2 2k+ 1)

We wrote (5.15) in this form to stress the analogy with (5.9). Equation (5.15) for d = 0 indeed matches
(5.9) with the values 19 = q; = ¢ and py = p; = £ already found in Table 7.

For a fixed value of d € {0,1,2,3,4,5}, we have determined Rq and pq (Table 10) by matching the
values of Hy g+1[d], Hia42[d], ..., Haa42[d] and we checked that (5.15) predicts the correct values for
2d 42 < n < 14. We observed that formula (5.15) does not give the correct value for n = d. However,

for this particular case, we prove in Section 5.1.2 that Hy n [n] = 5 (2;“:11!)! using stable graphs.

6 Topological recursion for counting of square-tiled surfaces

In [15], Formula (1.5) in Theorem 1.1 for Masur—Veech volumes was derived using the asymptotics of
the count of square-tiled surfaces. In this section, we introduce square-tiled surfaces with boundary
and their associated generating series. We first show that Masur-Veech polynomials can be seen as
certain asymptotics of square-tiled surface counting. Next, we show that the generating series of square-
tiled surfaces satisfy a topological recursion, and that the topological recursion for the Masur-Veech
polynomials derives from it by taking limits.

6.1 Reminder on the number of ribbon graphs

For g,n > Osuch that2g —2+n > O0and Ly,...,Ly € Zy, let Pyn(Ly,..., L) be the number of
integral points in the combinatorial moduli space M%‘jﬁ‘b (Ly,...,Ln). Thenumbers Py (Ly,..., L) have
been extensively studied [13, 12, 11, 45] and admits several equivalent definitions: it is the number of
ribbon graphs of genus g with n labeled faces of perimeter Ly, ..., Ly; it is the number of maps without
internal faces and n labeled (unrooted) boundaries; it is the coefficient of N>~29~™ in the cumulant
(TrMb ... Tr MEn) . where M is drawn from the Gaussian Unitary Ensemble of Hermitian matrices of
size N. The function Py (Ly,..., L) is a quasi-polynomial of Ly, ..., L,,. More precisely, it vanishes if
the sum of the L; is odd and for each fixed even integer k the function Py (Ly,..., L) restricted to the
set of integral (Ly, ..., L) with exactly k odd terms coincide with a polynomial. It can be obtained by
topological recursion in the following way, either directly with respect to the lengths in the style of (2.9),
or via generating series in the style of Eynard-Orantin.
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For a function f: R¥ — R, we denote

f if x1,...,xx € Z d € 27,
(X x) = (x) ifxq : Xk cand xq + - -+ Xk 6.1)
0 otherwise.
Theorem 6.1. [44] For X € {A, B, C} we set X¥ = XX in terms of the Kontsevich initial data of (2.4), and
L34
VDP(Ly) = L —.
(L1) 13

The topological recursion formula (2.9), with initial data (AT, BY, C¥, VDY) and integrals replaced by sums over
positive integers, computes VOP(Ly,...,Ly) = Pgn(Ly, ..., Ly). |

In other words, we can use the functions (AX, B, CX) in the recursion, but replace the integrals over R .
by summations over integers satisfying the parity condition coming from (6.1).

Theorem 6.2. [45] Let wy ,, be the output of Eynard—Orantin topological recursion for the spectral curve

dz; ® dzp

e =P, x(z) =z+ o y(z) = —z, wgz(zl,zz) = ) (6.2)
For2g—2+mn >0, we have wgn € ¥*™ and forany Ly,..., Ly >0
Li
Pon(Li..,Ln) = (—1)" Res - Res @l (zi,...,20) 1_{ ZL . 6.3)
|

If Pgn(Ly,...,Ly) are interpreted in terms of coefficient of expansion of cumulants in the GUE, this
result dates back to [21].

The asymptotics of Py (L) for large boundary lengths can be identified with the Kontsevich polynomial
appearing in Theorem 2.8, up to a normalisation constant. To be precise, if k € {0,...,n} is even, we
let Pg}l(l_l, ..., Ln) be the polynomial function coinciding with Py (Ly,...,Ly) when Ly, ..., L are odd
and Lxq,...,L, are even.

Theorem 6.3. [44] For2g —2 +n > 0and k € {0,...,n} an even integer, we have for T a positive even integer

PIU(TLy, ..., TLy)

Tég—6+2n

=2- 2973V (L., L)+ O(1/T),

where the O(1/T) is a polynomial in the L;s. |

6.2 Square-tiled surfaces with boundaries and Masur-Veech polynomials

Let us fix g and n so that 2g —2 4+ n > 0 and a tuple (Ly, ..., L) of positive real numbers. We consider
the moduli space Qg (Ly,..., L) of tuples (X, p1,...,Ppn, q) where

¢ X is a compact Riemann surface of genus g,
® pi,..., pn are distinct points on X,

® (is a meromorphic quadratic differential on X, holomorphic on X \ {p1, ..., pn} and with double

poles at p; with residues
1 L

= — iill

2im /Vj va 2im

where v;j is a loop around p;. The residue is only defined up to sign corresponding to the choice
of a square root of q.
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The quadratic differential q induces a flat metric on X\{p1, ..., pn} with conical singularities at the zeros
of q. The geometry of the flat metric in a neighbourhood of each pole is a semi-infinite cylinder with
periodic horizontal trajectories (the point p; itself is at infinite distance from the rest of the surface). For
each pole, there is a maximal such semi-infinite cylinder that avoids the zeros of q. We call the convex-
core of (X, p1,...,Pn, q) the surface obtained by removing the union of the maximal open semi-infinite
cylinders around each pole. The convex-core with the metric induced from q is still a flat metric and has
n horizontal boundaries of lengths respectively Ly, ..., L, which is the union of saddle connections (i.e.
straight line segments joining zeros of q) bounding the maximal half-infinite cylinder around respec-
tively p1, ..., pn. The core area of (X,p1,...,pn, q) denoted CoreArea(X, p1,...,Pn,q) is the area of the
convex core of (X, pi,...,Pn, q). It is a non-negative real number, which is in particular finite contrarily
to the area of X\ {p1,...,pn}

The space Qg n(Ly, ..., L) admits a stratification with respect to the degree of the zeros. On each stra-
tum, the relative periods of q with respect to its zeros provide coordinates. When all the L; are integral
and all periods are Gauss integers, i.e. in Z & iZ, we say that the surface is square-tiled. Indeed, such
surface can be obtained by gluing side by side as many squares as the core area (which is integral) and
leaving open some of the horizontal sides forming n circles of lengths Ly, ..., L. For integral Ly, ..., Ly
we define the generating function of square-tiled surfaces with boundary lengths Ly, ..., Ly, as follows

1
PD,q Li,..., L = CoreArea(S), 6.4
g,n( 1 n) ;IAutSIq ( )

where the sum is taken over square-tiled surfaces S in Qg ., (Ly,..., Ly).

Proposition 6.4. Let g, n be non-negative integers such that 2g —2 +n > 0 and let (L4, ..., L) be a tuple of
positive integers. We have

1 Leqle
0
PoA(Ly, Ly Ln) = ) AutT] > T Provcw ((Cedecemy, (Maaeam) T ﬁ, (6.5)

TeGgn ¢ Er—Z, vEVF ecEr

where P x ({1, ..., &) is the Norbury quasi-polynomial as in Section 6.1.

Remark 6.5. The terms in the right hand side of (6.5) are similar to [15, Equation 1.12] describing poly-
nomials associated to a stable graph I'.

Remark 6.6. Surfaces with vanishing core area are exactly the Strebel differentials [46], i.e. differentials
all of whose relative periods are purely real. Hence, one can already identify the constant coefficient
of Pgﬂ(l_l, ...,Ly) (seen as a g-series) as the Norbury quasi-polynomials of Section 6.1. This constant
coefficient is also equal to the term associated to the stable graph with a single vertex of genus g and no
edge in Formula 6.5.

Proof. Each square-tiled surface admits a decomposition into horizontal cylinders and saddle connec-
tions between the zeros of the differential q. The union of all saddle connections forms a union of ribbon
graphs that we call the singular layer of the square-tiled surface. To such decomposition, we associate a
stable graph I by the following rule.

* A vertex in I" corresponds to a connected component of the singular layer, where the genus and
number of half edges are respectively the genus and the number of faces of the associated ribbon
graph.

* Anedge of I' between two vertices correspond to a cylinder, whose extremities belong to the com-
ponents of the singular layer corresponding to the two vertices. Note that each of these extremities
is a face of the corresponding ribbon graph.

Let us now fix a stable graph I' in G4 . We claim that the term

leqte
Z H Priv) k) ((Le)ect vy (LA )Aaen()) .

1—qte
L: Er—Zy vEVP ecEr

1
|AutT|

49



appearing in the right-hand side of (6.5) is the generating series of square-tiled surfaces, whose as-
sociated stable graph is I'. Indeed, to reconstruct the singular layer one needs to choose a ribbon
graph for each vertex v of Vr and fix the lengths of each edge. This count corresponds to the term
Prv) k(v) ((€ Jece) (LA )aenry ) Next, one needs to reconstruct the cylinders. The cylinders are glued
on faces of ribbon graphs and have a height parameter H (which is a positive integer) and a twist pa-
rameter t (an non-negative integer strictly smaller than {;). The generating series for this cylinder is

just
> X

qte
H>10<t<d,

Ce

This concludes the proof. O

We now show how to retrieve the Masur—Veech polynomials VQE’{YL(LL ..., Ln) by considering certain
limits of square-tiled surface counting that are encoded in the generating series Pgm,ﬁ(l_l, .o, L)

Proposition 6.7. Let Ly,..., Ly, be positive integers with even sum. We have

Oq=e /T

P TLy,...,TL e
fim =2 ng(féfzn nl o valY (L, L), (6:6)
TeZ

Remark 6.8. In absence of boundaries, the asymptotics of the number of square-tiled surfaces is related
to the Masur—Veech volume in [15, Theorem 1.6]. The proof there is slightly different as it considers the
T — oo asymptotics of the number of square-tiled surface of core area < T, when T — oo, while here
we analyse directly the g-series when g — 1. It is possible to adapt the proof of [15, Theorem 1.6] in
presence of boundaries, i.e. study the asymptotics of the number of square-tiled surfaces of core area
< T with boundaries of length TLy, .. The result is then similar to the right-hand side of (6.6)
except that VO is replaced with I [VQMV] where I ., is the linear map multiplying the monomial
24 2dn by the factor 1/(6g — 6 +2n — 3 ; 2d;)!. The latter factor is essentially the volume of a
simplex and comes from the core area truncation.

Remark 6.9. The scaling TL; of the boundary term L; is of strange nature. Asq" is of order 1, suggesting
that the typical contribution in Pg’fi comes from surfaces with core area O(T), but scaling the area with
T usually rescaled the boundary by v/T. So the limit in Proposition 6.7 somehow reflects a blowup of
the contribution coming from the boundaries of the square-tiled surface, that is necessary in order to
obtain the Masur—Veech polynomials.

Proof. Let T be an even integer and set g = e !/T. Fix a stable graph T of type (g,n). We want to
compute the large T behavior of

Lqt
> 11 Provir ((C)ecewy, Madaeaw) T1 1_qqee

0:Er—Z4 vEVE eckr

o (6.7)

_ Z H Phv) TE Jece) (TLA ) aenrw )) H ele _61.

L:Er—T-1Z, VEVT ecEr

Recall that Py, i (x1, ..., xi) vanishes when x; + - - - +xy is odd. Let . C ZF" be the sublattice defined by

the congruences
W e Vr, ( > ot ) € 2Z.

ecE(v)

By [15, Corollary 2.2], L has index 2IVri=1in ZEr  In the first line of (6.7) we are summing over { € L =
Z_EJ N L. For{ € T-'L,, we use Theorem 6.3 to make the substitution at each vertex v € Vy

P k) (Tl ect (v), (TLAaen(v)) — TOMY 632k = EROIZSHROD v K 1 (L) ect (v), (L) aea())s
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up to an error that will produce subleading terms when T — co. We are left with analysing for large T

YT e e e vok L (Eecer (eaw) [T o 69

eT— 1]]_Ur\)E\/r ecEr -

Now, since VQE/k(xl, ...,xx) are polynomial in x4, . .., Xk, the function of ? appearing in the summands

is a continuous function of { € RL", which is Riemann-integrable due to the exponential decay in the
edge weights. Taking into account the fact that L has index 2/Vr=1, (6.8) is therefore asymptotically
equivalent to

T2, dl
21 |Vr‘/ H H 2- (2h(v)—3+Kk(v T(6h( v)—6+2k(v VQK )((eeeE (L}\))\e/\( )) eice_ 1e
RT ecEr veVr

when T is large. The overall powers of 2 and T can be computed with Lemma 2.11, and we respectively
find
1— Vel = ) (2h(v) =3+k(v)) = —(2g —3+n),
veVr

20Er|+ ) (6h(v) —6+2k(v)) =69 —6+2n,
veVr

(6.9)

which are independent of I'. Performing the (finite) sum over all stable graphs of type (g, n) weighted
by automorphisms, and dividing the result by T~(6976+2") one finds exactly the sum over stable graphs
defining the Masur—Veech polynomials in (3.5). O

6.3 Topological recursion for PD'q (Ly,...,Ly)

The expression for the g-enumeration of square-tiled surfaces in Proposition 6.4 is another example of
the twisting procedure presented in Section 2.6, with the function

¢

1—q¥
except that we allow only integer lengths. In fact, the discrete analog of Theorem 2.10 continues to hold,
that is, knowing that the weight of the vertices satisfies the topological recursion (Theorem 6.1) auto-
matically implies that the sum over stable graphs in (6.5) is also computed by the topological recursion

with twisted initial data — see formula (2.8) for the twisting of A, B, C and formula (2.10) for the twisting
of VD. This is summarised in the following corollary.

fq(0) = (6.10)

Corollary 6.10. The topological recursion formula (2.9), for the initial data of Theorem 6.1 twisted by fq from
(6.10), computes
vQY L [fgl(Ly, ..., L) = PGA(Ly,..., Ln).
|

This result can also be brought in the form of Eynard—-Orantin topological recursion. Twisting is imple-
mented by a shift of wy,, but as the lengths are not continuous variables we cannot use (2.24). Instead
we will resort to Theorem 2.13.

Proposition 6.11. Let w3, be the output of Eynard—Orantin topological recursion for the spectral curve differ-
ing from (6.2) only by the choice of

1 dz; ® dz, 1
2 (Zl — 22)2 2

°E
wyl(z1,22) = é(q)

<zp(u1 —u;q) + >du1 ® duy,

where z; = exp(2imuy), p(u;q) is the Weierstraf$ function for the elliptic curve C/(Z ® TZ) where q = e2inT
and E,(q) is the second Eisenstein series

—1—24Z

_qgt’
€>O1 q
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Then, we have for Ly, ..., Ly >0

n L: —1 L
O, _ P, q— Z
Pg,g(Llr---/I—n) = (*1)71211{:920 . Zl}es LUgclTL(Zl,...,Zn) H (1 + 2(1_qL1)> ii .

i=1
Proof. We first make some preliminary computations. Let us introduce the vector space #* of meromor-

phic 1-forms ¢ on P! whose poles are located at +1 and such that ¢(z) + ¢(1/z) = 0. Let us consider
the linear map ¥®? — C[q] defined by

0,
Z 1—q€ Res Res ZTw(zl,zz) (6.11)

=00 Z=00

Since elements of ¥ are odd under the involution z — 1/z, we can write

o@] = ;( Res Res O ( )@(zl,zz) +Res Res O (Zl)@(zl,zz)),

z1=00 zp=0 =0 zp=00
where Oq(z) = Y ;- 71 a9 q 7 € Clzl[a]. Recall the expansion of the Weierstraf function when u — 0
1
plwia) = —+ 3 2(2k+1)Gacia(Qu*, 6.12)
k>0

where for m > 0, G, (q) is the (2m)-th Eisenstein series

(2i7‘()2m emequ
Gam(q) = C(2m) + ’
2m—1)! ~ 1-q
From the identity
Z {(2k)uk = —% cotan(7tu),
k>0
we deduce that )
1
3 202k + gk + 2w = 5 — —
sin“u U

k>0
Adding/subtracting the k = 0 term in (6.12), and computing separately the contribution of the Riemann
zeta values, yields

) 2(2im) 2k+2€2k+1
p(u;q) = —— —2Gal(q Z 3 Z
sin”
o ! k>0 6.13)
2 ) ’
= 7; —2Ga(q 217TZZ o Z+Z )
sin” tu =

where we have set z = %™ Since E»(q) = % G,(q), setting z; = %™ yields

7.[2
(pm —wiq) + 3E2(Q)>du1 o du,

1 1 £9'((z1/22)" + (z2/21)"
(L A e o

Z1 —Zz) 1 —q
i i / I
- (12 — Res Res Oq(Zl/Z,Zl dz; ® (?Zzz — Res Res Oq(z3/21) dz) @ dz >d z1 ® dzo.
(z1 —22)2  z{=c0zj=0 (21 —2])%(20 —2})? =z1=0zj=co (21 —2{)*(22 — 2})?

Hence

1 z]
wglz(zl,zz) — 2( Res Res Oq<zl>w02(zl,zl) ® woz(zz,zz)

=00 z=0

/
+ Res Res Oq( )woz(zl,zl) ® woz(zz,zz))

022 o0
1 dz; ® dzp 7T2E2(Q)
3

T2 (z—2z)?

1
+2< (u —wy;q) + )dul®du2
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which we took as definition for ngg. We then apply Theorem 2.13, which expresses wg’ﬂl as a sum over

stable graphs, with vertex weights given by w}, |, the operator & acting on each edge, and the operator

= ) §e§</ woa(- 20) (z), eV

axe{—1,1}

acting on each leaf. This expression should be considered an equality of g-series. By construction of the
operator ¢ in (6.11), its action on the (products of) w"’s realises the summation over integral lengths in
the (products of) P’s in (6.5). It remains to compute the expansion of wg’,qn near z; — 0o —more precisely,
one should expand as a g-series, and then expand each term when z; — co. For ¢ € ¥, we find

— Res z§ ﬁ[q)](zo Z Res Res z; (/Z wgg( zo)) d(z)

Zyp=00 Z=KX Zp=00
oae{—1,1}

1
E Res ¢(z) Res z(%( = e (e+1))>
Z=K Zp=00 2

axe{—1,1}

qL
- X reee (1)

0

ae{—1,1}

L
_ L q
-~ Reol= (14 57y )
In the second line we chose a certain primitive of wg',g(-,zo). The final result does not depend on this
choice, since it is not changing the residue. Recalling (6.3), we deduce that

n

(71)‘“ R R P L 7121_1
es -+ Res wgi, (21,...,zn)H 1+ -

Z1=00 Zp =00 N
i=1

coincides with the right-hand side of (6.5) and this concludes the proof. O

6.4 Second proof of topological recursion for Masur-Veech polynomials

We observe that

mE
P, uz) = <19(u1 —up;q) + é(q))dm ® duy
is the unique fundamental bidifferential of the second kind on the elliptic curve C/(Z & TZ) with

biresidue 1 on the diagonal and such that it has zero period on the cycle u € [0,1]. In a sense, wg:g

is the elliptic analog of wpy’ from Proposition 3.8.

Yet, it is not so easy to derlve the Eynard—-Orantin form of the topological recursion for the Masur—Veech
polynomials (Proposition 3.8) by taking the g — 1 limit in Proposition 6.11, due to the complicated (g-
dependent) way the PD ’s are defined. Instead, we can take limit ¢ — 1 in Corollary 6.10 to give a
second proof of the topologlcal recursion with respect to lengths for Masur—Veech polynomials (the
last statement in Proposition 3.7) namely the topological recursion for Masur—Veech polynomials with

respect to lengths.

Proposition 6.12. Corollary 6.10 and Proposition 6.7 imply topological recursion for the Masur—Veech polyno-
mials (see Proposition 3.7).

Proof. The only stable graph of type (g,n) = (0, 3) has one vertex with three leaves and no edge
P()D,g’,q(h, L, L3) = Pos(Ly, Lo, Ls) = A"(Ly, Lo, L3) = 1.

Rescaling L; by a positive even integer T and sending T to infinity is transparent here, and 2~(2973+n) =

1. Comparing with Proposition 6.7, we get the claim for (0, 3).
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In type (1,1), (6.5) yields for any positive even integer L,

1« fq° 12-4 1¢ (g
L;) =P11(L = = — 14
PIA(L) = Pra(Ly) + 22 1-gq r +2ZZ>01_q@/ (6.14)

where the 1/2 comes from the automorphisms of the stable graph with a single vertex and one loop.

Setting q = e~ /T, replacing L; with TL; and dividing by T2, we get
L, 1 l 1 dil
TP (L 1T + o= —— =1 4= / - 1
(L) = ag TOW/T)+ = 71 48+2]R ee—1+0()
teT1Z, +

by construction of the Riemann integral. The first term is indeed VQY; (L), and the second term exactly
matches the contribution of the stable graph with one vertex and one loop in (3.5) for VOYY(L;). This

in fact is a check of Proposition 6.7 for (g,n) = (1,1) as again 2-(29-3+n) — 1 but also coincides with
VDMY(L,) obtained by integrating DMV from (3.14) on Mjy,1(L4), so proves the claim.

For2g—2+n > 0, we reach Pgﬁ by applying 2g —3+mn times the recursion formula from Corollary 6.10.
One step of this formula is, for Ly, ..., L, positive integers such that L; + --- + L, is even,

PoA(Ly, Ly, ..., Ly)

= Z Z BBK[fq](Llle/e) gn 1(€ LZ/ "/f\/"'/I—n)
m=2 >0
Li+Lym+€¢=0mod 2
1
+5 > % CK[fq](Ll,EE)( (L, L)

2,e'>0
L1+¢+€'=0 mod 2

Ua
2 Pl P “)’/’I/))
h+h'=g
JujJ'={Ls,....Ln}
If T is a positive even integer, this implies

PgA(TLy, Ty,..., TL,)
T69—6+2n

(T8, TLy, ..., TLin, ..., TLn)
T69—6-+2(n—1)

n
:Z > UBN[f)(TLy, Ly, TO) Pon1
=2 te2T—17Z,
1 oa -
tom D M’CK[fq](TLl,TE,T(%’)(
LUeT 17,
etz

PE'anH (T, TV, TLy, ..., TLy)

T6(g—1)—6+2(n+1)

Oq
N 5 h1+m(” . Prey (T8, T])
T6h—6+2(1+[71) Teh/—6+2(1+1]'))  )°
h+h’=g
JuJ’={La,...,.Ln}

(6.15)

We observe that for X € {B, C} and since q = e~ /T, we have the exact relation

XK[fg)(TLy, TLy, TLs) = XN[fmv] (L1, Lo, Ls), with fmy (£) = (6.16)

et —1
We observe that { in the first line (resp. (2,2") in the second line) is restricted to a sublattice of Z (resp.
7?) of index 2. If we could replace the PE,’Q directly by their limit provided by Proposition 6.7 for
2h — 2 4+ k < 2g — 2 + n, the approximation of Riemann integrals by Riemann sums would imply
Proposition 3.7 for (g,n), and we could conclude by induction.
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Instead of justifying that such a replacement is allowed, we can proceed in a simpler way. Let us
unfold all the i = 1,...,2g — 3 + n steps of the recursion. The result is a formula expressing the left-
hand side of (6.15) as a finite sum of terms of different topological origin and countable sums over
discretised variables {; (or £;,1!) each belonging to a sublattice of index 2. Taking into account (6.16),
the summands are finite products, B¥[fyy], CX[fmy], PODB’q = 1 and PEl’q. The latter can be replaced
by its expression (6.14). The outcome of this unfolding is a big sum over a finite set of discretised
variables of specialisations of continuous functions and Riemann integrable functions on some R¥ at
those discretised variables. To this, we can apply the principle of approximation of Riemann integrals
by Riemann sums, and there will be exactly 2g—3+n factors of (1/2) coming from the index 2 sublattices
over which the discretised sums range. The factors of T, as already exhibited for the one step recursion,
disappear in the T — oo limit. We therefore obtain that

s29-3em 1y Ponc (TLy..., TLy)

T—00 To6g—6+2n

(6.17)

exists and is computed by the unfolded topological recursion, with initial data already identified with
(AMV BMV MV ypMY) (6.18)

thanks to (6.16) and the cases of (0,3) and (1,1) treated at the beginning of the proof. By recombina-

tion, this automatically implies the one-step recursion formula (2.9) with this initial data for (6.18). As
Proposition 6.7 equates (6.17) with VQI;/[,X (Ly,...,Ly), this implies Proposition 3.7. O
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A Closed formulae for the intersection of 1\ classes in genus one

The following lemma has been discovered several years ago (see [35][Proposition 4.6.11]). We prefer
nevertheless to derive again it here.

Lemma A.1. For a fixed integer n > 1, we have

a an_l n n—(by+---+by) |
N 24<<a1,...,an> bZ (al—bl,...,an—bn)(bl+ +ba—2)1), (A)
’ 1

..... b
b €{0,1}
and the sum of all such integrals is
n—1 _
n; ( n (n—1)! ) (A.2)
o [T (1 =) —k(k+1) (n—k—1)!

We use the convention that summands involving negative factorials are excluded from the summation. In partic-
ular we retrieve (5.3) and (5.4) used in the text.

Proof. Let us recall the following result.

Theorem A.2 (Conjecture of Goulden-Jackson—Vainshtein [31], theorem of Vakil [48]). Let p be a partition
of d of length n = €(w). The simple connected Hurwitz numbers hq—1,,, of genus one and ramification profile n
over zero are given by

hg=1u _ PH n—1 . qn—ks
Col T G M (A3)
where sy is the k-th elementary symmetric polynomial. n

On the other hand, the ELSV formula [18] in genus one gives

9 1u p'l 1_)\1
_—. A4
(n+d)! H wi! Jaw o TR (1 — i) (Ad)
Combining the two we obtain
1—A 1 -
— M -1 n—k
—_— dt —d" — k—2)1d™ *sy (g, ..., > A5
T —a( > (20 el ) (A5)

The left-hand side is a polynomial in (p;)}* . Indeed, we write ﬁ = 2 asoM{Y{ and observ-
ing that Y& € H>*(9M; ,,) only finitely many terms contribute to the integral for degree reasons. As
dimM; , = nand A; € H2(M; ), this polynomial only has terms of homogeneous degree n and n — 1.
The right-hand side is also a polynomial, as d = p1 + ...+ pn = s1(p1, ..., in). Selecting on both sides
the terms of degree n leads to the following expression.

n

1 1
- - n — 2! n—k N N . A
ﬁ1,71 H?:l(l - Hill)i) 24: (d kgz(k 2) d sk(I“Ll/ s )> ( 6)

To prove (A.2) substitute p; =1 for each i and observe that sy (1,...,1) = (L‘) To prove (A.1), collect the
coefficient of uj" - - - p&~ in the right hand side after the substitution d = py + ... + py. This concludes
the proof of the lemma. O

A longer but more detailed way to remove the contribution of A; to prove (A.2) can be obtained from
the A4-theorem.
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Theorem A.3 (A4-theorem [25]).
o 2g—3+n
/ D pEAg = ( ) ) / D92, (A7)
Mg n ay,...,Qn

Its specialisation in genus one reads

n—1 n—1 1
gt A = A :< > A8
My n ll)l lbd ! (01,. . .,an) /gml,l ! ai,...,an /24 ( )

This can also be seen for instance using that A; is represented by the Poincaré dual of the divisor of
curves with at least one non-separating node times 5;, then pulling-back the class via the attaching
map and integrating over 90 ;2 gives the same result. In any case, summing over all n-tuples of
non-negative integers a; such that a; + - -- + an = d — 1 gives, using the multinomial theorem,

M
M= - W bR (A9)
i H?:l(l _wi) a1,~§120 Mg ! "
ai+--+an=n—1
-3 nel 1o
o Z <a1,-..,an> ot (A.10)

which equals the second summand in equation (A.5) after the substitution p; =1 for all i, and therefore
n = d. Removing it from (A.5) and simplifying the expression proves again (A.2).

B Computing Masur-Veech polynomials and square-tiled surfaces
with Eynard-Orantin topological recursion

For readers who are unfamiliar with the topological recursion a la Eynard-Orantin, we compute a
few Masur—Veech polynomials and square-tiled surfaces generating series via wlg‘fx and wlg)’f‘n (resp.
Proposition 3.8 and Proposition 6.11).

Masur—Veech polynomials via Eynard—Orantin topological recursion

Let us apply the residue formula (2.18) to the spectral curve given by €¢=Cand

22 dz; ® dzz dz; ® dz,
- +5 Z

oWz, B.1
y(z’) z wO,Z (Zl Z2) (Zl o 22 Zl —z i m) ( )

mez-
In this section we drop the superscript MV on the wgn’s as it will always refer to the Masur—Veech
topological recursion amplitudes. Let us first compute the recursion kernel

1 f_ZZ wo2 (-, z1)
K2 = 2 e —y—2) @)

dz; z dz’ 1 dz’
T 422dz /,Z ((zl —z’)2 * 2 Z (29 — 2/ +m)2>

mezZ*

le 1 1
 2zdz 2 22—22 2 = (z1 +m)2 — 22

It is handy, in order to compute residues at z = 0, to write down the expansion in power series near
z = 0 of the recursion kernel:

1 1 1 1 2
22 zz (z1 + m)2 _22_Z<sz+2 ZZ Z1+m)2d+2>z

z* d>0 mez*
=D wl2d+22)2
d>0
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In the same way we have that

u(2,z—z) = Z(Zd—i— 1) ¢(2d 4 2;z;) %4 + odd partin z,
a=0

1 <2k —1+2d
d>0

(u(2k;z) = ot ”d ) {(2k + 2d) 224,

The topological recursion formula, specialised to our case and expressed in terms of

Wyn(z1,.--,2zn)

Wyn(zi,...,zn) = dz1 @ ---®dz,

reads

1
Wonlz1,22,..,2n) = 5 2% ) tu(2d +2;21) ZZd{ng,nJrl(Z/ —2,25,...,2Zn)
a>0
no (0,1)

+ Z Wh,1+II(ZrDWh’,1+I’(_Z/]/)}'

h+h’=g

e (g,n)=(0,3)

1
Wosl(z1,22,23) = E[ZO] Z {a(2d +2;21)2%¢ - (Wo,z(l, 22)Wo(—2z,23) + Wo2(z, z3)Wo2(—z, Zz))
a>0

=21 tu(2d+2;21) 22 - Woa(z, 2) Wo(z, 23)
a0

= Cu(2;21)Cu(2; 22) Cu(2; z3).
The inverse Laplace transform of the principal part near z; = z, = z3 = 0 then reads
vy (L, L, L) = 1.

Multiplying by the combinatorial factor 249—2+n % whose value for g = 0 and n — 3 is 4, we
get MVO,:J, =4,

e (g,n)=(0,4)

Woa(z1,22,23,24) = [2"] Z {n(2d +2;2) 2% - (Wo,z(Z, 2)Wo3(z, 23, 24)
a>0

+ Wiz, 23)Wos(z, 22, 24) + Wo (2, 24)Wo3(2, 22, Zs))

=[] Z (u(2d +2;21) 224 (CH(Z}Z — 22)Cu(2;2) G (2; 23) Cu(2; 24)
a>0

+ (2,2 — 23)Cu(2;2) Cu(2; 22) Cu (25 z4) + Cu(2; 2 — 24) Cu (25 2) Cu (25 22) Cu (25 23))
3

=3> wkz) J]  u@z)+302)n(221) (2 22)tH(2; 23) Ca(2; 24)-

i=0 je{1,2,34N\{i}

The inverse Laplace transform of the principal part near z; = z, = z3 = z4 = 0 then reads
1 4
VO (Ly, L, Ls, Ly) = 5 <7T2 + Zl I—%)
i
from which we deduce MV 4 = 272
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°(gn)=(11)

1
Wii(z1) = 5121 ) Gu(2d +2521) 2 Woa(z, —2)
a>0

ffZC (2d +2;z1) 2d<42+ZZZd +1) zi%)

d=>0 m2>1d’>0
2

1
= 7CH(4;21)+£CH(2221)-

8 12
The inverse Laplace transform of the principal part near z; = 0 then reads
7'[2 L3
volwW () ==+ =
11 (L) = + TR

Multiplying the constant term by the combinatorial factor 29 (g 4! 8 we deduce MV, 1 = 2

(6g—7+2n)! 3
*(gn)=(12)

Wia(z1,22)

> 1
0] Z G(2d + 2;21) 224 (E Wosl(z,z,20) + Woal(z, Zz)W1,1(Z))

d>0
2) tu2d+221) 2 Gu(22) a2 22) + 8 21) u2d+221) 2 a2z —21)Cu(4;2)
d>0 d>0
S ul2d+221) 2 - (252 — 22)ta(2;2)¢(2)
a0
CH(2;22)

=5 (CH((); 21) +2Cu(4;21)C(2) + 6Cu(2;21)C(4) + Cu(2; ZO)C(2)2>

1
+3 <CH(2; 21)Cu(2;22) C(4) + Ca(6;21) Cu(2; z2) + 3Cu(4;21) Cu(4; z2) + 5Cu(2;21) Cu(6; 22J>
1
+ 5 <CH(2; 21) (25 22) C2)* + Cu (45 21) Cu (25 20) C2) + 38 (25 21) G (45 22) C(Z))-
Re-arranging the terms, we obtain

5 3
Wia(zi,22) = 3 (nl6:21)Gn(2:22) + Qu(221)Cun(6;22)) + 54 21)Cual4 22)

2
+ % (CH(4;7~1)CH(2;7~2) + CH(Z;ZI)CH(4;ZZ)) + ;%CH(z}Zl)CH(Z}ZZ)'

The inverse Laplace transform of the principal part near z; = z, = 0 then reads

1 1 7{4
VoW (L, L) = 192(L4+L4) %L2L§+24(L%+LZ)+R
24924 (4g—44n)!l _ 16 4

Multiplying the constant term by the combinatorial factor = 3 we obtain MVy, = &

(6g—7+2n)! 3"

Square-tiled surfaces via Eynard-Orantin topological recursion

Let us apply the residue formula (2.18) to the spectral curve given by € = C and

1 dz; ® dzp 1
2(z1—2)? 2

mE2(q)
3

du; ® duy,
(B.2)

x(z) =z + ~ y(z) =—z, wog(zl,Zz) (p(ul —u;q) +
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where z; = exp(2inty;). In this section, we drop the superscript " on the wg.’s as it will always refer
to the square-tiled surfaces topological recursion amplitudes. We can rewrite wy as

(UO,Z(Zl/ Z) =

dz1 ®dz | dun@dz v o ((Zl)eJF(Zl)e).

(z1 — 22)? 21z {5 1-a" \\z z
Let us first compute the recursion kernel

fl/zwoz( 1)

1
2 (y(z) —y(1/2)) dx(z)

L zdz; /7' dz’ N dz’ q* (Z’)Z+(Z/)—2)>
 2(z—z12dz Ji,\(z1 —2")2  2z12/ 1—qt \\z z

K(le Z)

€0
_ z2dz; 1 + L 5 q’ (2! + 279 EZZi—K—H
222 -1dz\(z1 —2)(z1—z7Y) 2z —1- gt "t — !
and define K(z1,z) via the formula K(z;,z) = —5 (j;ff)l dzf((zl, z). Moreover, let us set

wg,n(zl/- --/Zn)

Wynl(z1,...,zn) = a0 odzy

L (g/ Il) = (01 3)

K(z1,
Woslzi,22,23) = ) Res MWOZ(Z/ZZ)WOZ( !,z3)dz + (2 ++ 3)

axe{—1,1} Z(Z 1)
K(z1,z _
_ oy Ked e Waae | 2o 3)
2(z+ «) z=o
oae{—1,1}
1 1 qg -1
_ 1 . 2i-0+1
=2 2z+cx ((zlZ)(zlzl)+Zlelq(Zl+Zl )ZZ )
xe{—1,1} > i=0

—t
((z —17.2)2 + 27.17.2 1 — qe ((Z) ( ) )
1 z —1\—t
((2_1—23) +223 1_qe ) )]

= %(Xq(zl)xq(ZZ)Xq(ZSJ - Xq(_Zl)Xq(_ZZ)Xq(_Z3))/

+(2+3)

Z=x

where we have set

1 1 @ e,
Xq(z) = m— + =— .
a(2) (l—z)2+ZZ€Z>01—q“ (= +279)
It can be rewritten in terms of the Weierstrafl function, as Xq(z)dz = (zp(u,' q) + &)du We can then
compute the generating series of square-tiled surfaces of type (0,3) with boundaries as

3 L. 1_L

i yN

PRI Lo L) =~ Res Res Res Witz [ (14 550 qm ) T
i=1

1 + (_1)L1+L2+L3

This coincides with Po/g(]_l, Ly, L3).

60



°(gn)=(11)

K(z1,z _
Wil = 3 Res 3 5 Woslz,z ez
ae{—1,1}
_ Z [K(ZLZ) EZ {q* (2 +Zzz)} Z 1(12[22 k(ll,l)”
Y 2 3
we i 2(z+ ) 2 = 1—q e 2dz2% | 2(z+ ) ||, o

v ¢
_ Xq(2) ZXq( Z)% 1€_qqz + 3% (Yq(z) — Yo(—2) — Xq(2) + Xq(—z)>,
>0

where X, is defined as before, and

We can then compute the generating series of square-tiled surfaces of type (1, 1) with boundaries as

Oq Pq qu - Z{_l
Pri(L) = —lelzegOWL’l(Zl) <1 + 20 —q) qu)) ——dz;

14+ (-1l /1 gt 13-4
- 2 Ezl—q“—i_ 48 )

0

. 1+(—1)41 L2—4 .
Since P11(L1) = +( 5 ) —ig—, We can write it as

1 g
P = Pualla) £ 5 3 Pos(la L0 oo,
>0

which coincides with the sum over stable graphs of type (1,1) of Proposition 6.4.
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n\g 0 1 2 3 4 5 6
0 _ _ 19 24199 283794163 180693680 806379495590975
6 8625 105312050 68465079 309492103568838
1 _ _ 230 529239 14053063 533759417507 4346055982466800
87 205550 5518645 210967972242 1725192578138153
) _ 7 8131 2843354 11842209371 606925117339 122318875814791931
3 3370 1164495 4827273270 246886623873 49704331575032610
3 _ 47 11041 73870699 35221419482 82681229028041 5057811587495459887
22 4785 31157850 14674841399 3422259372754 2085014933689449405
4 3 44 688823 187549387 1414826039249 1031120131654286 1339844245835171101
2 21 303270 80056955 595067328174 430104304558221 555062784408367098
5 5 2075 96716 87365995 15788133716389 1245335246460801 321899861240823487478
3 978 445 37248558 6636637127685 519291721160462 133543614171105755337
6 11 697 8622217 1433623484 7380284015613 18305424406953487 3150765025310943712637
6 319 3723846 604494345 3075881257378 7579668229551231 1299328235398448522070
7 9 17101 10506949 12557689333 32906433038620 165332043184123111
7530 4426995 5197985038 1351227345917 67603007456990598
8 13 17630 44927707 3273823127 1905176709014543
6 7431 18358630 1322965425 766815957735306
9 7 194829 480821458 515867741141
3 78406 189797505 202690068090
10 5 202415 905804827
2 77691 344519274
8 5054467
11 3 1849998

Table 12 — Area Siegel-Veech constants 7SV . They are computed from Table 11 thanks to Theo-
rem 4.1. Theorem 5.2 gives the first column.
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Table 24 — Values of r—239-3+n)+2dit-42di £ [dy, ..., dy,0,...,0] for k > 2, computed from the Vira-

soro constraints.
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(g,m) | (dy,...,dx) * (g,m) | (dy,...,dk) * (g,m) (dy,...,dy) *
(0,5) (1,1) 18 (1,2) (1,1) : R 5

(1,1) 27 (1,1) % (2,1) %

10:6) 2,1) 135 (1,3) 2,1) 5 3.1) s

(1,1,1) 162 (1,1,1) 2 (4,1) 14175

(1) 81 1Ly | Z (51) | 2

(2,1) 300 (2,1) 15 (2,2) 6475

(0,7) (3,1) 1260 (1,4) (3,1) % (3,2) %

(2,2) 1350 (2,2) s (1,6) (4,2) 51975

(1,1,1) | 324 1,11 | 2 (3,3) 25725

(2,1,1) 1620 (2,1,1) 135 (1,1,1) 1485

(1,1,1,1) | 1944 (1,111 | & (2,1,1) 4575

(1,1) 675 1) » (3,1,1) 7878

(2,1) 4575 2,1) s (4,1,1) layrs

(3,1) L (3,1) 525 (2,2,1) 16125

(4,1) 14175 (4,1) 945 (3,2,1) %

08 (2,2) a125 | | (1) 2 |wm (22,2) | 6750

(3,2) 15750 (3,2) % (1,1,1,1) 125

(1,1,1) 1215 (1,1,1) 81 (2,1,1,1) 8772

(2,1,1) | 4500 (2,1,1) | ¥ (31,11 | #P

(3,1,1) | 18900 (3,1,1) | 4 (2,2,1,1) | 6750

(2,2,1) | 20250 2,2,1) | 450 (1,1,1,1,1) | 2430

(1,1,1,1) | 4860 (1L,1,1,1) | 162 (21,1,1,1) | 6075

(2,1,1,1) | 24300 (2,1,1,1) | 405 (1,1,1,1,1,1) | 3645

(1,1,1,1,1) | 29160 (1,1,1,1,1) | 243




Table 25
— Values of 2
(3g—
7T g—3+mn)+2d;+--+2dx F [d
gm 1""’dk 0
7 /-..,0] fOl‘k>
= 2 (COntin
ued).

(gmn) | (di,...,dw)
*
(g,m)
’ d
Ly | 3 (ddd |« ]
2 9, Tl)
(2,2) 21 119 (1,1) 1685 (di,.on di) |
’ 128 256
(3,1) 105 (2,1) 6995 (1,1) 5605
32 384 14336
(4,1) 915 (3,1) 13475 (2,1) 40495
128 256 24576
(2/ 2) @ (4/ 1) % (3, 1) 56749
384 256 12288
(3,2) 1015 (5,1) 144375 (4,1) 41015
128 (6 256 ( 3072
(1,1 /1) 2252 5/1) 8
B s | | 32 s
cn | = 22| A cn | R
64 2
(3,1) 357 (32 |z (7,1) |
32 (4,2) 768 2.2) 1024
4,1 , 72135 , 56
) 3%5 (2,4) 5 1285 ( %
(5/ ]- 4 2 3 3; 2
(2,3) ) a4s5 ) e ) e
02 |z (3,3 | 1 (42) | 2
2304 128 2048
(3, 2) 14875 (4'3) 112455 (5'2) 297605
384 1 64 2048
(42) | ue L1,1) | 2 (6,2) | 38
32 ’ 128 1024
(3,3) 7105 (2,1,1) 3375 (3,3) 131467
64 64 3072
L,y | % 611 | (43 | o
z > 256
(2,1,1) 357 (4,1,1) 4725 (5.3) 193655
32 5 8 512
(3,1,1) 25 (5,1,1) s1o7s (4,4) t0s
) 12
(4,1,1) 2835 (2,2,1) 127925
32 3 768
221 | 125 (3,21 | %5
32 3 128
(3,2,1) 3045 /3,1) 106575
32 (2 64
(2,2,2) 1575 ,2,2) 183%
16
(3/ 2/ 2) 13125
8
(1,1,1,1) 05
(2,1,1,1) | 2%
32
(3,1,1,1) 5
8
(4,1,1,1) | 22
32
(2,2,1,1) | 187
32
(3/ 2,1, 1) 45675
3
(2,2,2,1) | 265
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