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Notation

This list is a guide to the notation used throughout this thesis. It is only a guide
and the symbols used will hopefully be clear from the context. Also note that there
are some double ups of notation however they are often in separate sections or quite
clear from context.

r´s - Equivalence class
M,N - Smooth Manifold
K - Sub-manifold
Σ - Surface
P,Q - Principle Bundle
H - Horizontal Subspace
V - Vertical Subspace
GP - Gauge Group of P
H,K - Elements of the Gauge Group
G - Lie Group (usually Compact Connected Semisimple)
ωG - Maurer-Cartan Form
g - Lie Algebra
κ - Killing Form
h - Cartan Sub-algebra
F - Weyl Denominator (Following [Wit91])
G - Group
e - e P G denotes the Identity Element.
G{AdpGq - Conjugacy Classes of G
Rg - For right G action on P the map Rgppq “ p ¨ g
Lg - For left G action on P the map Lgppq “ p ¨ g
Lp - Fibre map Lppgq “ p ¨ g
pg - Affine Lie Algebra
X, Y - Topological Space
B - Base of some Fibre Bundle
F - Fibre of a Fibre Bundle
E - Total Space of a Fibre Bundle
gP - Adjoint Bundle associated to P
πP - Projection of the Adjoint Bundle
ηP,κ - Metric on the Adjoint bundle induced by κ
π - Projection Map
C8 - Smooth
PWC8 - Piecewise Smooth
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Γ - Sections
X - Vector Fields
Ω - Differential Forms
U, V - Open Subset
K - Compact Subset
V - Vector Space
F - Field
ω - Symplectic Form
Σg,n - Surface of Genus g with n Boundary Circles/Punctures
Mg,n - Moduli Space of Curves on Σg,n

RG,g,n - Moduli Space of Flat Connections on Σg,n with fibre G ( [Wei98])
RM,G - Moduli Space of Flat Connections on M with fibre G
AP - Space of Connections of P
A,B - Connections
ωA - Connection 1-form associated to A P AP
FA - Curvature of A
ϕHA - Horizontal Projection associated to A P AP
ϕVA - Vertical Projection associated to A P AP
gAB - Atiyah-Bott Metric
ωAB,P,κ - Atiyah-Bott Symplectic Form
Trin - Trinion/Pair of Pants Decomposition
γ - Path or Curve γ : r0, 1s Ñ ´

\ - Disjoint Union
Stab - Stabiliser
Orb - Orbit
i “

?
´1 or i P Zą0

Z - TQFT Functor
ZG - Dijkgraaf-Witten TQFT Functor (in p1 ` 1q-dimensions with Lie Groups as
well)
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How to Read

There are different ways to read this document depending on your prior knowledge.
The thesis assumes some basic knowledge in the theory of smooth manifolds and
Lie groups. There is a very brief exhibition of these theories in Appendix A and
Appendix B.

The Novice: For people with little background in the theory of principle bundles
and connections it is recommended that one first reads Appendix C, Appendix D
and Appendix E and then proceeds to Chapter 1.

For people with little background in the theory of symplectic geometry it is rec-
ommended that one first reads Appendix F and then proceeds to Chapter 2 and
Chapter 3.

For people with little background in topological quantum field theory it is recom-
mended that one first reads Appendix G then proceeds to Chapter 4.

Those with a Working Knowledge: For people with a working knowledge of
the theory of principle bundles, connections, symplectic geometry and topological
quantum field theory the thesis can simply be read Chapter 1 through to Chapter
4.

The Expert: For the expert there are explicit volume calculations using sym-
plectic geometry in Chapter 3, as well as a discussion on recursions for volumes
similar to calculations in topological quantum field theory. In Chapter 4 there is a
description of trivial Dijkgraaf-Witten topological quantum field theory that leads
to generalisations in p1` 1q-dimensions to Lie groups related to the volumes of the
moduli space of flat connections.
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Introduction

Gauge theories in physics are special kinds of field theories. They are defined to
have, what physicists call, local symmetries. That is, the symmetries of the theory
are given by smooth maps from its space-time into some Lie group. The topological
aspects of these theories have led to many interesting invariants of low dimensional
manifolds as described in [Ati90].

The prototypical example of a gauge theory is the theory of electro-magnetism with
space-time given by R3 ˆ R1. The physical observables of the theory such as the
electro-magnetic field are captured in the gauge field A : R3 ˆ R1 Ñ R3 ˆ R1. The
information of the observables is contained in the tensor Fµν “ BµAν ´ BνAµ. This
can be expressed using differential forms as A “ a0dx0` a1dx1` a2dx2` a3dx3 and
F “ dA. Maxwell’s equations of motion then take the form

dF “ 0 d˚F “ 0

For f : R3 ˆR1 Ñ Up1q notice that A` f´1df and A give rise to the same physical
observables as dpA` f´1dfq “ dA` dpf´1dfq “ dA. We call f : R3 ˆ R1 Ñ Up1q a
Up1q-gauge symmetry. This shows that there is a large redundancy in the descrip-
tion of the system through the gauge field A. This can be exploited when calculating
the dynamics of the system.

The symmetry described by f maps into Up1q and we call electro-magnetism a
Up1q gauge theory. The map A ÞÑ A ` f´1df is called a gauge transformation.
The key to generalising this is noting that A in fact defines what is called a Up1q
connection on R3 ˆ R1. In particular if we let up1q be the Lie algebra of Up1q then
A “ a0dx0 ` ...a3dx3 where aµ : R3 ˆ R1 Ñ up1q – iR – R.

To generalise electro-magnetism or gauge theory with a Up1q symmetry to gauge
theory with a Lie group G symmetry we now take A : R3 ˆR1 Ñ g3 ˆ g1. We then
take Fµν “ Bµaν ´ Bνaµ ` raµ, aνs. This can be expressed using differential forms as
A “ a0dx0 ` ... ` a3dx3 and FA “ dAA. The generalisation of Maxwell’s equations
is then

dAFA “ 0 d˚AFA “ 0

where dA is the covariant derivative. The set Aflat “ tA : FA “ 0u clearly sat-
isfies the above equations. Moreover, we can define the gauge theory through a
Lagrangian called the Yang-Mills functional, which is described in [AB83]. The set
Aflat then gives the minimal solutions to the equations of motion.
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We can generalise further by considering topologically interesting space-times of
various dimensions with interesting metrics. To do this, one defines connections.
A connection on R3 ˆ R1 ˆ G corresponds to the gauge potential A. We can gen-
eralise the definition of connection further to principle bundles P ÑM with fibre G.

In this general viewpoint, elements of the set of solutions Aflat correspond to fixing
local product structures, or trivialisations, of the bundle or in the previous example
R3 ˆ R1 ˆG.

In the first chapter of this thesis we will classify the set of solutions Aflat up to
gauge equivalence. Moreover, we will endow the set of solutions with a topology.
This solution space will remarkably be a finite dimensional space with a dense set of
smooth points. The solution space will be called the moduli space of flat connections.

For example, the solution space or moduli space of flat connections over a genus
g surface with Up1q local symmetries is Up1q2g. In section 1.2.1 we will prove that
for arbitrary Lie group G the solution space or moduli space of flat connections over
the circle S1 with G local symmetries is given by the conjugacy classes of G which
we denote G{AdpGq.

An important observation is that understanding the solution space or the moduli
space of flat connections can tell us interesting topological aspects of the space-time.
This is the underlying theme of topological quantum field theory.

To study the moduli space we endow it with additional structures. In any dimen-
sional space-time with a fixed Riemannian metric the moduli space can be given a
Riemannian metric. Restricting our attention to surfaces the moduli space can be
given a symplectic form which with the Riemannian metrics form Kähler structures.

In the second chapter of this thesis we will describe the construction of the Rie-
mannian metric and symplectic form given in [AB83]. Given a path through the
space-time, we can define special functions from the moduli space and for surfaces
Goldman calculates the Hamiltonian flows and Poisson brackets of these functions
in [Gol86].

Using these functions and some results in the theory of symplectic manifolds, in
the third chapter of this thesis we calculate the symplectic volume of the moduli
space over a surface with SUp2q local symmetries. We then describe the results of
Witten in [Wit91] for general Lie groups G. The solution space will generally be
uncountable. The volume gives an analogy for counting the number of solutions.

So far we have described gauge theories with a Lie group G local symmetries. In the
fourth chapter of this thesis we consider gauge theories with a finite group G local
symmetries as done in [DW90]. The theory of finite gauge symmetries corresponds
to the theory of covering spaces.
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The moduli space or solution space is finite for finite gauge symmetries. There-
fore, we can count the solutions. Moreover, we can define a topological quantum
field theory that counts the solutions which corresponds to counting G-covers. When
one considers p1` 1q-dimensions, we find that the number of G-covers of a genus g
surface is given by

#G2g´2
ÿ

αPirredpGq

1

dimpαq2g´2

The volume of the solution space or moduli space for local symmetries given by a
Lie group G described in theorem 3.2.1 is given by the series

ZpGqV olpGq2g´2
ÿ

αPirredpGq

1

dimpαq2g´2

Using this observation in section 4.2 we describe a well defined topological quantum
field theory that calculates the volume of the moduli space.
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Chapter 1

The Moduli Space of Flat
Connections

In this chapter, we will describe the fundamental objects needed to define the moduli
space of flat connections and its topology. These definitions are of interest as they
lay at the cross-section of mathematics and physics. They are the basic tools that we
need to study what is sometimes called gauge theory, which presents itself mathemat-
ically as the theory of connections on smooth principle bundles. Two good references
are [Aud04] and [AB83]. There have been many remarkable results concerning the
topology and symplectic geometry of these spaces and notably in [AB83] they find
generators for the cohomology ring using Morse theory, the Yang-Mills functional
and equivariant cohomology. Symplectic volumes are calculated in [Wit91] [JW94].
Building on this work, intersection numbers of these cohomology classes have been
calculated using a variety of methods notably in [Tha95] [Wit92] [JK98]. Not only do
they have a remarkable theory for themselves but connections also provide the tools
to define some interesting topological quantum field theories such as Chern-Simons
theory. This has led to new knot invariants and more generally new invariants of
3-manifolds. An introduction to this theory can be found in [Ati90].

We have supplied a reasonably self contained account of the very basics of the
differential topology and Lie theory needed in the appendices. The sections of par-
ticular interest are Appendix C, Appendix D and Appendix E. For the novice, this
and the references found there would an important starting point. The masters
thesis of Michiels [Mic13] also steps through some of the background needed.

1.1 The Moduli Space of Flat Connections and

the Gauge Group

The gauge group defines an equivalence relation on the set of flat connections. The
set of equivalence classes can be endowed with a topology which allows us to under-
stand various properties of connections and their underlying manifolds. Heuristi-
cally, we have an idea of when connections should be close and this will be quantified
with a topology. Constructing a space such as the moduli space of flat connections
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is one method for understanding and creating invariants of manifolds. As mentioned
in the introduction of chapter 1, this has had great success over the last few decades
at creating new invariants and reinventing old invariants.

1.1.1 The Space of Connections

We will briefly recall the basic structure of the space of connections. This is a small
summary of what is covered in Appendix C. For more details see Appendix C.

Definition: (Connection)
Let pπ : P Ñ M,G, ¨q be a principle bundle. Let V “ kerpπ˚q and
Rg : P Ñ P such that Rgppq “ p ¨ g.

IfH Ď TP is a smooth sub-bundle such that TP “ V‘H and TpRgpHpq “

Hp¨g for all g P G and p P P we call H a connection on P .

Definition: (Connection 1-forms)
For Lp : G Ñ P such that Lppgq “ p ¨ g. We say that β P Ω1pP, gq is a
connection 1-form if β is pseudotensorial and βppTeLppvqq “ v, that
is for the fundamental vector field associated to v given by v˚ we have
βpv˚q “ v.

Lemma 1.1.1. (Lemma C.2.2)
Let pπ : P Ñ M,G, ¨q be a principle bundle. The following objects are canonically
bijective

• Connections on P .

• Smooth linear equivariant vertical projections ϕV : TP Ñ V that is a splitting
of the short exact sequence

0 V TP TP {V 0

ϕV

• Connection 1-forms on P

Definition: (Adjoint Bundle)(See Appendix C.1)
Let pπ : P ÑM,G, ¨q be a principle bundle. Let πP : gP “ P ˆG gÑM
be the adjoint bundle.

Lemma 1.1.2. Let pπ : P Ñ M,G, ¨q be a principle bundle. The difference inher-
ited by Ω1pP, gq gives the connection 1-forms on P the structure of an affine space
modelled on Ω1pM, gP q.

Definition: (The Space of Connections)(See section C.3)
Let pπ : P Ñ M,G, ¨q be a principle bundle. Let AP denote the space
of connections on P . This is an affine space modelled on Ω1pM, gP q
and if P is trivial then this is canonically identified with the vector space
Ω1pM, gq.

12



Notation: Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP . We will use
the following notation

• HA Ď V ‘HA “ TP will be the horizontal subspace associated to A

• ϕVA will be the equivariant vertical projection associated to A.

• id´ ϕVA “ ϕHA will be the equivariant horizontal projection associated to A

• ωA P Ω1pP, gq will be the connection 1-form associated to A

1.1.2 The Gauge Group

The gauge group corresponds to the set of automorphisms of P that cover the
identity. The gauge group therefore ignores the automorphisms of the base manifold.
Automorphisms, and therefore in particular the gauge group, has a natural action
on the space of connections.

Definition: (Gauge Group)
Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP . Define the
gauge group of GP “ tH P AutpP q : π ˝H “ idu.

We can also identify this with the maps h : P Ñ G such that hpp ¨ gq “
g´1hppqg. That is equivariant maps with respect to the conjugate action
of G on itself.

This can also be identified with sections of the bundle of groups ΓpAdpP qq “
ΓpP ˆGGq where the Cartesian product is taken with respect to the con-
jugate action of G on itself.

Remark: Notice that if P “MˆG is the trivial bundle then the equiv-
ariant maps h : P Ñ G such that hpp ¨ gq “ g´1hppqg are completely
determined by h|Mˆteu. So for the trivial bundle the gauge group corre-
sponds to the space C8pM,Gq. Note that we get Hpx, gq “ Hpx, eq ¨ g “
px, hpxqq ¨ g “ px, hpxqgq.

Remark: This terminology differs from that of the physicist who call the
fibre G the gauge group. They may refer to the gauge group described
here the group of local symmetries.

Definition: (Gauge Group Action)
Let pπ : P Ñ M,G, ¨q be a principle bundle. Consider the action of GP
on AP defined such that for K P GP and A P AP we have the three
following viewpoints of the action

• HA¨K “ K˚pHAq

• ϕVA¨K “ ϕVA ˝ TK

• ωA¨K “ K˚pωAq

13



Lemma 1.1.3. (Local Gauge Group Action)
Let M be a smooth manifold and pπ : P “ M ˆ G Ñ M,G, ¨q the trivial be a prin-
ciple bundle. Let H P GP and take h : M Ñ G such that Hpx, gq “ px, hpxqgq. We
will abuse notation and take h´1 : M Ñ G such that h´1pxq “ phpxqq´1.

Let A P AP and ωM P Ω1pM, gq the form associated to A using lemma C.2.3 such
that for pu, vq P TxM ˆ TgG we have pωAqpx,gqpu, vq “ Adg´1ppωMqxpuqq ` pωGqgpvq
where ωG is the Maurer-Cartan form. For pu, vq P TxM ˆ TgG we have

pH˚
pωAqqpx,gqpu, vq “ Adg´1pAdhpxq´1ppωMqxpuqq ` ph

˚
pωGqqxpuqq ` pωGqgpvq

What this means is that for the trivial bundle M ˆG the action of the gauge group
C8pM,Gq acts on the space of connections viewed using lemma C.2.3 as Ω1pM, gq
as follows

α ¨ h “ Adh´1pαq ` h˚pωGq

This is commonly found in the literature as the following expression which holds for
matrix groups but notationally is slightly incorrect

α ¨ h “ h´1αh` h´1dh

Proof. We have Hpx, gq “ px, hpxqgq and so Tpx,gqHpu, vq “ pu, ThpxqRg ˝ Txhpuq `
TgLhpxqpvqq as the differential of group multiplication at the identity is addition in
the Lie algebra. So

pH˚
pωAqqpx,gqpu, vq “ pωAqx,hpxqgpTpx,gqHpu, vqq

“ pωAqx,hpxqgpu, ThpxqRg ˝ Txhpuq ` TgLhpxqpvqq

“ Adphpxqgq´1ppωMqxpuqq ` pωGqhpxqgpThpxqRg ˝ Txhpuq ` TgLhpxqpvqq

“ Adg´1pAdhpxq´1ppωMqxpuqqq ` pωGqhpxqgpThpxqRg ˝ Txhpuqq ` pωGqhpxqgpTgLhpxqpvqq

“ Adg´1pAdhpxq´1ppωMqxpuqqq ` Adg´1ppωGqhpxqgpTxhpuqqq ` pωGqgpvq

“ Adg´1pAdhpxq´1ppωMqxpuqq ` ph
˚
pωGqqxpuqq ` pωGqgpvq

Remark: This lemma is important as it describes the action of the gauge
group locally as locally all bundles are trivial.

Lemma 1.1.4. (Gauge Group and Curvature)
Let pπ : P Ñ M,G, ¨q be a principle bundle, H P GP and A P AP . Then if FA P
Ω2pP, gP q is the curvature of A we have

FA¨H “ H˚
pFAq

Proof.

FA¨H “ dωA¨H ` rωA¨H ^ ωA¨Hs “ dpH˚ωAq ` rH
˚
pωAq ^H

˚
pωAqs

“ H˚
pdωA ` rωA ^ ωAsq “ H˚

pFAq
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Lemma 1.1.5. (Gauge Group Action on TAP )
Let pπ : P Ñ M,G, ¨q be a principle bundle. Consider the action of GP on AP .
There is a natural action of GP on TAP defined for αA P TAAP and H P GP such
that αA ¨H “ TARHpαAq. If h P C8pP,Gq is the equivariant map associated to H
then

αA ¨H “ Adh´1pαAq P Ω1
pM, gP q “ TA¨HAP

where for αxpXxq “ pp, vq we have Adh´1pαAqxpXxq “ pp,Adhppq´1pvqq “ pp¨hppq´1, vq
which is well defined as h is equivariant.

Proof. ForAt “ A`tαA P AP we have αA “ limtÑ0
At´A
t

. So αA¨H “ limtÑ0
At¨H´A¨H

t
.

This then means that locally we have

αA ¨H “ lim
tÑ0

At ¨H ´ A ¨H

t
“ lim

tÑ0

Adh´1pωAtq ` h
˚pωGq ´ Adh´1pωAq ´ h

˚pωGq

t

“ Adh´1 lim
tÑ0

ωAt ´ ωA
t

“ Adh´1pαAq

So locally the action is given by Adh´1pαAq. This doesn’t depend on any local data
and so can be seen to extend to the global form αA.

Remark: As AP is affine TAP – AP ˆ Ω1pM, gP q and this argument
holds. However to make sense of TAP in general requires some work as
AP is infinite dimensional.

Gauge Group as an Infinite dimensional Lie Group: We can think of the
gauge group as an infinite dimensional Lie group. Noting the gauge group is given
by ΓpAdpP qq we can identify the “Lie algebra” of the gauge group as TeΓpAdpP qq “
ΓpadpP qq “ Ω0pM, gP q.

For h P ΓpAdpP qq, α P ΓpadpP qq, x PM and pp, vq “ αpxq we have an analogy of the
adjoint action given by Adhpαqpxq “ pp,Adhpxqvq. We have the following analogy of
the exponential map exppαqpxq “ pp, exppvqq. A Lie bracket for α, β P Ω0pM, gP q is
given by rα ^ βs P Ω0pM, gP q.

There is an analogy of the fundamental vector field associated to an element of the
Lie algebra α P Ω0pM, gP q. This is an element X P XpAP q such that XA “ TALApβq.

Lemma 1.1.6. (Infinitesimal Gauge Group Action)
Let pπ : P ÑM,G, ¨q be a principle bundle. For β P TeGP “ Ω0pM, gP q and A P AP
we have

TALApβq “
d

dt
A ¨ expptβq “ dAβ

Where dA is the covariant derivative. See Appendix D.

Proof. If A is given locally by α then from lemma 1.1.3 locally we have

d

dt
A ¨ expptβq “

d

dt
pexpptβqα expp´tβq ` expp´tβqd expptβqq

“
d

dt
pα ` tpβα ´ αβq ` ...` tdβ ` ...q “ 2rβ ^ αs ` dβ “ dAβ

where the last equality comes from lemma D.2.3.
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Remark: Viewing the gauge group as an infinite dimensional manifold
can be made rigorous, however, is out of the scope and purpose of this
thesis. For those interested in some of the foundations of infinite dimen-
sional manifolds consult [KM97]. There is then a discussion of the spaces
involved in section 14 of [AB83].

1.1.3 The Moduli Space of Flat Connections

Definition: (Flat Connections)
Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP . If for
each point p P P if there exists an open U Ď M of πppq such that
pπ´1pUq, A|π´1pUqq – pU ˆG, TM ˆ t0uq we say that A is flat.

That is, a connection is flat if the connection is given locally by the
trivial connection. Denote the set of flat connections on P by AP,flat.

Lemma 1.1.7. Let pπ : P Ñ M,G, ¨q be a principle bundle. A P AP is flat if and
only if FA “ 0.

Proof. Using lemma D.2.4 and Frobenius’s Theorem A.3.2 the result follows. As
from lemma D.2.4 we can see that HA Ď TP is an integrable sub-bundle of TP ,
that is it is closed under the Lie bracket, and Frobenius’s theorem says that this is
true if and only if HA is defined by a foliation, that is locally the connection is given
by the trivial connection.

Definition: (Moduli Space of Flat Connections on a principle bundle
P , RP )
Let pπ : P ÑM,G, ¨q be a principle bundle. Let AP,flat Ď AP be the set
of flat connections with subspace topology. Define RP “ AP,flat{GP to
be the moduli space of flat connections on P .

Definition: (Moduli Space of Flat G-connections on M , RM,G)
Let M be a smooth manifold. Let

PG “ tIsomorphism classes of prinicple G-bundles over Mu

and define the moduli space of flat connections over M to be given
by

RM,G “
ğ

PPPG

RP

Remark: This is well defined as the gauge group is a special class of
automorphisms of P and so it sends integrable sub-bundles of the tan-
gent bundle to integrable sub-bundles. That is, the gauge group sends
flat connections to flat connections. Also from lemma 1.1.4 we see that
FA¨H “ H˚FA “ H˚p0q “ 0.

Remark: The moduli spaceRM,G can be given more structure in various
cases. For surfaces, the theory is well documented [AB83] [Aud04] [Gol86]
[Tyu03] and RM,G can be given the structure of a complex manifold,
Kähler manifold or symplectic manifold on a dense set of RM,G with a
few singularities.
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1.1.4 The Representation Variety and Character Variety

The moduli space arises from the differential geometry of connections. There are
some closely related spaces coming from algebra that give rise to the same space.

Definition: (Representation Variety)
Let G be a Lie group and Γ be a group. We define the representation
variety of Γ with respect to G as

HompΓ, Gq

with the topology inherited by G.

Definition: (Character Variety)
Let G be a Lie group and Γ be a group. We define the character variety
of Γ with respect to G as

HompΓ, Gq{G

where G acts on HompΓ, Gq by point-wise conjugation and the topology
is inherited by G. That is for ρ P HompΓ, Gq, a P Γ and g P G we have
pρ ¨ gqpaq “ g´1ρpaqg.

Theorem 1.1.8. Let M be a path connected smooth manifold, G a Lie group and
x PM . The holonomy map (of corollary E.2.2) gives a bijection

RM,G – Hompπ1pM,xq, Gq{G

Proof. Injectivity: Let pπP : P Ñ M,G, ¨q and pπQ : Q Ñ M,G, ¨q be principle
bundles, A P AP,flat and B P AQ,flat with ρA, ρB P Hompπ1pM,xq, Gq{G associated
to A and B by corollary E.2.2 such that ρA “ ρB.

We wish to show that there exists an equivariant bundle map that covers the iden-
tity H : P Ñ Q such that A “ H˚pBq. This will show that P – Q and with this
association A “ B.

Notice that as ρA “ ρB there exists p P π´1
P pxq and q P π´1

Q pxq such that ρA,p “ ρB,q
where ρA,p is the holonomy representation of A based at p and ρB,q is the holonomy
representation of B based at q (simply adjusting q ÞÑ q ¨ g).

Consider y P M and let γ : r0, 1s Ñ M be a piecewise smooth path in M such
that γp0q “ x and γp1q “ y. Let rγA : r0, 1s Ñ P be the horizontal lift of γ with
respect to A and the point p and rγB : r0, 1s Ñ Q be the horizontal lift of γ with
respect to B and the point q.

Define H : P Ñ Q to be the equivariant bundle map such that HprγAp1qq “ rγBp1q.
Note that this determines the function H completely as M is path connected and
H is defined to be equivariant. We want to show that this is well defined and inde-
pendent of the path γ and the points p and q.
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It can be shown that H is smooth by noting that it is defined as the solution
of a differential equation and by its definition it is a bundle map. For δ : r0, 1s ÑM

another path such that δp0q “ x and δp1q “ y and let rδA : r0, 1s Ñ P be the horizon-

tal lift of δ with respect to A and the point p and rδB : r0, 1s Ñ Q be the horizontal
lift of δ with respect to B and the point q. We have the following where we let γ be
the path flowing in the opposite direction and γ ‹ δ the path of γ followed by δ.

HprγAp1q ¨ ρA,ppδ ‹ γqq “ HprγAp1q ¨ ρA,rγAp1qpγ ‹ δqq “ HprδAp1qq

“ rδBp1q “ rγBp1q ¨ ρB,rγBp1qpγ ‹ δq “ rγBp1q ¨ ρB,qpδ ‹ γq

Notice that ρA,ppδ‹γq “ ρB,qpδ‹γq. Therefore if two paths reach the same end point
the loop they form has trivial holonomy in both P and Q and so H is well defined.

Now H was also defined to be equivariant which by the previous computation is
also shown to be well defined on all of P . Therefore we see that A and B are gauge
equivalent flat connections as from the definition of H we have H˚pBq “ A as hori-
zontal vectors are mapped to horizontal vectors.

Surjectivity: Let ρ P Hompπ1pM,xq, Gq. Let π : ĂM Ñ M be the universal cover

of M . Notice that π1pM,xq acts on ĂM via its association with the Deck transfor-

mations of π : ĂM ÑM .

Let P “ ĂMˆπ1pM,xqG where ĂMˆπ1pM,xqG “ ĂMˆG{ „ with pry ¨rγs, gq „ pry, ρprγsqgq.

Notice we have P “ ĂM ˆG{π1pM,xq such that π1pM,xq acts on ĂM ˆG such that
prx, gq ¨ rγs “ prx ¨ rγs, ρprγsq´1gq. Define πP : P Ñ M to be πP rry, gs “ πpryq. This is

well defined as the action of π1pM,xq on ĂM fixes the fibres of π. Define the action
of G on P such that for g1 P G and rry, gs P P we have rry, gs ¨ g1 “ rry, gg1s.

We can see that pπP : P Ñ M,G, ¨q defines a principle fibre bundle. Notice that

TP “ TĂM ˆπ1pM,xq TG “ TĂM ˆ TG{π1pM,xq where the action of π1pM,xq on ĂM

and G lifts to an action on TĂM and TG. Let A P AP such that ϕHA “ trv, 0s P

TĂM ˆ TG{π1pMqu. This is well defined and is flat as it is closed under the Lie
bracket which is a property that descends to the quotient.

Now let rγs P π1pM,xq. Consider rγ the lift of γ to the universal cover with
rγp0q “ rx P π´1pxq. Then γ lifts to the path rrγ, es in P . Notice that rrγ, esp1q “
rrx ¨ rγs, es “ rrx, ρprγsqs “ rrγ, esp0q ¨ ρprγsq.

This shows that P with A is a principle G bundle with flat connection such that the
holonomy representation class is given by rρs.

Remark: This association gives the moduli space a topology.

Remark: For smooth manifolds the fundamental group is finitely gener-
ated and therefore the character variety Hompπ1pM,xq, Gq{G is a finite
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dimensional space. This shows that the moduli space of flat connections
is in fact finite dimensional.

Remark: This theorem says that a gauge equivalence class of flat con-
nections determines G-covers of our manifold where G is taken to have
the discrete topology. Note that these covers will locally be homeomor-
phic to Rn however in general their topologies will have similar properties
of the so-called “long line”.

Lemma 1.1.9. Let pπ : P ÑM,G, ¨q be a principle bundle with M path connected.
Let A P AP,flat. Let ρA P Hompπ1pM,xq, Gq be a representative of the representation
of the fundamental group determined by A. Then we have StabGP pAq – StabGpρAq.

Proof. Suppose that h : P Ñ G such that hpp ¨ gq “ g´1hppqg. Suppose that
H : P Ñ P such that Hppq “ p ¨ hppq and that A ¨H “ A.

As A ¨H “ A for any horizontal path in pP,Aq say rγ : r0, 1s Ñ P with rγp0q “ p we
have H ˝ rγ ¨ hppq´1 “ rγ as H ˝ rγ ¨ hppq´1 and rγ are both horizontal lifts of πprγq with

H ˝ rγ ¨ hppq´1
p0q “ Hppq ¨ hppq´1

“ p ¨ hppqh´1
ppq “ p “ rγp0q

So H ˝ rγ “ rγ ¨ hppq. Notice that as M is path connected for y P M we have γ :
r0, 1s ÑM such that γp0q “ πppq and γp1q “ y. So rγ : r0, 1s Ñ P is a horizontal lift
such that rγp0q “ p and take q “ rγp1q P π´1pyq. Then H ˝rγp1q “ Hpqq “ rγp1q ¨hppq.

Notice that as H is equivariant H is determined by one element on each fibre.
As we have Hpqq “ rγp1q ¨ hppq for rγp1q “ q P π´1pxq. We can see that H is deter-
mined completely by hppq and A as it determines the horizontal lifts rγ.

Recall that for rγs P π1pM,xq we have rγ : r0, 1s Ñ P with rγp0q “ p and rγp1q “
p ¨ ρAprγsq. So we have

p¨hppqρAprγsq “ Hppq¨ρAprγsq “ Hpp¨ρAprγsqq “ H˝rγp1q “ rγp1q¨hppq “ p¨ρAprγsqhppq

This means that hppqρAprγsq “ ρAprγsqhppq and so hppq´1ρAprγsqfppq “ ρAprγsq.
We can identify H ÞÑ hppq and note that for all rγs P π1pM,xq we have

hppq´1ρAprγsqhppq “ ρAprγsq

Therefore hppq P StabGpρAq. We have StabGP pAq ď StabGpρAq.

Notice that for g P StabGpρAq we can define g ÞÑ H such that hppq “ g. This
means that StabGP pAq ě StabGpρAq. This completes the proof.

Remark: This is important as it says that the failure of the action of
the gauge group GP to be free on A P AP is measured by the failure of
the action of G on ρA P Hompπ1pΣ, xq, Gq to be free. From the outset
quantifying the second is a much easier task. Moreover this says that
the singularities induced from the orbits that aren’t free are given by the
same points in both viewpoints of the moduli space.
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1.2 The Moduli Space of Flat Connections on Cir-

cles and Surfaces

The following section will describe the moduli space in dimensions 1 and 2. For
a 0-dimensional base everything is trivial. The next case is in dimension 1. This
example can be understood using theorem 1.1.8. Alternatively, it can be understood
using gluing techniques. The moduli space of flat connections over surfaces can also
be understood using theorem 1.1.8 and gluing techniques. The complexity involved
in the topology of moduli space over surfaces already starts to increase.

1.2.1 The Moduli Space of Flat Connections on the Circle

The circle is a very concrete example and is in fact the only connected compact
1-dimensional smooth manifold without boundary so is in this sense important. We
have the following result.

Theorem 1.2.1.
RS1,G “ G{AdpGq

Proof. (Using theorem 1.1.8)
π1pS

1q “ Z and so RS1,G “ Hompπ1pS
1qGq{G “ HompZ, Gq{G “ G{AdpGq.

Now we will elucidate some hidden aspects of this example that are not from the
outset clear from the proof of theorem 1.1.8.

Lemma 1.2.2. Let pπ : P Ñ r0, 1s, G, ¨q be a principle bundle. Then P is trivial.

Proof. We can find a0, ..., an P r0, 1s such that
Ťn´1
k“0rak, ak`1s “ r0, 1s on which

π´1prak, ak`1sq is trivial. Therefore given an initial point and tangent vector π´1pakq
we can define a section of π´1prak, ak`1sq with initial point and tangent vector. We
can then inductively build up a section on P by using the local sections that agree
on π´1pakq.

Lemma 1.2.3. Let pπ : r0, 1s ˆ G Ñ r0, 1s, G, ¨q be the trivial bundle. Then every
connection on r0, 1s ˆG is gauge equivalent to the trivial connection.

Proof. Each connection defines and is defined by some smooth section of r0, 1s ˆG
or path in G but we can the take this path composed with the inverse in G to get
a gauge transformation that trivialises the connection.

Lemma 1.2.4. Let S1 “ r0, 1s{ „ with 0 „ 1 and pπ : P Ñ S1, G, ¨q be a principle
bundle and A P AP . Let pπ1 : P 1 Ñ r0, 1s, G, ¨q be the principle bundle induced
on r0, 1s by S1 and A1 the connection induced from A. Then by the lemma 1.2.2
there exists ϕ : r0, 1s ˆ G – P 1. Then there exists H P GP such that ϕ˚pA ¨Hq has
pHϕ˚pA¨Hqq0,g “ tpv, 0q P T0r0, 1s ˆ TgGu and pHϕ˚pA¨Hqq1 “ tpv, 0q P T1r0, 1s ˆ TgGu.

Proof. We use a bump function and the exponential map of G to construct a smooth
function C8pr0, 1s, Gq that is associated to H.
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Combining these result we can now make use of the fact that S1 “ r0, 1s{ „ where
0 „ 1 to get some understanding of the structure of RS1,G by glueing principle
bundles with connections on r0, 1s.

Corollary 1.2.5. Let S1 “ r0, 1s{ „ with 0 „ 1 and pπ : P Ñ S1, G, ¨q be a principle
bundle and A P AP . Then there exists g P GGˆpoint “ G such that for the trivial
section on r0, 1sˆG we have pP,Aq – pr0, 1sˆG, T q{ „ where p1, hq „ p0, ghq where
T then induces a connection on r0, 1s ˆG{ „ as pHT q0 “ pHT q1.

Proof. From the last lemmas we can “flatten” P at 0 „ 1 and then noting that this
is defined by gluing a connection on r0, 1s we then see that this connection is then
gauge equivalent to the trivial connection. The gauge equivalence must fix the space
at 0 and 1 and so we see that all along pπ : P Ñ S1, G, ¨, Aq was defined by some
gluing of the trivial bundle on T with the trivial connection.

This shows that gluing together gauge equivalence classes of flat connections on r0, 1s
makes sense and in fact gives rise to all possible gauge equivalence classes on S1. To
classify gauge equivalence classes of flat connections on S1 is reduced to understand
the gluing of r0, 1s bundles and the gauge equivalence classes of flat connections
on r0, 1s. Notice that we showed the latter to be trivial and that the original was
given by G. The next theorem determines when different gluing determine gauge
equivalence connections.

Theorem 1.2.6.
RS1,G “ G{AdpGq

Proof. There is only one gauge equivalence class of flat connections on r0, 1s. To
determine the gauge equivalence classes of flat connections on S1 by the previous
lemmas and corollary, we must determine what flat connections induced by glueing
this trivial connection are gauge equivalent. Considering the gluing we have p0, ghq „
p1, hq and p0, jhq „ p1, hq induce the same gauge equivalence class of flat connections
if and only if j “ k´1gk. This is because by choosing the trivial representative of the
flat connection we haven’t completely used all possible gauge transformations. We
can take the gauge transformations given by px, gq ÞÑ px, kgq for some k P G. This
means that we have p0, ghq ÞÑ p0, kghq and p1, hq ÞÑ p1, khq. In particular under this
gauge transformation we have p0, kghq „ p1, khq and so p0, kgk´1khq „ p1, khq. In
other words p0, kgk´1hq „ p1, hq. This shows that all gauge equivalence classes of
flat connections on S1 are given by elements of G{AdpGq.

This example illustrates the importance of gluing. Connections are defined by local
information and the gauge equivalence is also defined by local information. Gluing
together spaces with connections therefore makes sense in the same way that man-
ifolds are locally defined objects and we can glue them together. Understanding
some basic examples allows us to understand the global picture by gluing together
the simpler pieces. This then reduces the problem to understanding the gluing.
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1.2.2 Trinion Decompositions and the Pair of Pants

The moduli space of flat connections on a surface has been extensively studied.
See [AB83] [Aud04] [Gol84] [Gol86] [JW92] [JW94] [Wit91].

There is a classification of surfaces with boundary and their fundamental groups
are known. This allows an explicit description of the moduli space of flat connec-
tions on a surface. Gluing then allows further understanding as shown in section
1.2.1.

Notation: From the classification of surfaces we know that compact orientable
(note: not oriented) surfaces with boundary are classified by their genus g and the
number of boundary circles n. For example the surface with three boundary circles
of genus two is depicted here.

So we denote the compact orientable surface of genus g with n boundary circles as
Σg,n. The surface above is then denoted by Σ2,3. We will denote the moduli space
of flat connections on Σg,n with fibre G as RG,g,n.

Remark: We have the following standard presentation for the funda-
mental group of Σg,n.

π1pΣg,n, xq “
@

a1, b1, ..., ag, bg, c1, ..., cn|a1b1a
´1
1 b´1

1 ...agbga
´1
g b´1

g c1...cn
D

See section 1 of [Hat02] for more on the fundamental group. Note that
in particular for n ą 0 we have π1pΣg,n, xq – F2g`n´1 the free group on
2g ` n ´ 1 generators. This means that for n ą 0 the representation
theory of this group is trivial.

Example: Let T be an Abelian Lie group. Consider

RT,g,n – Hompπ1pΣg,n, xq, T q{T
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Noting that as T is Abelian conjugation is given by the trivial group action and we
have RT,g,n – Hompπ1pΣg,n, xq, T q. We can then see from the previous remark that
if n ‰ 0 we have

RT,g,n – T 2g´1`n

and if n “ 0 we have
RT,g,0 – T 2g

Pair of Pants Decompositions: Every hyperbolic surface with boundary can be
obtained by glueing together three-holed spheres along their boundaries. The three-
holed sphere is often referred to the pair of pants or the trinion. Given a hyperbolic
surface, there is no unique decomposition into pairs of pants. The number of pairs
of pants in a decomposition is given by the negative of the Euler characteristic. An
example is given here

This makes the pair of pants a very important surface when dealing with locally
objects. It will play the role of the interval in the previous section 1.2.1. We have
the following definitions and lemma.

Definition: (Trinion Decomposition)
Let Σ be a surface. Let Γ be a set of circles in Σ such that Σ ´ Γ
is a disjoint union of trinions Trin. We say that Trin is a trinion
decomposition with Γ the set of circles.

Remark: We are only really interested in trinion decompositions up to
isotopy.

Definition: (Connection Adapted to a Trinion Decomposition)( [JW92]
Definition 2.2)
Let Σ be a compact orientable surface with or without boundary, Trin
a trinion decomposition with circles given by Γ and let pπ : P Ñ Σ, G, ¨q
be a principle bundle and A P AP . We say A is a adapted to a trinion
decomposition of for each circle γ P Γ in the trinion decomposition
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there is a tubular neighbourhood of the circle γ Ď U with local coor-
dinates px, θq´1 : p0, 1q ˆ S1 – U such that ppx, θq´1q˚pωA|Uq “ vdθ for
some v P g.

Remark: This means that the connection looks like the canonical flat
connection on the circle with holonomy given by Holprγsq for each γ P Γ.

Lemma 1.2.7. ( [Wit91] section 4.5)
Let G a semi-simple Lie group and let T ď G be the maximal torus. Let Trin be a
trinion decomposition of Σg,n. Then the map

gTrin : RG,g,n Ñ
 

prAtsqtPTrin P pRG,0,3q
Trin : for t1, t2 P Trin with γ P Bt1 and

γ P Bt2 we have rpAt1q|γs “ rpAt2q|γs
(

s.t gTrinpAq “ pA|tqtPTrin

is surjective with generic fibres (i.e pre-images of generic points are) given by T Γ{L
where L ď T Γ is a subgroup of order #ZpGq2g´3 where ZpGq is the center of G.

Proof. Given each γ P Γ, t1, t2 P Trin with γ P Bt1 and γ P Bt2 and for a rep-
resentative of rAts P RG,0,3 say Ati P Aπti :PtiÑΣ0,3,f lat we have a gauge equivalence
Φγ : Pt1 Ñ Pt2 . We can construct a bundle on π : P Ñ Σg,n by using Φγ to identify
or glue the bundles Pt Ñ Σ0,3 along each γ P Γ. See pg. 196 in [Wit91] for a
brief discussion on the fibres but it can be shown generically that for t P T we have
tγΦγ defines a set of gauge transformations that lead to the same gauge equivalence
class of flat connections as the set of gauge transformations Φγ which shows that
generically the fibre of the map is given by T 3g´3`n.

Corollary 1.2.8. (Gauge Equivalence Classes and Connections Adapted to a Trin-
ion Decomposition)( [JW92] lemma 2.3 and [Wit91] section 4.5)
Let Σ be a compact orientable surface with or without boundary, Trin a trinion
decomposition with circles given by Γ and let pπ : P Ñ Σ, G, ¨q be a principle bun-
dle and A P AP . There exists H P GP such that A ¨ H is adapted to the trinion
decomposition Trin.

The spaceRG,0,3 can be used to build up information about the surfaces with smaller
Euler characteristic. SUp2q is the simplest non-abelian Lie group. The following
lemma will be important later on.

Lemma 1.2.9. (RSUp2q,0,3) [JW92] [Aud04]

RSUp2q,0,3 – tpx, y, zq P R3 : x ď y ` z, y ď x` z, z ď x` y, x` y ` z ď 2u

“ tpx, y, zq P R3 : |x´ y| ď z ď minpx` y, 2´ x´ yqu

Proof. From theorem 1.1.8 we have the following.

RSUp2q,0,3 – Hompπ1pΣ0,3q, SUp2qq{SUp2q – tpA,B,Cq P SUp2q : ABC “ 1u{SUp2q

Let TrpAq “ 2 cospπθ1q, TrpAq “ 2 cospπθ2q and TrpAq “ 2 cospπθ3q for θ1, θ2, θ3 P

r0, 1s. Every element of SUp2q can be diagonalised by conjugation and so up to
conjugation we can take

A “

„

eiπθ1 0
0 e´iπθ1
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We can now conjugate B by diagonal matrices. That is the matrices that leave A
fixed by conjugation. This means that we can choose

B “

„

z w
´w z



for z P C and w P r0, 1s. Notice that Repzq “ cospπθ2q and Repzq2`Impzq2`w2 “ 1.
Therefore Impzq2 ` w2 “ sin2pπθ2q. So w ` iImpzq “ sinpπθ2qpcospπβq ` i sinpπβqq
for some β P r0, 1s and so w “ sinpπθ2q cospπβq and z “ cospπθ2q`i sinpπθ2q sinpπβq.

AB “

„

eiπθ1 0
0 e´iπθ1

 „

cospπθ2q ` i sinpπθ2q sinpπβq sinpπθ2q cospπβq
sinpπθ2q cospπβq cospπθ2q ´ i sinpπθ2q sinpπβq



“

„

eiπθ1pcospπθ2q ` i sinpπθ2q sinpπβqq eiπθ1 sinpπθ2q cospπβq
e´iπθ1 sinpπθ2q cospπβq e´iπθ1pcospπθ2q ´ i sinpπθ2q sinpπβqq



Then we can see that cospπθ3q “ cospπθ1q cospπθ2q ´ sinpπθ1q sinpπθ2q sinpπβqq. So

sinpπθ1q sinpπθ2q sinpπβqq “ cospπθ1q cospπθ2q ´ cospπθ3q

If θ1 ‰ 0 and θ2 ‰ 0 we have

sinpπβq “
cospπθ1q cospπθ2q ´ cospπθ3q

sinpπθ1q sinpπθ2q

“
cospπpθ1 ` θ2qq ` sinpπθ1q sinpπθ2q ´ cospπθ3q

sinpπθ1q sinpπθ2q
“ 1`

cospπpθ1 ` θ2qq ´ cospπθ3q

sinpπθ1q sinpπθ2q

Note that as 0 ď sinpπθ1q sinpπθ2q that sinpπβq ď 1 if and only if cospπpθ1 ` θ2qq ´

cospπθ3q ď 0 and so cospπp2´ θ1´ θ2qq “ cospπpθ1` θ2qq ď cospπθ3q. Notice that on
r0, 2s that cos is non-increasing. This means that θ3 ď θ1 ` θ2 and θ3 ď 2´ θ1 ´ θ2

by the symmetries of A,B,C we get

θ3 ď θ1 ` θ2, θ2 ď θ1 ` θ3, θ1 ď θ2 ` θ3 and θ1 ` θ2 ` θ3 ď 2

Also notice that θ1, θ2, θ3 determine sinpβq and therefore cospβq up to sign but w P
r0, 1s then fixes that. This means that

θ : RSUp2q,0,3 Ñ r0, 1s s.t θprA,B,Csq “ pθ1, θ2, θ3q

is a bijection. We can see that this is also continuous and the inverse map is also
continuous.

Using theorem 1.1.8 we can determine the moduli space in higher dimensions as
well.

Lemma 1.2.10. (RpS1qn,G)
Let G be a compact semi-simple Lie group with maximal torus T and let NpT q be
the normaliser of T . Then if we let NpT q act by simultaneous conjugation on T n

then we find
RpS1qn,G – T n{NpT q
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Proof. From theorem 1.1.8 we have the following.

RpS1qn,G – HompZn, Gq{G – tA1, ..., An P G : AiAj “ AjAiu{G

By conjugating we can take Ai P T however as AiAj “ AjAi we must have Ai P T .
Taking A P T is well defined up to conjugation by elements of NpT q.

Remark: Notice that T ď NpT q acts trivially on T n so we really get an
action of the Weyl group W “ NpT q{ZpT q “ NpT q{T on T n. For n “ 1
we get T {W “ G{AdpGq as expected.

Remark: In higher dimensions every finitely generated group arises as
the fundamental group of a smooth manifold of that dimension. The
distinguishing features between higher dimensions is then encoded in the
gluing.

1.2.3 Remark on a Complex and Smooth Structure in the
Algebraic Case

For a surface Σ and Lie group G there is a natural smooth structure we can put on
a dense set of RΣ,G. Considering the presentation

π1pΣg,n`1, xq “ xa1, b1, ..., ag, bg, c1, ..., cny

we can see that
Hompπ1pΣg,n, xq, Gq – G2g`n´1

The set of points that aren’t free are given by ZpGq2g`n Ď G2g`n where ZpGq is the
center of G. Noting that ZpGq is closed we see G2g`n ´ ZpGq2g`n is a dense open
set of a smooth manifold and is therefore a smooth manifold. We then see that
pG2g`n ´ ZpGq2g`nq{G is a smooth manifold. Note that pG2g`n ´ ZpGq2g`nq{G Ď

Hompπ1pΣg,n`1, xq, Gq{G is dense.

If we take G as a complex algebraic group then we see that

Hompπ1pΣg,n, xq, Gq Ď G2g`n
Ď CdimCpGqp2g`nq

is defined by polynomial equations. This means that we can give

Hompπ1pΣg,n, xq, Gq

the structure of a complex variety. We can sometimes take an algebro-geometric
quotient Hompπ1pΣg,n, xq, Gq{{G which gives the moduli space the structure of a
variety.

There is an algebro-geometric viewpoint of the moduli space for certain groups such
as SUpnq and Upnq. There is a correspondence to the moduli space of a certain class
of bundles over a given Riemann surface. This gives the moduli space the structure
of a variety that depends on the Riemann surface.

See [Gol84] or [Gol85] for more in the algebraic case. For the algebro-geometric
viewpoint see the review [Tha95]. For the analytic case see section 2.1.2 or [AB83].
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Chapter 2

A Symplectic Structure on
RG,g,npC1, ..., Cnq

2.1 Atiyah-Bott Symplectic Form and a Symplec-

tic Form on the Moduli Space of Flat Connec-

tions

Historically connections haven’t been the standard example of a classical mechan-
ical system or, in other words, a symplectic manifold. The first example was the
theory of electro-magnetism. However, to generalise electro-magnetism it became
important to consider systems with, what physicists call, local symmetries. These
are physical theories with symmetries given by the space of smooth functions from
the space-time of the theory to a Lie group. This is the classical framework on which
modern particle physics is based. The gauge group of a trivial principle bundle is
identified with exactly this space. When studying quantum mechanics, it is often
useful to have a classical system to then quantise. This is the motivation to look
for a symplectic structure on the space of connections. Notice that this may seem
slightly difficult as the space of connections is an infinite dimensional affine space;
however the fact that it is an affine space means that constructing a form reduces
to finding a non-degenerate anti-symmetric 2-form.

When we have a 2-dimensional space-time we can in fact construct a symplectic
form on the space of connections. The moduli space of flat connections is then in
fact a symplectic or Hamiltonian reduction of the space of connections. This re-
moves the degrees of freedom of defined by the gauge group symmetries.

There are many references on this subject for the approach through the theory
of connections consult chapter V of [Aud04] and [AB83] for the algebraic approach
via representations of the fundamental group see [Gol84] [Gol86] [Gol85] [Kar92]
for quantisation using a real polarisation see [JW92] for some aspects related to the
symplectic volume and intersection numbers and see [JW94] [Wei98] [Wit91] [Wit92]
for some relation to algebraic geometry see [Tha95] and for a general overview
see [Tyu03].
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2.1.1 Definition and Moment Map

See section 3 of [AB83] for another presentation of these definitions and results. No-
tice that we have not presented all the information on infinite dimensional manifolds
and their smooth structures. This is mentioned in section 14 of [AB83].

Definition: (Natural Riemannian Metric on gP )
Let pπ : P Ñ M,G, ¨q be a principle bundle and consider the adjoint
bundle adpP q “ gP . Let κ : g ˆ g Ñ R be a positive definite inner-
product invariant under the adjoint action of G on g (for example the
killing form). We can use this to define a natural Riemannian metric
on gP as follows

ηP,κ P Γpg˚P b g˚P q s.t for pp, vq, pq, uq P π´1
P pxq

we have pηP,κqxppp, vq, pq, uqq “ κpv, uq

This is well defined as κ is Ad-invariant and a smooth section as κ is
smooth as inner products are smooth on R-vector spaces with standard
smooth structure.

Definition: (Functions from ΩkpM, gP q b ΩlpM, gP q to Ωk`lpMq)
Let pπ : P ÑM,G, ¨q be a principle bundle. Consider the adjoint bundle
adpP q “ gP and its natural Riemannian metric ηP,κ associated to κ :
g ˆ g Ñ R a positive definite inner-product invariant under the adjoint
action of G on g. We can use ηP,κ to define a function from ΩkpM, gP qb
ΩlpM, gP q to Ωk`lpMq as follows

p ^ qκ : Ωk
pM, gP q b Ωl

pM, gP q Ñ Ωk`l
pMq s.t pα ^ βqκpX1, ..., Xk`lq

“
1

pk ` lq!

ÿ

σPSk`l

signpσqηP,κpαpXσp1q, ..., Xσpkqq, βpXσpk`1q, ..., Xσpk`lqqq

Lemma 2.1.1. Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP . Let ϕHA
be the horizontal projection associated to A. Let α, β P Ω˚pM, gP q. Then

dpα ^ βqκ “ pdAα ^ βqκ ˘ pα ^ dAβqκ

Proof. The covariant derivative acting forms on M with values in the adjoint bundle
is given by dAα “ dα ` rωA ^ αs. So we get

pdAα^βqκ˘pα^dAβqκ “ pdα^βqκ˘pα^dβqκ`prα^ωAs^βqκ˘pα^rωA^βsqκ

Notice that the invariance of κ under the adjoint action means that κpru, vs, wq “
κpu, rv, wsq which means that

prα ^ ωAs ^ βqκ “ ˘pα ^ rωA ^ βsqκ

Therefore

pdAα ^ βqκ ˘ pα ^ dAβqκ “ pdα ^ βqκ ˘ pα ^ dβqκ “ dpα ^ βqκ
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Definition: (Atiyah-Bott Metric)
Let pM, ηq be a Riemannian manifold and pπ : P Ñ M,G, ¨q be a prin-
ciple bundle. Consider the adjoint bundle adpP q “ gP and its natural
Riemannian metric ηP,κ associated to κ : g ˆ g Ñ R a positive definite
inner-product invariant under the adjoint action of G on g. Define the
following bilinear form on Ω1pM, gP q called the Atiyah-Bott metric.

gAB : Ω1
pM, gP q b Ω1

pM, gP q Ñ R s.t gABpα, βq “

ż

M

pα ^ ˚βqκ

Where ˚ is the Hodge star operator associated to η.

Topological invariants can’t depend on η and the Hodge star operator ˚. In di-
mension 2 we are lucky and can define the following form without the need of any
Riemannian metric.

Definition: (Topological Atiyah-Bott Form for 2 Dimensional Mani-
folds)
Let Σ be a 2-manifold and pπ : P Ñ Σ, G, ¨q a principle bundle. Consider
the adjoint bundle adpP q “ gP and its natural Riemannian metric ηP,κ
associated to κ : g ˆ g Ñ R a positive definite inner-product invariant
under the adjoint action of G on g. Consider the space of connectionsAP .

Recall from section C.3 that AP is an affine space based on Ω1pΣ, gP q.
This means there is a canonical association for A P AP given by TAAP “
Ω1pΣ, gP q noting that the tangent space of any affine space is canoni-
cally isomorphic to that vector space the affine space is based on. Using
this canonical isomorphism we can define the following form called the
Atiyah-Bott symplectic form

ωAB,P,κ P Ω2
pAP q s.t for α, β P Ω1

pΣ, gP q “ TAAP

we have ωAB,P,κA pα, βq “

ż

Σ

pα ^ βqκ

Remark: AP is an infinite dimensional smooth-manifold. The construc-
tions of the tangent space and cotangent space will go through in this
case. Notice that the de Rham complex will in general be infinitely long
in this case.

Lemma 2.1.2. (pAP , ωAB,P,κq is an Infinite Dimensional Symplectic Manifold)
Let Σ be a 2-dimensional manifold and pπ : P Ñ Σ, G, ¨q be a principle bundle.
Consider the adjoint bundle adpP q “ gP and its natural Riemannian metric ηP,κ
associated to κ : g ˆ g Ñ R a positive definite inner-product invariant under the
adjoint action of G on g. pAP , ωAB,P,κq is a symplectic manifold.

Proof. ωAB,P,κA is constant with respect to the canonical trivialisation of TAP “

AP ˆ Ω1pΣ, gP q. This means that dωAB,P,κ “ 0 and ωAB,P,κ is closed. To see that
ωAB,P,κ is non-degenerate we take a form α P Ω1pΣ, gq ´ t0u “ TAAP ´ t0u and
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consider the function ωAB,P,κA pα,´q : Ω1pΣ, gP q Ñ R.

As α ‰ 0 there exists an x P Σ such that αx ‰ 0. By continuity there exists
an open set x P U Ď Σ such that for u P U we have αu ‰ 0 and by potentially
taking a smaller open set around x we can make π´1pUq – U ˆG and we have local
coordinates for U given by px1, x2q : Ω Ñ U for some open set Ω Ď R2. Using the
trivialisation we can view α|U P Ω1pU, gq. In particular we have α|U “ α1dx1`α2dx2

for smooth functions α1, α2 P C
8pΣ, gq.

Consider α1pxq P g. By non-degeneracy of κ we can find v P g such that κpα1pxq, vq “
1. Consider pα|U ^ vdx2qκ “ κpv, α1qdx1 ^ dx2. Considering the function κpv, α1q :
U Ñ R by continuity there exists an open set x P V Ď U such that κpv, α1q|V :
V Ñ Rą0. Taking a bump function f : M Ñ R with supppfq Ď V and fpxq “ 1 we
can see that

ş

M
pα ^ vfdx2qκ “

ş

V
pα ^ vfdx2qκ is the integral of a positive smooth

function on an open set and so 0 ă
ş

V
pα ^ vfdx2qκ. Therefore ωAB,P,κA pα,´q is not

the zero map and therefore ωAB,P,κA is non-degenerate.

Lemma 2.1.3. (Gauge Group Action is Symplectic)
Let Σ be a 2-dimensional manifold and pπ : P Ñ Σ, G, ¨q be a principle bundle.
Consider the adjoint bundle adpP q “ gP and its natural Riemannian metric ηP,κ
associated to κ : g ˆ g Ñ R a positive definite inner-product invariant under the
adjoint action of G on g. GP acts on pAP , ωAB,P,κq symplectically.

Proof. Let H P GP be an automorphism H : P Ñ P that covers the identity with
associated equivariant map h : P Ñ G. Let α, β P XpAP q and A P AP . Then

H˚
pωAB,P,κqApαA, βAq “ ωAB,P,κA¨H pTAHpαAq, TAHpβAqq

From lemma 1.1.5 in section 1.1.2 we have TAHpαAq “ Adh´1pαAq and TAHpβAq “
Adh´1pβAq. Notice that using the canonical identification TAP “ AP ˆ Ω1pΣ, gP q
we can identify ωA “ ωA¨H . We then get

H˚
pωAB,P,κqApαA, βAq “ ωAB,P,κA pAdh´1pαAq, Adh´1pβAqq

“

ż

Σ

pAdh´1pαAq ^ Adh´1pβAqqκ

Notice that κ is invariant under the adjoint action and so pAdh´1pαAq^Adh´1pβAqqκ “
pαA ^ βAqκ. So finally we see that

H˚
pωAB,P,κqApαA, βAq “

ż

Σ

pAdh´1pαAq ^ Adh´1pβAqqκ

“

ż

Σ

pαA ^ βAqκ “ ωAB,P,κA pαA, βAq

This action is Hamiltonian. In fact, the moment map associated to the action of the
gauge group with respect to the Atiyah-Bott symplectic form for closed surfaces is
given by the curvature and for surfaces with boundary it is the curvature and the
restriction of the gauge equivalence class of flat connections to the boundary circles.
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Lemma 2.1.4. (Curvature as a Non-Equivariant Moment Map)
Consider Σg,n the surface of genus g with n boundary circles and let pπ : P Ñ

Σg,n, G, ¨q be a principle bundle. Consider the adjoint bundle adpP q “ gP and its
natural Riemannian metric ηP,κ associated to κ : gˆgÑ R a positive definite inner-
product invariant under the adjoint action of G on g.

Consider the identification of AP – Ω1pM, gP q given by ϕBpAq “ A ´ B. The
action of GP on pAP , ωAB,P,κq is Hamiltonian with moment map given by µ : AP Ñ
Ω0pM, gP q

˚ such that µpAqpαq “
ş

Σg,n
pα^FAqκ´

ş

BΣg,n
pα^ϕBpAqqκ. Notice that µ

depends on κ and B.

Proof. Consider µα : AP Ñ R such that µαpAq “ µpAqpαq. For β P TAAP “

Ω1pM, gP q by differentiating under the integral we have

TAµ
α
pβq “

ż

Σg,n

pα ^ TAF pβqqκ ´

ż

BΣg,n

pα ^ TAϕBpβqqκ

“

ż

Σg,n

pα ^ dAβqκ ´

ż

BΣg,n

pα ^ βqκ

where TAϕBpβq “ β using the canonical identifications. So by lemma 2.1.1

TAµ
α
pβq “

ż

Σg,n

dpα ^ βqκ `

ż

Σg,n

pdAα ^ βqκ ´

ż

BΣg,n

pα ^ βqκ

From Stokes theorem we see that
ż

Σg,n

dpα ^ βqκ “

ż

BΣg,n

pα ^ βqκ

So finally noting that dAα is the fundamental vector field associated to α P Ω0pM, gP q
we get

TAµ
α
pβq “

ż

Σg,n

pdAα ^ βqκ “ ωApdAα, βq

Remark: If n “ 0 then the moment map doesn’t depend on the choice
of ϕB and it is also equivariant with respect to the moment map.

Remark: If we give Σg,n a complex structure then we can consider holo-
morphic forms Ω1,0pΣg,n, gP q and antiholomorphic forms Ω0,1pΣg,n, gP q.
These correspond the eigenvalues of the Hodge star operator with eigen-
values i and ´i respectively noting that on a surface we have ˚2 “ ´1. In
this sense ˚ gives AP – Ω1pΣg,n, gP q an almost complex structure. The
Atiyah-Bott metric and symplectic form form a Kähler structure.
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2.1.2 Symplectic Form on RG,g,npC1, ..., Cnq

The theory of symplectic reduction can be applied to the space of connections on
surface with the Hamiltonian action of GP . This follows a similar procedure to that
outlined in section F.3 and theorem F.3.1. However dealing with the infinite dimen-
sional smooth manifold AP and a the curvature function F : AP Ñ Ω2pM, gP q which
has it’s image in an infinite dimensional smooth manifold leads to some complica-
tions. We are then interested in taking the quotient of F´1p0q under the action of GP
an infinite dimensional Lie group. We won’t develop the analogues of the theorems
from the finite dimensional theory of manifolds; however the standard theorems like
the inverse function theorem, regular value theorem and Sard’s theorem hold in
most cases of interest. In the cases we are interested in these theorems will hold
and those interested should consult section 14 of [AB83] for some discussion of the
spaces in question.

The main thing that we need to check in relation to the symplectic reduction of
theorem F.3.1 is that F´1p0q is a submanifold of AP . Then determining where the
action of GP on F´1p0q is free will tell us what subspace of RG,g,n is smooth and has
a symplectic form.

Lemma 2.1.5. Let Σ be a 2-dimensional manifold, G a semi-simple Lie group and
pπ : P Ñ Σ, G, ¨q be a principle bundle. The regular points of the curvature map
F : AP Ñ Ω2pΣ, gP q on F´1p0q are in bijection with irreducible representations
under the correspondence of theorem 1.1.8.

Proof. To show that A is a regular point we must show that TAF is surjective. Re-
call TAF “ dA,1 from lemma D.3.3. This means that we want to show that dA,1 is
surjective. This amounts to showing that impdA,1q “ Ω2pΣ, gP q “ kerpdA,2q. This
therefore amounts to showing that H2pΣ, dAq “ 0.

As Σ is compact by Poincare duality we want to show that H0pΣ, dAq “ 0 if
and only if A gives rise to an irreducible representation of π1pΣq. Notice that
kerpdAq “ H0pΣ, dAq and so H0pΣ, dAq “ 0 if and only if kerpdAq “ 0.

Recall that dA : TeGP “ Ω0pΣ, gP q Ñ Ω1pΣ, gP q “ TAAP gives the infinitesimal
action of the gauge group. Notice that kerpdAq “ 0 if and only if the infinitesimal
gauge group action has zero kernel. The infinitesimal gauge group action has zero
kernel if and only if the gauge group action has discrete stabiliser at A.

By lemma 1.1.9 the stabiliser of GP at A is identified with the stabiliser of ρA
with respect to G acting by conjugation. So kerpdAq “ 0 if and only if ρA has
finite stabiliser with respect to the action via conjugation. As G is semi-simple the
only subgroup with finite stabiliser under the action of conjugation is the whole
group. Therefore the image of ρA is contained in no proper subgroup if and only if
kerpdAq “ 0 which is where TAF is surjective.

Remark: Morally, this result says that a connection with holonomy rep-
resentation class reducible to a connection with holonomy representa-
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tion class to some subgroup isn’t a connection we should consider in the
smooth part of the moduli space.

Corollary 2.1.6. (Regular Points of the Curvature Map)
Let Σ be a 2-dimensional manifold and pπ : P Ñ Σ, G, ¨q be a principle bundle.
Consider the curvature and boundary map pF, |BΣq : AP Ñ Ω2pΣ, gP q ˆRBΣ,G such
that pF, |BΣqpAq “ pFA, rA|BΣsq for rBs P RBΣ,G. Then A P pF, |BΣq

´1p0, rBsq a
regular point of pF, |BΣq if A has irreducible holonomy representation.

Corollary 2.1.7. Let Σ be a 2-dimensional manifold and pπ : P Ñ Σ, G, ¨q be a
principle bundle. The action of GP on the representations with irreducible holonomy
representation class is free.

Remark: As mentioned in [Aud04] the singularities of the moduli space
are where the curvature map F is not regular and the gauge group action
is not free which makes them more severe. Goldman discusses these
singularities for the finite dimensional description of the moduli space
in [Gol84] and [Gol86].

Lemma 2.1.8. (Tangent Space)
Let pπ : P Ñ Σ, G, ¨q be a principle bundle. Then for rAs P RΣ,G we have TrAsRΣ,G –

H1pΣ, dAq.

Proof. We have TApF
´1p0qq “ kerpTAF q “ kerpdA,1q. We also know that for LA :

GP Ñ AP we have impTALAq “ impdA,0q. We then have

TrAsRP “ kerpdA,1q{impdA,0q “ H1
pΣ, dAq

Lemma 2.1.9. (Poisson Structure on RP )
Let Σ be a 2-dimensional manifold and pπ : P Ñ Σ, G, ¨q be a principle bundle.
Consider the adjoint bundle adpP q “ gP and its natural Riemannian metric ηP,κ
associated to κ : g ˆ g Ñ R a positive definite inner-product invariant under the
adjoint action of G on g.

RP inherits a Poisson structure form the form ωAB,P,κ. The leaves are given by
fixing the gauge equivalence class on the boundary.

Proof. We know that the action of the gauge group is Hamiltonian with moment
map given by the curvature and restriction of the connection to the boundary by
lemma 2.1.4. The flat connections with irreducible holonomy representation class
give rise a submanifold. Noticing that where GP acts freely on pF, |BΣq

´1p0, rBsq is a
submanifold by lemma 2.1.5 and corollary 2.1.7. We then apply the proof of theorem
F.3.1 (the symplectic quotient) which only fails at showing that pF, |BΣq

´1p0, rBsq is
a submanifold.

This shows that fixing the flat connection on the boundary and taking the quo-
tient gives rise to a symplectic manifold. Considering all gauge equivalence classes
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restricted to the boundary we get the moduli space of flat connection RP and it
inherits a Poisson structure as the quotient of the Poisson manifold AP,flat by a
symplectic action. The symplectic leaves are given by fixing the flat connection on
the boundary.

Remark: We can use theorem 1.1.8 and instead consider the character
variety. Using this we can define the symplectic form using group co-
homology which has the following relation to the symplectically reduced
case H1pπ1pΣg,nq, AdpGqq – H1pΣg,n, dAq. It has the same form as the
Atiyah-Bott symplectic form before it has been reduced. See [Gol84] for
details. Understanding this correspondence links the natural topologies
in both viewpoints. This is nice as we have a finite dimensional descrip-
tion for this infinite dimensional construction.

Definition: (RG,g,npC1, ..., Cnq)
Let C1, ..., Cn P RS1,G – G{AdpGq and let C1\...\Cn “ rBs P RŮn

i“1 S
1,G.

Let Pg,n be the isomorphism classes of principle G-bundles on Σg,n. Then
let

RG,g,npC1, ..., Cnq “
ğ

PPPg,n

pFP , |BΣq
´1
p0, rBsq{GP

with the symplectically reduced form ωG,g,npC1, ..., Cnq on the dense set
of smooth points.

Remark: For simple connected groups such as SUp2q we have P “

tΣg,nˆGu. That is every principleG-bundle is trivial. SoRG,g,npC1, ..., Cnq
has only one connected component.

In the next chapter 3 we will calculate the symplectic volume of RG,g,npC1, ..., Cnq
with respect to the form ωG,g,npC1, ..., Cnq.

2.2 Torus Action on RG,g,npC1, ..., Cnq

In the remarkable work of Goldman [Gol86] there are canonical functions defined on
the moduli space and their Hamiltonian flows calculated. Building on this, Jeffrey
and Weitsman in [JW92] [JW94] have used these calculations to note that in the
case of G “ SUp2q the flows of these functions define a half dimensional torus
action. Using this and the theory of torus actions on symplectic manifolds they
have calculated volumes of the moduli space.

2.2.1 Goldman’s Functions

Definition: (Goldman’s Functions)
Let M be smooth manifold and G a Lie group. Consider the moduli
space of flat connections RM,G. Let f : GÑ R be a class function. That
is for g, h P G we have fpghg´1q “ fphq. Let x P M and rγs P π1pM,xq.
Define the following function called a Goldman function

fγ : RM,G Ñ R s.t fγprAsq “ fpHolx,γpAqq
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This is well defined as f is invariant under conjugation.

Remark: This gives us many functions on RM,G as we have the choice
of f : GÑ R and rγs P π1pM,xq.

Remark: These functions are pre-quantised versions of the so-called
Wilson lines of Chern Simons theory.

Example: Let G “ SUp2q and f “ 1
π

cos´1p1
2
Trq : SUp2q Ñ r0, 1s. Notice that for

θ P r0, 1s we have

f

ˆ„

eiπθ 0
0 e´iπθ

˙

“ θ

Consider M “ Σ0,3. Then we have

RSUp2q,0,3 – tpX, Y, Zq P SUp2q ˆ SUp2q ˆ SUp2q : XY Z “ 1u{SUp2q

Let rγ1s, rγ2s, rγ3s P π1pΣ0,3q be the generators with rγ1s ÞÑ X, rγ2s ÞÑ Y and
rγ3s ÞÑ Z under the holonomy representation class for each element of RSUp2q,0,3.

Then we have frγ1sprAsq “ fpXq, frγ2sprAsq “ fpY q and frγ3sprAsq “ fpZq. It
can therefore be seen that in this case pfrγ1s, frγ2s, frγ3sq : RSUp2q,0,3 Ñ R3 gives a
homeomorphism onto it’s image as described in 1.2.9.

Remark: These functions are just evaluation maps onHompπ1pMq, Gq{G
and are well defined as f is a class function.

Building on this example we have the following for surfaces.

Lemma 2.2.1. (Boundary Values and Symplectic Leaves)
Let Σ be smooth 2-manifold and G a connected simple Lie group. Let T be the
maximal torus of G. Then there are dimpT q invariant functions tf1, ..., fdimpT qu that
determine the conjugacy class of any element in G.

Consider the moduli space of flat connections RΣ,G. Then for each circle γ P BΣ the
set tpf1qγ, ..., pfdimpT qqγu gives coordinates for the connections restricted to γ.

Proof. Recall that in theorem 1.2.1 we proved that Rγ,G – G{AdpGq is given by
the conjugacy classes in G. Then tpf1qγ, ..., pfdimpT qqγu determine the conjugacy
class.

2.2.2 Twist Flows

We will give explicit formula for the Poisson brackets and Hamiltonian flows of
Goldman’s functions defined in 2.2.1. For some more on these calculations consult
[Gol86]. We will consider RG,g,n “ Hompπ1pΣg,nq, Gq for much of this section.
Notice that using theorem 1.1.8 we can interchange between our viewpoints.
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Definition: (Variation Function)
Let G be a Lie group with κ a non-degenerate bilinear form on LiepGq “
g. Let f : G Ñ R be a class function on G. The variation function
associated to f is defined to be F : G Ñ g that satisfies the following
property

κpF pgq, Xq “
d

dt

ˇ

ˇ

ˇ

t“0
fpg expptXqq

The non-degeneracy of κ means that F is defined and it will in fact be
smooth.

Remark: This function has various properties such as being equivariant
these can be checked by hand or one can consult section 1 of [Gol86].

Theorem 2.2.2. (Theorem 3.5 in [Gol86])
Let G be a Lie group with κ a non-degenerate bilinear form on LiepGq “ g. Let
f, f 1 : GÑ R be a class function on G. Let F, F 1 : GÑ g be the variation functions
of f and f 1 respectively.

Consider rαs, rβs P π1pΣg,nq and with representatives α : r0, 1s Ñ Σg,n and β :
r0, 1s Ñ Σg,n with αr0, 1s and βr0, 1s intersecting finitely many times and trans-
versely. Let εpx, α, βq “ ˘1 be the orientation of the intersection of αr0, 1s and
βr0, 1s at x. Let rαxs P π1pΣg,n, xq and rβxs P π1pΣg,n, xq, Then

tfα, fβu : Hompπ1pΣg,nq, Gq{GÑ R s.t

tfα, f
1
βuprρsq “

ÿ

xPαr0,1sXβr0,1s

εpp, α, βqκpF pρrαpsq, F
1
pρrβpsqq

Corollary 2.2.3. (Corollary 3.6 in [Gol86])
If αr0, 1s X βr0, 1s “ H then

tfα, f
1
βu “ 0

Proof. The proof uses the identification of TrAsRG,g,n “ H1pΣg,n, gAq and Poincaré
duality. See section 3 of [Gol86] for details.

Remark: We can find 3g ´ 3 ` n disjoint simple curves not including
the boundary circles on Σg,n. These come from a trinion decomposition.
Noting lemma 2.2.1 we therefore have p3g ´ 3` nqRankpGq commuting
functions.

Theorem 2.2.4. (Twist Flows Covering the Hamiltonian Flow) [Gol86]
Let G be a Lie group with κ a non-degenerate bilinear form on LiepGq “ g. Let
f : GÑ R be a class function on G. Let F : GÑ g be the variation function of f .

Let rγs P π1pΣg,nq then

• If Σg,n ´ γr0, 1s “ Σ1 \ Σ2 is disconnected the flow generated by fγ is covered
by Ξtρ : RÑ Hompπ1pΣg,nq, Gq with

Ξtρpαq “

"

ρpαq if α P π1pΣ1q

expptF pρpγqqqρpαq expp´tF pρpγqqq if α P π1pΣ2q
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• If Σg,n ´ γr0, 1s is connected then there is a cycle corresponding to γ we’ll
denote β that intersects γ positively transversally once. We can then see that
β and π1pΣg,n´γr0, 1sq generated π1pΣg,nq. The flow generated by fγ is covered
by Ξtρ : RÑ Hompπ1pΣg,nq, Gq with

Ξtρpαq “

"

ρpαq if α P π1pΣg,n ´ γr0, 1sq
ρpαq expptF pρpγqqq if α “ β

Proof. The proof again uses Poincaré duality. See section 4 of [Gol86] for details.

The flows of the functions associated to 3g´ 3`n disjoint curves defines the action
of RRankpGqp3g´3`nq on the moduli space. We are interested in whether this action
is periodic which will imply the flows will be determined by a Up1qRankpGqp3g´3`nq

action.

Lemma 2.2.5. (SU(2)-Periodic Flows)
Let κ : sup2q ˆ sup2q Ñ R be the killing form defined by κpX, Y q “ TrpXY q. Let
f “ Tr : SUp2q Ñ R. Then for rγs P π1pΣg,nq the Hamiltonian flow of the function
fγ : RSUp2q,g,n Ñ R denoted Ξtρ is periodic.

Proof. By the explicit description of the Hamiltonian flows given by Goldman in
theorem 2.2.4. We will need only show that expptF pρpγqqq is periodic. Goldman in
section 1 of [Gol86] calculates F pgq “ 1

2
pg ´ g´1q where we consider g P SUp2q Ď

M2pCq.

Now for

„

a b

´b a



P SUp2q we have

F

ˆ„

a b

´b a

˙

“
1

2

„

a b

´b a



´
1

2

„

a ´b

b a



“ i

„

Impaq 0
0 ´Impaq



So we see that

exp

ˆ

tF

ˆ„

a b

´b a

˙˙

“

„

exppitImpaqq 0
0 exppitImpaqq



This is periodic with period 2π
Impaq

or if Impaq “ 0 is fixed.

Therefore the flow of the function fγ is periodic.

Corollary 2.2.6. (RSUp2q,g,npt1, ..., tnq is a Toric Variety)
Let for C1, ..., Cn P RS1,SUp2q – SUp2q{AdpSUp2qq let RSUp2q,g,npC1, ..., Cnq be the
moduli space of flat connections with boundary specified by C1, ..., Cn for each bound-
ary circle.

Let Trin be a pair of pants decomposition with circles Γ “ tγ1, ..., γ3g´3`nu. Note
that the elements of Γ are disjoint simple closed curves on Σg,n. Consider the
RankpSUp2qq “ 1 invariant function given by f “ 1

π
cos´1

`

1
2
Tr

˘

: SUp2q Ñ r0, 1s.

Then the flow of the functions fγ1 , ..., fγ3g´3`n defines the action of Up1q3g´3`n on the
moduli space RSUp2q,g,npC1, ..., Cnq. Moreover RSUp2q,g,npC1, ..., Cnq is a toric variety.

37



Proof. We have the action of Up1q3g´3`n on RSUp2q,g,npC1, ..., Cnq is Hamiltonian
with moment map given by

µ “ pfγ1 , ..., fγ3g´3`nq : RSUp2q,g,npC1, ..., Cnq Ñ R3g´3`n

and the dimension of RSUp2q,g,npC1, ..., Cnq is

dim pHompπ1pΣg,n, SUp2qq{SUp2qq ´ nRankpSUp2qq

“ p2g ` n´ 1q dimpSUp2qq ´ dimpSUp2qq ´ n “ 6g ´ 6` 2n “ 2p3g ´ 3` nq

So the torus action is half dimensional.

Remark: Corollary 2.2.6 is not valid for general G and is a special prop-
erty of SUp2q. For example for general g, n we have

dim pHompπ1pΣg,n, SUp3qq{SUp3qq ´ nRankpSUp3qq

“ p2g ` n´ 2q dimpSUp3qq ´ 2n “ 16g ´ 16` 6n

‰ 12g ´ 12` 4n “ 2RankpSUp3qqp3g ´ 3` nq
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Chapter 3

Volumes of the Moduli Space of
Flat Connections

In [Wit91] Witten uses three different methods to calculate the volume of the moduli
space of flat connections over a surface with a semi-simple compact connected Lie
group G. This is done using partition functions in QFT as well as using the Ver-
linde formula in CFT for SUp2q. Witten rigorously calculates the volume through
the theory of Reidemeister torsion which is found to be explicitly related to the
symplectic volume.

In this section we will discuss a fourth way of calculating the volumes for SUp2q
using symplectic geometry via the techniques described in [JW94]. We will then
consider Witten’s general formula and some of it’s properties. Finally we will make
some remarks on how these volumes are related to the work of Mirzakhani on the
Weil-Petterson volumes of the moduli space of curves.

3.1 The Case of SUp2q

To calculate the volume of the moduli space we will use the fact the moduli space
of flat SUp2q connections on a surface with boundary holonomy specified is a toric
variety. This was shown in corollary 2.2.6. The Duistermaat-Heckman theorem then
reduces the calculation to calculating a particular Euclidean volume. Calculating
these Euclidean volumes is done using lattice point counts and recursions.

3.1.1 Convex Polyhedra and Volumes

We will specify some conventions in the following definitions.

Definition: (RSUp2q,g,npt1, ..., tnq)
Let ti P r0, 1s and define RSUp2q,g,npt1, ..., tnq to be RSUp2q,g,npC1, ..., Cnq
with Ci P RS1,SUp2q – SUp2q{AdpSUp2qq such that

Ci “

„

eiπt 0
0 e´iπt
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Recall that from corollary 2.2.6 RSUp2q,g,npt1, ..., tnq is a toric variety with
moment map given Goldman’s functions associated to a trinion decom-
position.

Definition: (Vg,n,SUp2q)
Let Vg,n,SUp2qpt1, ..., tnq “ V olpRSUp2q,g,npt1, ..., tnqq.

Our goal is to calculate and understand the relations satisfied by the functions
Vg,n,SUp2qpt1, ..., tnq.

Lemma 3.1.1. (Vg,n,SUp2qpt1, ..., tnq)
Let f “ 1

π
cos´1

`

1
2
Tr

˘

: SUp2q Ñ r0, 1s and γ1, ..., γ3g´3`n be non-intersecting sim-
ple closed loops. Recall from corollary 2.2.6 the Hamiltonian Up1q3g´3`n-action on
RSUp2q,g,npt1, ..., tnq with moment map

µ “ pfγ1 , ..., fγ3g´3`nq : RSUp2q,g,npt1, ..., tnq Ñ R3g´3`n

By the Duistermaat-Heckman theorem and its corollary F.4.3 we see that

Vg,n,SUp2qpt1, ..., tnq “ 2´2g`3´nV olEucpµpRSUp2q,g,npt1, ..., tnqqq

Remark: To see why we need the factor of 2 see proposition 3.10 in
[JW94]. This makes sure we calculate the right Euclidean volume de-
scribed in corollary F.4.3.

This means that calculating the volume reduces to calculating the volume of the
image of the moment map. Notice that the 3g´ 3`n curves decompose the surface
Σg,n into 2g ´ 2 ` n pairs of pants. Therefore understanding the pair of pants will
be our starting point.

Recalling the homomorphism described in section 1.2.9 we have the following re-
sult for the volume of V0,3pt1, t2, t3q.

Lemma 3.1.2. (Pair of Pants)

V0,3,SUp2qpt1, t2, t3q “

"

1 if |t1 ´ t2| ď t3 ď minpt1 ` t2, 2´ t1 ´ t2q
0 otherwise

Proof. Notice that RSUp2q,g,npt1, t2, t3q is 6ˆ 0´ 6` 2n “ 0-dimensional. Therefore
we have

V olEucpµpRSUp2q,g,npt1, ..., tnqqq “

"

1 if RSUp2q,g,npt1, ..., tnq ‰ H
0 it RSUp2q,g,npt1, ..., tnq “ H

From the homomorphism described in lemma 1.2.9 we see that

RSUp2q,g,npt1, ..., tnq ‰ H if and only if |t1 ´ t2| ď t3 ď minpt1 ` t2, 2´ t1 ´ t2q
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Theorem 3.1.3. (Volume of the Moduli Space of Flat SUp2q connections)
Let Γ “ tγ1, ..., γ3g´3`2nu be a collection of non-intersecting simple closed curves that
induce a pair of pants decomposition denoted by Trin with boundary circle given by
γ3g´3`n`1, ..., γ3g´3`n`n. We then have the following

Vg,npt1, ..., tnq “ 2´2g`3´nV olEuc

´

 

px1, ..., x3g´3`nq P R3g´3`n : for T P Trin

and γi, γjγk P T we have |xi ´ xj| ď xk ď minpxi ` xj, 2´ xi ´ xjq where

t1 “ x3g´3`n`1, ..., tn “ x3g´3`n`n

(

¯

Proof. By the Duistermaat-Heckman theorem we have

Vg,n,SUp2qpt1, ..., tnq “ 2´2g`3´nV olEucpµpRSUp2q,g,npt1, ..., tnqqq

Now by lemma 1.2.7 we can see that the image of the moment map

µpRSUp2q,g,npt1, ..., tnqq

is given exactly by considering the aloud holonomies around each γ with respect
to the pairs of pants they bound. The holonomies of the boundary must also
match our boundary conditions. This describes all the conditions on the elements
of µpRSUp2q,g,npt1, ..., tnqq and these are exactly the conditions given in the set

 

px1, ..., x3g´3`nq P R3g´3`n : for T P Trin and γi, γjγk P T we have

|xi ´ xj| ď xk ď minpxi ` xj, 2´ xi ´ xjq where t1 “ x3g´3`n`1, ..., tn “ x3g´3`n`n

(

Remark: We can see the Atiyah-Guillemin-Sternberg convexity theorem
coming into play here as we notice that the image of the moment map is
a convex polyhedron.

3.1.2 Lattice Point Counts

In the theory of geometric quantisation, one takes a line bundle LÑ RSUp2q,g,n with
c1pLq “ ω where ω is the symplectic form on RSUp2q,g,n. One then imposes a com-
plex or symplectic structure and takes the vector space of holomorphic or covariant
constant sections as the Hilbert space of our quantum system.

There is a geometric quantisation of the moduli space of flat connections on a surface.
On one hand, we have the so-called complex polarisation which leads to the complex
algebro-geometric approach to the subject. This is the viewpoint of [Tha95]. On
the other hand, with the symplectic set up we have described by taking a so-called
real polarization, we get the symplectic case which is the viewpoint in [JW92]. In
this case, the covariant constant sections are in bijection with special integral points
in the image of the moment map associated to Goldman’s torus action described in
section 2.2.4.
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We will not be interested in any geometric quantisation of the moduli space; however
we will be interested in these integral points in the image of the moment of Gold-
man’s torus action described in section 2.2.4. These integral points can calculate
the Euclidean volume of the image of the moment map. Calculating Euclidean vol-
umes of reasonable subsets can be done by taking a lattice with some characteristic
distance 1

k
in Euclidean space. In general, the number of points in the set will be

proportional to the volume in the highest degree terms of k. The volume can be
calculated by taking a limit. This will be the method described in this section.

Lemma 3.1.4. (Lattice Point Counts)
Let ∆ Ď Rn be a compact convex polyhedron. Then we have

lim
kÑ8

#
`

1
k
Zn X∆

˘

kn
“ V olEucp∆q

We will use this lemma to calculate the volume of RSUp2q,g,npt1, ..., tnq.

Definition: (Lattice Points)
Consider µ “ pfγ1 , ..., fγ3g´3`nq : RSUp2q,g,npt1, ..., tnq Ñ R3g´3`n. The set
of lattice points k are given by the set

Bg,n,kpt1, ..., tnq “
1

k
Z3g´3`n

X µ
`

RSUp2q,g,npt1, ..., tnq
˘

This is of interest as this is exactly the set of lattice points in lemma 3.1.4 that
allows us to calculate the volume as k Ñ 8.

Colourings of Trivalent Graphs: Surfaces can be represented pictorially by
trivalent graphs. The process for doing this is

• Take a pair of pants decomposition

• At for each trinion T1, ..., T2g´2`n take a vertex v1, ..., v2g´2`n.

• For each circle γ1, ..., γ3g´3`n if γi bounds two trinions Tj and Tk we take an
edge ei connecting the vertices vj and vk

• For a boundary circle γ3g´3`n`1, ..., γ3g´3`n`n if γi bounds a trinion Tj take a
half edge from vj.

Remark: This could be stated formally as a bijection between isotopy
classes of pair of pants decompositions and trivalent graphs with half
edges. Therefore, this gives a well defined map from trivalent graphs to
surfaces but not in the other direction. This is simply stating that pair
of pants decompositions are not unique.

This process illustrated in the following examples.
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Example: (Σ1,2) The surface Σ1,2 is depicted as follows.

Take the following pair of pants decomposition.

We have two pairs of pants so we get two vertices. The two pairs of pants are
glued along one circle, so we get one edge between the two vertices. One pair of
pants has two boundary components, so we get two half edges attached to one

vertex. The other pair of pants is glued along two of its edges, so we get an edge
from the pair of pants to itself.
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Example: (Σ1,3) Consider the following trivalent graph.

We take one pair of pants for each vertex. Therefore, we take three pairs of pants.
The left most vertex has two half edges; therefore, the pair of pants associated to
this vertex has two boundary components. It is then connected to the middle pair

of pants by one boundary. The other two circles in the middle pair of pants are
then attached to the right most vertex. The right most vertex then has one half

edge which becomes a boundary circle.

Forgetting the pair of pants decomposition, we have the following surface.
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These pictures can be used to carry out the calculation the number of lattice points

#Bg,n,kpt1, ..., tnq “ #

ˆ

1

k
Z3g´3`n

X µ
`

RSUp2q,g,npt1, ..., tnq
˘

˙

These calculations are reminiscent of calculations associated to Feynmann diagrams.
The calculation proceeds as follows.

• Take a trivalent graph representing Σg,n

• Take all possible labellings x1, ..., x3g´3`n of the internal edges e1, ..., e3g´3`n

with xi P
1
k
ZX r0, 1s and label the external half edges by t1, ..., tn

• We then count all the colourings x1, ..., x3g´3`n such that each a vertex v with
edges ei, ej, ek with labels xi, xj, xk P

1
k
ZX r0, 1s we have

|xi ´ xj| ď xk ď minpxi ` xj, 2´ xi ´ xjq

We can see from theorem 3.1.3 that this count precisely gives the number #Bg,n,kpt1, ..., tnq.
We will flesh out this process in some simple examples.

Example: (#B0,3,kpt1, t2, t3q “ #
`

µ
`

RSUp2q,0,3pt1, t2, t3q
˘˘

)
The following trivalent graph is associated to Σ0,3.

t1 t2

‚

t3

This is the trivial example as we have no internal edges. Therefore the number of
colourings is given as follows

#B0,3,kpt1, t2, t3q “ V0,3,SUp2qpt1, t2, t3q “

"

1 if |t1 ´ t2| ď t3 ď minpt1 ` t2, 2´ t1 ´ t2q
0 otherwise

Recall that this is symmetric such that for σ P S3 we have

#B0,3,kptσp1q, tσp2q, tσp3qq “ #B0,3,kpt1, t2, t3q

Remark: This example is important as, to count the number of lat-
tice points, one simply sums over all colourings with a weight given by
#B0,3,kpt1, t2, t3q “ V0,3,SUp2qpt1, t2, t3q at each vertex. This will give zero
for the colourings we don’t want and one for the colourings we want.
One should compare with theorem 3.1.3 and note that this is a direct
consequence.
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Example: (#B1,1,kpt1q “ #
`

µ
`

RSUp2q,1,1pt1q
˘˘

)
The following trivalent graph is associated to Σ1,1.

t1 ‚ i

Consider all the colourings of the edges of this graph. There is only one internal
edge that can be coloured. Therefore

#B1,1,kpt1q “
k
ÿ

i“0

V0,3,SUp2q

ˆ

t1,
i

k
,
i

k

˙

“

k
ÿ

i“0

"

1 if | i
k
´ i

k
| ď t1 ď minp i

k
` i

k
, 2´ i

k
´ i

k
q

0 otherwise

“

k
ÿ

i“0

"

1 if 0 ď kt1 ď minp2i, 2k ´ 2iq
0 otherwise

“
ÿ

kt1
2
ďiďk´

kt1
2

1 “ k´
kt1
2
´
kt1
2
`1 “ kp1´t1q`1

Extracting the top coefficient and using the appropriate factors of 2 we see that

V1,1,SUp2qpt1q “
1

2
p1´ t1q

Example: (#B0,4,kpt1, t2, t3, t4q “ #
`

1
k
ZX µ

`

RSUp2q,0,4pt1, t2, t3, t4q
˘˘

)
The following trivalent graph is associated to Σ0,4.

t1 t3

‚ ‚

t2 t4

i

Consider all the colourings of the edges of this graph. There is only one internal
edge we can colour. We therefore have

#B0,4,kpt1, t2, t3, t4q “
k
ÿ

i“0

V0,3,SUp2q

ˆ

t1, t2,
i

k

˙

V0,3,SUp2q

ˆ

i

k
, t3, t4

˙

Notice that V0,3,SUp2q

`

t1, t2,
i
k

˘

V0,3,SUp2q

`

i
k
, t3, t4

˘

‰ 0 if and only if

maxp|t1´ t2|, |t3´ t4|q ď
i

k
ď min pminpt1 ` t2, 2´ t1 ´ t2q,minpt3 ` t4, 2´ t3 ´ t4qq

Therefore
#B0,4,kpt1, t2, t3, t4q

“ kmax
”

min pminpt1 ` t2, 2´ t1 ´ t2q,minpt3 ` t4, 2´ t3 ´ t4qq

´maxp|t1 ´ t2|, |t3 ´ t4|q, 0
ı

` 1

Extracting the top coefficient and using the appropriate factors of 2 we see that

V0,4,SUp2qpt1, t2, t3, t4q “
1

2
max

”

min pminpt1 ` t2, 2´ t1 ´ t2q,minpt3 ` t4, 2´ t3 ´ t4qq

´maxp|t1 ´ t2|, |t3 ´ t4|q, 0
ı
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Example: (#B1,2,kpt1, t2q “ #
`

1
k
ZX µ

`

RSUp2q,1,2pt1, t2q
˘˘

)
The following trivalent graph is associated to Σ1,2.

t1

‚ ‚

t2

i

Consider all the colourings of the edges of this graph. The calculation of #B1,1,kpt1q
will aid the calculation of #B1,2,kpt1, t2q. Take sums over the edge i and weight with
now not only #B0,3,k

`

t1, t2,
i
k

˘

but #B1,1,k

`

i
k

˘

. We see that

#B1,2,kpt1, t2q “
k
ÿ

i“0

#B0,3,k

ˆ

t1, t2,
i

k

˙

#B1,1,k

ˆ

i

k

˙

“
ÿ

k|t1´t2|ďiďkminpt1`t2,2´t1´t2q

#B1,1,k

ˆ

i

k

˙

“
ÿ

k|t1´t2|ďiďkminpt1`t2,2´t1´t2q

pk ´ i` 1q

“ pk ` 1q pkminpt1 ` t2, 2´ t1 ´ t2q ´ k|t1 ´ t2|q

´
1

2
pkminpt1 ` t2, 2´ t1 ´ t2qq pkminpt1 ` t2, 2´ t1 ´ t2q ` 1q

`
1

2
pk|t1 ´ t2|q pk|t1 ´ t2| ´ 1q

“ k2
pt1 ` t2 ´ 2t1t2 ´ |t1 ´ t2|q`k

ˆ

1

2
minpt1 ` t2, 2´ t1 ´ t2q ´

3

2
|t1 ´ t2| ` 1

˙

`1

The last equality takes a little work but can be done on paper. Extracting the top
coefficient and using the appropriate factors of 2 we see that

V1,2pt1, t2q “
1

4
t1 `

1

4
t2 ´

1

2
t1t2 ´

1

4
|t1 ´ t2|

Remark: These lattice point counts a priori depend on the choice of
trinion decomposition. It can be shown at least when ti P

1
k
Z X r0, 1s

that this is independent of the trinion decomposition. Noting that all
trinion decompositions are related by moves of the following form
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t1 t3

‚ ‚

t2 t4

i Ø

t1 t3

‚

‚

t2 t4

i

To check that this is well defined one only needs to check that the calcula-
tion of #B0,4,kpt1, t2, t3, t4q is independent of trinion decomposition. This
can be done explicitly with the formula calculated for #B0,4,kpt1, t2, t3, t4q.

Remark: These kinds of calculations resemble calculations in 2 dimen-
sional TQFT. In fact for a fixed k there is an underlying 2 dimensional
TQFT associated to the number #Bg,n,kpt1, ..., tnq. This is related to
the quantisation of the moduli space. This can be seen either through
the quantisation through the real polarization of Jeffrey and Weitsman
in [JW92] or via the complex polarization which gives us the SUp2q-WZW
model in CFT described in [Bea94]. In particular given a Riemann sur-
face there is an associated vector space and #Bg,n,kpt1, ..., tnq calculates
the dimension of this vector space for ti P

1
k
ZX r0, 1s.

Calculating general formulas for these dimensions in terms of the al-
gebraic geometry associated to the WZW CFT is quite hard. However
from some gluing techniques in CFT, Verlinde in [Ver88] conjectured a
solution to this problem. A proof can be found for example in [Bea94].

Definition: (Fusion Algebra for SUp2q)
VSUp2q,k “ spanCtv0, v1, ..., vku. Define the following metric

xvi, vjy “ #B0,2,kpvi, vjq “ δij

Define the following product

vi ¨ vj “
k
ÿ

l“0

#B0,3,k

ˆ

i

k
,
j

k
,
l

k

˙

vl

VSUp2q,k is a commutative Frobenius algebra.

Proof. The main thing to check is that the algebra is associative. One must check
that #B0,4pt1, t2, t3, t4q is independent of the choice of trinion decomposition. This
can be done explicitly with the formula we proved for #B0,4pt1, t2, t3, t4q.

Remark: The Frobenius algebra computes all the #Bg,n,kpt1, ..., tnq for
ti P

1
k
ZX r0, 1s. This in fact defines a TQFT.
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Theorem 3.1.5. (Verlinde’s Formula for SUp2q)
For ti P

1
k
ZX r0, 1s we have

#Bg,n,kpt1, ..., tnq “

ˆ

k ` 2

2

˙g´1 k
ÿ

i“0

sin
´

πpi`1qpkt1`1q
k`2

¯

... sin
´

πpi`1qpktn`1q
k`2

¯

sin
´

πpi`1q
k`2

¯

Proof. Verlinde uses gluing arguments in CFT to show that the matrix given for
i, j P t0, ..., ku as

Sij “

c

2

k ` 2
sin

ˆ

πpi` 1qpj ` 1q

k ` 2

˙

gives the change of coordinates from v0, ..., vk to a basis of idempotents. Then using
some basic calculations in Frobenius algebras we find that

#Bg,n,kpt1, ..., tnq “
k
ÿ

i“0

Si,kt1 ...Si,ktn
S2g´2`n

0i

Consult [Bea94] for a discussion on some of the representation theory involved.
See section 4 on curve operators in [AU06] for a rigorous discussion of the gluing
techniques which gives rise to the matrix S. This is then neatly summarised in
[ABO15].

Remark: Notice that #Bg,n,kpt1, ..., tnq is an integer which makes Ver-
linde’s formula even more remarkable.

3.1.3 Recursions for Volumes

The torus action of Goldman and the Duistermaat-Heckman theorem have deter-
mined an expression for the volume of the moduli space of flat connections. There is
an explicit formula for the volume V0,3,SUp2qpt1, t2, t3q which is piecewise polynomial
in t1, t2, t3. As demonstrated in the previous section 3.1.2, we can calculate some
of the volumes associated to the surfaces with lower Euler characteristics using our
knowledge of the surfaces with larger Euler characteristic. These recursions are de-
scribed formally in this section.

To calculate Euclidean volumes of a subset of Rn, one integrates the character
function associated to the subset.

Lemma 3.1.6. (Character Functions for the Delzant Polyhedron of the Pair of
Pants)

χµpRSUp2q,0,3pt1,t2,t3qq “ V0,3pt1, t2, t3q

Lemma 3.1.7. (Character Functions for the Delzant Polyhedron for Goldman’s
Torus Action)
Let Trin be a pair of pants decomposition with circles Γ “ tγ1, ..., γ3g´3`2nu and
boundary circles given by tγ3g´3`n`1, ..., γ3g´3`n`nu. Let the circles bounding trinion
T be given by T p1q, T p2q, T p3q P Γ. Let x3g´3`n`i “ ti. Then

χµpRSUp2q,g,npt1,...,tnqq “
ź

TPTrin

V0,3pxT p1q, xT p2q, xT p3qq
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Proof. This follows from theorem 3.1.3 which describes the set µpRSUp2q,g,npt1, ..., tnqq
as follows.

 

px1, ..., x3g´3`nq P R3g´3`n : for T P Trin a γi, γjγk P T we have

|xi ´ xj| ď xk ď minpxi ` xj, 2´ xi ´ xjq where t1 “ x3g´3`n`1, ..., tn “ x3g´3`n`n

(

Now using this expression for the character function of the image of the Goldman
moment map, we can immediately see the following kinds of recursions for the
volume of the moduli space.

Corollary 3.1.8. (Recursions for the Volume)

2Vg,n,SUp2qpt1, ..., tnq “

ż 1

0

ż 1

0

V0,3,SUp2qpt1, x, yqVg´1,n`1,Gpx, y, t2, ..., tnqdxdy

For g1 ` g2 “ g and 1` n1 ` n2 “ n we have

2Vg,n,SUp2qpt1, ..., tnq

“

ż 1

0

ż 1

0

V0,3,SUp2qpt1, x, yqVg1,n1`1,SUp2qpx, t2, ..., tn1`1qVg1,n1`1,SUp2qpy, tn1`2, ..., tnqdxdy

2Vg,n,SUp2qpt1, ..., tnq “

ż 1

0

ż 1

0

V0,3,SUp2qpt1, t2, xqVg,n´1,SUp2qpx, t3, ..., tnqdx

Proof. We’ll just prove the first equality and the rest follow a similar argument.
Take a pair of pants decomposition of the follow form.

T1 Trin´ T1
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Let xT “ pxT p1q, xT p2q, xT p3qq. Then we have

Vg,n,SUp2qpt1, ..., tnq “ 2´2g`3´n

ż

R3g´3`n

χµpRSUp2q,g,npt1,...,tnqq

“ 2´2g`3´n

ż 1

0

...

ż 1

0

ź

TPTrin

V0,3pxT qdx1...dx3g´3`n

“ 2´1

ż 1

0

ż 1

0

V0,3pxT1q2
´2pg´1q`3´pn`1q

ż 1

0

...

ż 1

0

ź

TPTrin´T1

V0,3pxT qdx1...dx3g´3`n

Notice Trin´ T1 is trinion decomposition of Σg´1,n`1. Therefore we see that

2´2pg´1q`3´pn`1q

ż 1

0

...

ż 1

0

ź

TPTrin´T1

V0,3pxT qdx1...{dxT1p2q...
{dxT1p3q...dx3g´3`n

“ Vg´1,n`1,GpxT p2q, xT p3q, t2, ..., tnq

Therefore we have

Vg,n,SUp2qpt1, ..., tnq “ 2´1

ż 1

0

ż 1

0

V0,3pxT1qVg´1,n`1,GpxT p2q, xT p3q, t2, ..., tnqdxT1p2qdxT1p3q

This can be restated in terms of the lattice point counts as follows.

Lemma 3.1.9. (Recursions for the Lattice Point Counts)

#Bg,n,kpt1, ..., tnq “
k
ÿ

i,j“0

#B0,3,k

ˆ

t1,
i

k
,
j

k

˙

#Bg´1,n`1,k

ˆ

i

k
,
j

k
, t2, ..., tn

˙

For g1 ` g2 “ g and 1` n1 ` n2 “ n we have

#Bg,n,kpt1, ..., tnq

“

k
ÿ

i,j“0

#B0,3,k

ˆ

t1,
i

k
,
j

k

˙

#Bg1,n1`1,k

ˆ

i

k
, t2, ..., tn1`1

˙

#Bg2,n2`1,k

ˆ

j

k
, tn1`2, ..., tn

˙

#Bg,n,kpt1, ..., tnq “
k
ÿ

i“0

#B0,3,k

ˆ

t1, t2,
i

k

˙

#Bg,n´1,k

ˆ

i

k
, t3, ..., tn

˙

Corollary 3.1.10. (Recursions for the Volume from Verlinde’s Formula)

2Vg,n,SUp2qpt1, ..., tnq “

ż 1

0

ż 1

0

V0,3,SUp2qpt1, x, yqVg´1,n`1,Gpx, y, t2, ..., tnqdxdy

For g1 ` g2 “ g and 1` n1 ` n2 “ n we have

2Vg,n,SUp2qpt1, ..., tnq

“

ż 1

0

ż 1

0

V0,3,SUp2qpt1, x, yqVg1,n1`1,SUp2qpx, t2, ..., tn1`1qVg1,n1`1,SUp2qpy, tn1`2, ..., tnqdxdy

2Vg,n,SUp2qpt1, ..., tnq “

ż 1

0

ż 1

0

V0,3,SUp2qpt1, t2, xqVg,n´1,SUp2qpx, t3, ..., tnqdx
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Proof. We have

lim
kÑ8

1

k3g´3`n
#Bg,n,kpt1, ..., tnq

“ lim
kÑ8

1

k2

k
ÿ

i,j“0

#B0,3,k

ˆ

t1,
i

k
,
j

k

˙

1

k3pg´1q´3`pn`1q
#Bg´1,n`1,k

ˆ

i

k
,
j

k
, t2, ..., tn

˙

For g1 ` g2 “ g and 1` n1 ` n2 “ n we have

lim
kÑ8

1

k3g´3`n
#Bg,n,kpt1, ..., tnq

“ lim
kÑ8

1

k2

k
ÿ

i,j“0

#B0,3,k

ˆ

t1,
i

k
,
j

k

˙

1

k3g1´3`pn1`1q
#Bg1,n1`1,k

ˆ

i

k
, t2, ..., tn1`1

˙

1

k3g2´3`pn2`1q
#Bg2,n2`1,k

ˆ

j

k
, tn1`2, ..., tn

˙

and

lim
kÑ8

1

k3g´3`n
#Bg,n,kpt1, ..., tnq

“ lim
kÑ8

1

k

k
ÿ

i“0

#B0,3,k

ˆ

t1, t2,
i

k

˙

1

k3g´3`pn´1q
#Bg,n´1,k

ˆ

i

k
, t3, ..., tn

˙

Note that limkÑ8

řk
i“0 fp

i
k
q “

ş1

0
fpxqdx for Riemann integrable f . Our functions

are Riemann integrable as all our functions are piecewise polynomial which follows
from the proof, induction and the fact V0,3pt1, t2, t3q is piecewise polynomial.

The recursions of corollary 3.1.10 lead to the following formulas for the volume.

Volumes of the Moduli Space
g n Vg,n,SUp2qpt1, ..., tnq

0 3

"

1 if |t1 ´ t2| ď t3 ď minpt1 ` t2, 2´ t1 ´ t2q
0 otherwise

1 1 1
2
p1´ t1q

0 4 max
”

1
2

min tminpt1 ` t2, 2´ t1 ´ t2q,minpt3 ` t4, 2´ t3 ´ t4qu

´1
2

max
 

|t1 ´ t2|, |t3 ´ t4|
(

, 0
ı

1 2

"

1
4
p1´ t1qt2 if t1 ě t2

1
4
p1´ t2qt1 if t1 ď t2

2 1 1
12
t1p1´ t1qp2´ t1q

2 2

"

1
24
t1p1´ t1qp2´ t1qt2 ´

1
24
p1´ t1qt

3
2 if t1 ě t2

1
24
t2p1´ t2qp2´ t2qt1 ´

1
24
p1´ t2qt

3
1 if t1 ď t2

Remark: The question is raised as to whether there is a certain trans-
form of the volume such as the Laplace or Fourier transform that simpli-
fies these expressions. This is, in fact, true and is illustrated in Witten’s
volume formula in the next section.
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3.2 The Case of Compact, Connected, Semisim-

ple G

Witten steps through the calculation of the volumes for compact semi-simple con-
nected Lie groups in section 4 of [Wit91]. Considering this more general case, one
can see that the structures associated to SUp2q which we proved using the fact that
SUp2q has a half dimensional torus action still hold.

3.2.1 Witten’s Volume Formula and Intersection Numbers

Notice that in [Wit91] Witten has an additional power of 1
2π

in their formula as they
scale their Atiyah-Bott form differently to what we have.

Theorem 3.2.1. (Witten’s Volume Formula)(pg.208 [Wit91])
Let G be a compact connected semi-simple Lie group. Let C1, ..., Cn P RS1,G –

G{AdpGq. Let irredpGq be the irreducible representations of G. Let F be the de-
nominator in the Weyl character formula described in theorem B.2.8. Then we have

Vg,n,GpC1, ..., Cnq “
#ZpGqV olpGq2g´2`n

V olpT qn

ÿ

αPirredpGq

χαpC1q...χαpCnq
a

F pC1q...F pCnq

dimpαq2g´2`n

Theorem 3.2.2. (Witten’s Volume Formula for SUp2q)

Vg,n,SUp2qpt1, ..., tnq “ 25g´4`2nπ4g´4`n
8
ÿ

k“1

sinpπkt1q... sinpπktnq

k2g´2`n

Theorem 3.2.3. (Witten’s Volume Formula for SUp2q with one Boundary Circle)
Let Pm be the m-th Bernoulli polynomial.

Vg,1,SUp2qpt1q “ 25g´2π4g´3
8
ÿ

k“1

sinpπkt1q

k2g´1
“ p´2qgP2g´1

ˆ

t1
2

˙

There are some canonical circle bundles defined on the moduli space of flat connec-
tions associated to each boundary component.

Definition: (Canonical Line Bundles on RSUp2q,g,npt1, ..., tnq)
Let πk : Lk Ñ RSUp2q,g,npt1, ..., tnq be the line bundle where

Lk “
"

pA1, B1, ..., Ag, Bg, C1, ..., Cnq P G
2g´2`n : with TrpCiq “ 2 cospπtiq

A1B1A
´1
1 B´1

1 ...AgBgA
´1
g B´1

g C1, ..., Cn “

„

1 0
0 1



with Ck “

„

eiπtk 0
0 e´iπtk

*

and

πk : pA1, B1, ..., Ag, Bg, C1, ..., Cnq ÞÑ rA1, B1, ..., Ag, Bg, C1, ..., Cns P Hompπ1pΣg,nq, Gq{G

There is a result in the theory of symplectic geometry similar to the result of
Duistermaat-Heckman. We will simply state the result for RSUp2q,g,npt1, ..., tnq.
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Theorem 3.2.4. (Intersection Pairings)(Theorem 4.1 in [Yos01])
For smooth points t1, ..., tn of Vg,n,SUp2qpt1, ..., tnq, which in [Yos01] are referred to as
admissible, and sufficiently small x1, ..., xn we have

Vg,n,SUp2qpt1`x1, ..., tn`xnq “ 25g´4`2nπ4g´4`n
8
ÿ

k“1

sinpπkpt1 ` x1qq... sinpπkptn ` xnqq

k2g´2`n

“
ÿ

0ďk1,...,kn

xk1
1

k1!
...
xk1
n

kn!

ż

RSUp2q,g,npt1,...,tnq

c1pL1q
k1 ...c1pLnqkn exp

`

ωg,n,SUp2qpt1, ..., tnq
˘

This gives us an explicit way to calculate intersections of cohomological classes. A
similar method is used in [Mir06] and [Mir07] to calculate the intersection pairings
of the ψ-classes on the moduli space of curves related to 2-dimensional gravity first
calculated in [Kon92].

3.2.2 Recursion for Volumes

The recursions of section 3.1.3 generalise to compact connected semi-simple Lie
groups as described in Witten’s volume formula. Firstly, note the following impor-
tant cases of Witten’s volume formula. Notice that the convergence of these sums
to a function is not guaranteed for such large Euler characteristic.

Theorem 3.2.5. (Volume of the moduli Space for the Cylinder)
Let G be a compact connected semi-simple Lie group. Let C1, C2 P RS1,G – G{AdpGq.
Let irredpGq be the irreducible representations of G. Let F be the denominator in
the Weyl character formula described in theorem B.2.8.

V0,2,GpC1, C2q “
#ZpGq

V olpT q2

ÿ

αPirredpGq

χαpC1qχαpC2q
a

F pC1qF pC2q

“
#ZpGq

V olpT q2
a

F pC1qF pC2q
δC1,C2

Theorem 3.2.6. (Volume of the moduli Space for the Pair of Pants)
Let G be a compact connected semi-simple Lie group. Let C1, C2, C3 P RS1,G –

G{AdpGq. Let irredpGq be the irreducible representations of G. Let F be the de-
nominator in the Weyl character formula described in theorem B.2.8.

V0,3,GpC1, C2, C3q “
#ZpGqV olpGq

V olpT q3

ÿ

αPirredpGq

χαpC1qχαpC2qχαpC3q
a

F pC1qF pC2qF pC3q

dimpαq

The volumes of surfaces with smaller Euler characteristic can be calculated from
surfaces with larger Euler characteristic. Using pair of pants decompositions we can
calculate the volume associated to every surface using only the volume of the pair
of pants.
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Theorem 3.2.7. (Recursions)
Let G be a compact connected semi-simple Lie group. Let C1, ..., Cn P RS1,G –

G{AdpGq.
Vg,n,GpC1, ..., Cnq

“
V olpT q4

#ZpGqV olpGq2

ż

G{AdpGq

ż

G{AdpGq

V0,3,GpC1, A,BqVg´1,n`1,GpA
´1, B´1, C2, ..., CnqdAdB

For g1 ` g2 “ g and 1` n1 ` n2 “ n we have

Vg,n,GpC1, ..., Cnq “
V olpT q4

#ZpGq2V olpGq2

ż

G{AdpGq

ż

G{AdpGq

V0,3,GpC1, A
´1, B´1

q

Vg1,n1`1,GpA,C2, ..., Cn1`1qVg1,n1`1,GpB,Cn1`2, ..., CnqdAdB

and
Vg,n,GpC1, ..., Cnq

“
V olpT q2

#ZpGqV olpGq2

ż

G{AdpGq

ż

G{AdpGq

V0,3,GpC1, C2, A
´1
qVg,n´1,GpA,C3, ..., CnqdA

Proof. This follows from theorem 3.2.6 and noting that
ż

G{AdpGq

χαpAqχβpA
´1
qF pAqdA “ δαβV olpGq

by the Weyl integration theorem.

Remark: These kinds of recursions are important in topological recur-
sion. Notice that the volume recursions here are much stronger than the
kinds of recursions found there. These recursions in some sense work
term by term whereas in topological recursion we need to take a sum
over terms like the ones above.

Remark: Notice that the factors in the recursions are closely related to
V0,2,GpC1, C2q. This will later be viewed as part of the gluing associated
to some TQFT. To describe this we will abstract a little and show that
these volume can be calculated by a TQFT in section 4.2.

Remark: These recursions reflect various properties of the Reidemeister
Torsion used by Witten in section 4 of [Wit91] to calculate the volumes.

3.2.3 Comparison to SUp2q

Remarkably the formulas of Witten for SUp2q correspond to the piecewise polyno-
mials calculated in sections 3.1.3 and 3.1.2.

Lemma 3.2.8. For general t1, t2, t3 P r0, 1s

V0,3,SUp2qpt1, t2, t3q “
4

π

8
ÿ

k“1

sinpπkt1q sinpπkt2q sinpπkt3q

k
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Proof. To prove this one rewrites sinpπkt1q “
eiπkt1´e´iπkt1

2i
. Then the summation is

of the form
8
ÿ

k“1

eiπkpt1`t2`t3q

k
` similar terms

One then using the power series for logp1 ´ xq which converges on the disc except
at 1 which reduces the summation to something of the form

logp1´ eiπpt1`t2`t3qq ` similar terms

Then using branching properties of log one can prove the identity.

This is the base that we build the rest of our volumes from. Therefore to prove that
Witten’s volume coincides with the volume we calculate all that is left is to check
that the recursions are the same.

Lemma 3.2.9. The recursions determined by Witten’s volume formula in theorem
3.2.7 match that determined of lemma 3.1.10.

Proof. Notice that SUp2q{AdpSUp2qq – r0, 1s and that for A P SUp2q{AdpSUp2qq
we have A´1 “ A. This then matches with Witten’s volume formula up to some
multiplicative factors.

3.3 Relations to the work of Mirzakhani and Fur-

ther Directions

3.3.1 The Case of SL2pRq
The case of non-compact G will in general lead to infinite volumes. However, the
case where G “ SL2pRq has been extensively studied as the moduli space contains
a special connected component called Tiechmüler space. This is the used to define
the moduli space of curves. This is of interest in classifying complex curves but
moreover making rigorous the concept of 2 dimensional quantum gravity where we
want to integrate over the space of metrics. The moduli space of curves gives all
equivalence classes of metrics up to isometry.

Definition: (Tiechmüller Space)
Let L1, ..., Ln P Rě0. Then let

Tg,npL1, ..., Lnq

be the set of equivalence classes of hyperbolic metrics on Σg,n with
geodesic boundary L1, ..., Ln with a marking.

Remark: A marking represents a choice of presentation of the funda-
mental group. The universal cover of a hyperbolic surface with hyperbolic
metric defines a representation of the fundamental group into the isom-
etry group of upper half space PSL2pRq. Conjugacy classes in PSL2pRq
define hyperbolic lengths. It can be see that

Tg,npL1, ..., Lnq Ď RPSL2pRq,g,npL1, ..., Lnq
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In fact Tg,npL1, ..., Lnq is a connected component or the union of two
connected components of RPSL2pRq,g,npL1, ..., Lnq.

Definition: (Mapping Class Group)
The mapping class group is defined to be the group of orientation pre-
serving diffeomorphisms modulo isotopies

MCGg,n “ Diff`pΣg,nq{IsopΣg,nq

Remark: This group has a finite presentations in terms of special ele-
ments called Dehn twists and half Dehn twists.

Definition: (Moduli Space of Hyperbolic Metrics)
The moduli space of hyperbolic metrics is defined to be

Mg,npL1, ..., Lnq “ Tg,npL1, ..., Lnq{MCGg,n

Remark: Taking the quotient with respect to the mapping class group
gets rid of the marking of the surface.

Remark: In factMg,np0, ..., 0q “Mg,n gives the moduli space of curves.
The points of this set determine the isomorphism classes of complex
structures on Σg,n.

Definition: (Weil-Petterson Volumes)
The symplectic form on Tg,n is invariant under the action of the mapping
class group and therefore defines a symplectic form on Mg,npL0, ..., Lnq
and in particularMg,n called the Weil-Petterson form. The Weil-Petterson
volume is the symplectic volume ofMg,n denoted VPSL2pRq,g,npL1, ..., Lnq.

In [Mir06] and [Mir07] Mirzakhani formulates a recursion for the Weil-Petterson
volumes. In [Mir07] Mirzakhani points out the analogy between the Weil-Petterson
volumes and the volumes of the moduli space of flat connections. Mirzakhani re-
marks that the mapping class group plays no role in the volumes of the moduli
space of flat connections. This makes the recursions for the volume much simpler in
this case. Mirzakhani’s volume recursions need to take a sum over all pair of pants
decompositions whereas the recursions for the volumes of the moduli space of flat
connections only needs to take one pair of pants decomposition.

Theorem 3.3.1. (Mirzakhani’s Recursion)( [Mir06] [Mir07])
Let

Hpx, yq “
1

1` e
x`y

2

`
1

1` e
x´y

2

Then we have

B

BL1

L1VPSL2pRq,g,npL1, ..., Lnq “
1

2

ż 8

0

ż 8

0

Vg´1,n`1px, y, L2, ..., LnqHpx`y, L1qxydxdy

`
ÿ

g1`g2“g

I1\I2“t2,...,nu

1

2

ż 8

0

ż 8

0

Vg1,|I1|`1px, LI1qVg1,|I2|`1py, LI2qHpx` y, L1qxydxdy

`

n
ÿ

i“2

1

2

ż 8

0

Vg,n´1px, L2, ..., pLi, ...Lnq pHpx, L1 ` Liq `Hpx, L1 ´ Liqqxdx
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The terms in this recursion have use the volumes of the surfaces on the right once
we’ve cut away the pair of pants on the left.

Remark: This is an example of the so-called topological recursion.
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3.3.2 Remark on Verlinde’s Formula and Recursions for Vol-
ume

We will briefly sketch a conjectural relation between Verlinde’s dimension formula
and the recursions for the volume of the moduli space. To prove such a statement
one would have to make more rigorous sense out of the following discussion. For a
good starting point see [Tyu03] and [Bea94].

Definition: (WZW CFT)
Given a Lie group G a WZW conformal field theory associates a vector
space to every Riemann surface with a labelling at the boundaries. The
vector space is defined via sections of a line bundle. To make such a
space finite dimensional we want complex structures and to require the
sections to be holomorphic.

Consider some surface Σg,n. The moduli space of flat connections with
boundary holonomies determined by C1, ..., Cn P G{AdpGq denoted as
RG,g,npC1, ..., Cnq comes equipped with a symplectic form ωG,g,npC1, ..., Cnq.
Let Pk be the positive integral weights such that evaluating on the high-
est root is less than or equal to k. For Ci P G{AdpGq satisfying some
integrability conditions that embed Pk in G{AdpGq there exists a line
bundle

Lg,npC1, ..., Cnq
bk
Ñ RG,g,npC1, ..., Cnq

such that
c1pLg,npC1, ..., Cnq

bk
q “ kωG,g,npC1, ..., Cnq

We can giveRG,g,npC1, ..., Cnq a complex structure such that Lg,npC1, ..., Cnq
is in fact a holomorphic line bundle.

We then take the holomorphic sections of Lg,npC1, ..., Cnq. This will be
a finite dimensional vector space denoted

H0
`

RG,g,npC1, ..., Cnq,Lg,npC1, ..., Cnq
bk
˘

Theorem 3.3.2. (Verlinde’s Dimension)(Corollary 9.8 of [Bea94])
Let Pk be the positive integral weights such that evaluating on the highest root is less
than or equal to k. Tk is a finite group analogous to the Weyl group and h_ is the
dual Coxeter number.

Dk
g,npC1, ..., Cnq “ dim

`

H0
`

RG,g,npC1, ..., Cnq,Lg,npC1, ..., Cnq
bk
˘˘

“ |Tk|
g´1

ÿ

µPPk

TrVC1,...,Cn

ˆ

exp

ˆ

2πi
µ` ρ

k ` h_

˙˙

ź

αPR`

ˇ

ˇ

ˇ

ˇ

2 sin

ˆ

π
xα, µ` ρy

k ` h_

˙
ˇ

ˇ

ˇ

ˇ

2´2g

See [Bea94] for a proper description of this formula. Note that this is a dimension
and so these numbers are integers.
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Given a WZW CFT, we can define a p1 ` 1q-dimensional topological field theory
called the Fusion algebra of the CFT. The Fusion algebra calculates the dimensions
of the vector spaces associated to the CFT. The gluing rules in the TQFT (or the
Fusion algebra) gives us recursions for the dimensions above. They have the form

Dk
g,n`1pC1, ..., Cnq “

ÿ

xPPk

Dk
0,3pC1, C2, xqD

k
0,2px, yqD

k
g,npy, C3, ..., Cnq

We can use the dimensions of the vector space in CFT for surfaces with larger Euler
characteristic to determine the Verlinde dimension of surfaces with smaller Euler
characteristic. To prove Verlinde’s dimension formula we use these recursions which
are associated to certain identities in the general theory of Fusion algebras. The
following theorem allows us to calculate the volume of the moduli space from these
dimensions.

Theorem 3.3.3. (Riemann-Roch)
We have the following polynomial in k.

dim
`

H0
`

RG,g,npC1, ..., Cnq,Lg,npC1, ..., Cnq
bk
˘˘

“

ż

RG,g,npC1,...,Cnq

chpLg,npC1, ..., Cnq
bk
qTdpRG,g,npC1, ..., Cnqq

“

ż

RG,g,npC1,...,Cnq

exppc1pLg,npC1, ..., Cnq
bk
qqTdpRG,g,npC1, ..., Cnqq

“

ż

RG,g,npC1,...,Cnq

exppkωG,g,npC1, ..., CnqqTdpRG,g,npC1, ..., Cnqq

“ kdimCpRG,g,npC1,...,Cnqq

ż

RG,g,npC1,...,Cnq

ωG,g,npC1, ..., Cnq
dimCpRG,g,npC1,...,Cnqq

`lower order terms in k

where we note that Td0pRG,g,npC1, ..., Cnqq “ 1. Therefore

VG,g,npC1, ..., Cnq “

ż

RG,g,npC1,...,Cnq

ωG,g,npC1, ..., Cnq
dimCpRG,g,npC1,...,Cnqq

“ lim
kÑ8

1

kdimCpRG,g,npC1,...,Cnqq
dim

`

H0
`

RG,g,npC1, ..., Cnq,Lg,npC1, ..., Cnq
bk
˘˘

Conjecture 3.3.4. (Recursions for the Volume from Verlinde’s Formula)
Conjecturally in the limit the contractions associated to gluing in the fusion algebra
become integration over the conjugacy classes. Thereby recovering the recursions of
theorem 3.2.7.

1

krankpGq

ÿ

xPPk

Ñ

ż

G{AdpGq
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Remark: In the SUp2q case we saw

Vg,npt1, ..., tnq “ lim
kÑ8

1

k3g´3`n
#Bg,n,kpt1, ..., tnq

“ lim
kÑ8

1

k

k
ÿ

i“0

#B0,3,k

ˆ

t1, t2,
i

k

˙

1

k3g´3`pn´1q
#Bg,n´1,k

ˆ

i

k
, t3, ..., tn

˙

“

ż 1

0

V0,3pt1, t2, xqVg,n´1px, t3, ..., tnqdx

Remark: In [ABO15] and [MOP`13] there is a so-called cohomological
field theory whose topological field theory is given by the fusion algebra
of a WZW CFT. It may be interesting whether one could make sense of
this limiting procedure when considering the cohomological field theories
and not just the topological field theories.

Remark: We have a Zą0 set of p1`1q-dimensional TQFTs that in some
limit calculate some volume. The next section gives us a way to make
this volume into a TQFT of its own.

Remark: Also notice that Riemann-Roch and the calculations of section
3.1.2 give the following kinds of expressions.

ż

RSUp2q,1,2pt1,t2q

ωSUp2q,g,npt1, t2qTd1pRSUp2q,g,npt1, t2qq

“

ˆ

1

2
minpt1 ` t2, 2´ t1 ´ t2q ´

3

2
|t1 ´ t2| ` 1

˙

These expressions don’t immediately follow from Verlinde’s formula and
it would be interesting to see if they have nice general expressions similar
to the volume of the moduli space.

If this could be done, Verlinde’s formula could be simplified in the sense
that one wouldn’t have to sum over Pk and it would be represented by a
polynomial in k with functions as coefficients.
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Chapter 4

Volumes of the Moduli Space as a
Topological Quantum Field
Theory

TQFTs can naturally count locally defined structures. This gives an interesting
approach to enumerative geometry. In the first part of this section we consider the
extremely concrete example of Dijkgraaf-Witten TQFT and then notice a remark-
able relation to the volumes moduli space of flat connections.

4.1 Trivial Dijkgraaf-Witten Topological Quantum

Field Theory

From a physical perspective finite gauge groups are unusual. However, from a mathe-
matical perspective, they allow for a well defined TQFT that calculates the numbers
of representations of the fundamental group into a finite group. This was originally
described in [DW90] and a nice presentation can also be found in [FQ93]. The
following sections describe a trivial version of these theories in the sense that the
action functional is trivial.

4.1.1 Finite Gauge Groups and Covering Spaces

As mentioned in Appendix C for a finite group G we can define a principle G-bundle.

Definition: (G-covers of M)
Let G be a finite group with discrete topology and pπ : P Ñ M,F q a
smooth fibre bundle. If G acts smoothly on P via ¨ : P ˆ G Ñ P such
that for p P P and g P G

πpp ¨ gq “ πppq

and G acts freely and transitively on π´1pxq for all x P M then we say
pπ : P Ñ M,F,G, ¨q is a G-cover of M . Notice that M – P {G and
F – G. So we can write our G-cover of M as pπ : P ÑM,G, ¨q.
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Remark: This defines a covering space with Deck transformations given
by G.

Definition: (Pull Back and Push Forward G-Covers)
Let N be a smooth manifold, pπ : P Ñ M,G, ¨q a G-cover and let
f : N Ñ M be a smooth map. We define the pull back G-cover
induced by f as follows

f˚P “ tpx, pq P N ˆ P : fpxq “ πppqu

If f is a diffeomorphism define

pf´1
q˚P “ f˚P

These have the natural structure of a G-cover.

The following theorem is analogous to theorem 1.1.8.

Theorem 4.1.1. Let M be a connected smooth manifold and G a finite group with
the discrete topology. Let RM,G be the isomorphism classes of G-covers of M . Then
there is a bijection

RM,G – Hompπ1pMq, Gq{G

Proof. See the proof of theorem 1.1.8. For a feeling of what is going on notice that the
universal cover of M is unique up to unique isomorphism with Deck transformations
given by π1pMq. Every cover must factor through the universal cover which gives
rise to the representation classes of the fundamental group.

Remark: Theorem 4.1.1 is one of the reasons to consider the flat con-
nections when we let G be a Lie group. Given a Lie group G the flat
connections correspond to G-covers of the base where we instead give G
the discrete topology. These spaces will in general be slightly pathological
as the M ˆG looks like it has dimension dimpMq`dimpGq but giving G
the discrete topology means that we are viewing dimpMˆGq “ dimpMq.

Remark: For smooth connected compact manifolds the fundamental
group has a finite presentation. So RM,G will be a finite set for a finite
group G.

Definition: (Automorphisms of G-cover)
Let pπ : P Ñ M,G, ¨q be a G-cover. Let the group of automorphisms of
P be denoted

AutpP q “ tA : P Ñ P : A is an equivariant bundle map covering the identityu

For pπ : P Ñ M,G, ¨q and p P π´1pxq we can define a representation of
the fundamental group ρp P Hompπ1pM,xq, Gq (see corollary E.2.2 and
adapt it to G-covers). The based group of automorphisms at p is defined
to be AutppP q “ tg P G : gρpg

´1 “ ρpu.
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Remark: Automorphisms of G-covers correspond to the gauge transfor-
mations in section 1.1.2.

Remark: Notice that AutppAq – Stabpρpq with respect to the action of
G acting on Hompπ1pM,xq, Gq by conjugation.

Lemma 4.1.2. Let M be a connected smooth manifold and pπ : P Ñ M,G, ¨q be a
G-cover. We have the following identification

AutpP q – AutppP q

Proof. Firstly notice that for F : P Ñ P P AutpP q we can define a smooth map
f : P Ñ G with F ppq “ p ¨ fppq as in section 1.1.2. f is equivariant in the sense
that fpp ¨ gq “ g´1fppqg. For f : P Ñ G to be smooth f must be constant on the
connected components of P .

Every connected component of P intersects the fibre π´1pxq as M is connected.
This means that f is completely determined by it restriction to the fibre f |π´1pxq.
However the f restricted to the fibre is determined by fppq as fpp ¨ gq “ g´1fppqg.
This means that the function f is determined by the value fppq.

Now fppq can’t be any element of G as for p ¨ g in the same connected compo-
nent of P we must have fppq “ fpp ¨ gq. Notice that if p ¨ g is in the same path
component as p then by definition there is some path rγ : r0, 1s Ñ P such that
rγp0q “ P and rγp1q “ p ¨ g. This means that the lift of π ˝ rγ is given by rγ and
therefore ρpprπ ˝ rγsq “ g. So p ¨ g is in the same path component as p if and only if
there is some rγs P π1pM,xq such that ρpprγsq “ g.

Therefore the only condition on fppq is that fpp ¨ ρpprγsqq “ ρpprγsq
´1fppqρpprγsq “

fppq. Restating this as ρpprγsq “ fppqρpprγsqfppq
´1 for all rγs P π1pM,xq we see

that f is determined by and determines an element of G given by fppq such that
ρp “ fppqρpfppq

´1. Therefore we have AutpP q – AutppP q.

4.1.2 Categorification to a Topological Quantum Field The-
ory

The equivalence of G-covers defined in the last section is given by bundle automor-
phisms which cover the identity. This equivalence is therefore local with respect to
the base of the cover. Gluing automorphism classes of G-covers can then be done in
a consistent way. This means, that by considering G-covers on some smaller mani-
folds and then gluing them together, we should be able to build up the more complex
examples. For example, to count the number of G-covers of a given manifold, we
can use recursions similar to the volume recursions of section 3. The question is
raised as to whether there is a TQFT that encodes these recursions.

A näıve guess at a TQFT would be to take the vector space associated to a d-
dimensional manifold Σ to be ZpΣq “ tf : RΣ,G Ñ Cu “ SpanCtRΣ,Gu and
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the functional associated to a pd ` 1q-dimensional manifold M to be defined on
the canonical basis of ZpBMq “ SpanCtRBM,Gu such that for A P RBM,G we have
ZpM, f,HqpAq “ #tB P RM,G : B|BM “ f˚pAqu.

However, this will not work as the different ways of gluing the covers together is not
taken into account. The different ways of gluing the covers together is determined by
the automorphisms of the cover restricted to boundary being glued together. This
motivates the following definition/theorem. However, first we have the following
notation.

Notation: Let A P RBM,G. Let RM,GpAq “ tB P RM,G : B|BM “ Au.

Theorem 4.1.3. (Dijkgraaf-Witten TQFT)
Let G be a finite group. The following data uniquely determines a pd`1q-dimensional
TQFT over C denoted ZG such that for a d-dimensional manifold Σ and pd ` 1q-
dimensional manifold M .

• ZGpΣq “ SpanCtRΣ,Gu

• ZGpM, f,Hq : ZGpBMq Ñ C is the linear map such that for A P RBM,G we
have ZGpM, f,HqpAq “

ř

BPRM,Gpf˚pAqq
1

#AutpBq

To prove this statement requires an understanding of how this information allows
gluing of cobordisms. So far we only have ingoing boundary components. The key
is to use the identity axiom for TQFTs exploited in the following lemma.

Lemma 4.1.4. (Gluing in ZG)
For the d-dimensional TQFT ZG and A1, A2 P RΣ,G we have

ZGpΣˆ r0, 1s, idΣ˚ \ idΣ˚ ,HqpA1, A2q “ δA1,A2

1

#AutpA1q
“ δA1,A2

1

#AutpA2q

Therefore
ZG pΣˆ r0, 1s,H, idΣ \ idΣq “

ÿ

APRΣ,G

#AutpAqAb A

Proof. Noting theorem 4.1.1 and that we have a homotopy Σ ˆ r0, 1s » Σ we see
that any G-cover π : P Ñ Σˆr0, 1s we must have P |Σˆt0u – P |Σˆt1u. Noting lemma
4.1.2 we then see that AutpP q – AutpP |Σˆt0uq. Therefore we have

ZGpΣˆ r0, 1s, idΣ˚ \ idΣ˚ ,HqpA1, A2q “ δA1,A2

1

#AutpA1q
“ δA1,A2

1

#AutpA2q

Let
ZG pΣˆ r0, 1s,H, idΣ \ idΣq “

ÿ

A1,A2PRΣ,G

αA1,A2A1 b A2

Consider the following pictorial representations.
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idΣ˚

pΣˆ r0, 1s, idΣ˚ \ idΣ˚ ,Hq “

idΣ˚

idΣ

pΣˆ r0, 1s,H, idΣ \ idΣq “

idΣ

From the TQFT axioms and the following pictures we have

idΣ˚

idΣ ´ idΣ˚ “ idΣ˚ idΣ

idΣ

ÿ

A2PRΣ,G

αB,A2

1

AutpBq
A2 “

ÿ

A1,A2PRΣ,G

αA1,A2

δB,A1

AutpBq
A2

“
ÿ

A1,A2PRΣ,G

αA1,A2ZGpΣˆ r0, 1s, idΣ˚ \ idΣ˚ ,HqpB,A1qA2 “ idZGpΣqpBq “ B

This means that αB,A2 “ δB,A2AutpBq. Therefore

ZG pΣˆ r0, 1s,H, idΣ \ idΣq “
ÿ

APRBM,G

#AutpAqAb A

Remark: Using ZG pΣˆ r0, 1s,H, idΣ \ idΣq we can determine ZG given
the information of theorem 4.1.3 as follows.

Definition: (ZG : Cobd`1 Ñ V ecC)

• Let ZG : ob
`

Cobd`1

˘

Ñ ob
`

V ecC
˘

such that ZGpΣq “ SpanCtRΣ,Gu and
ZGpHq “ C.

• For pM, f1, f2q P HomCobd`1
pΣ1,Σ2q and for A P RΣ1,G viewed as A P

ZGpΣ1q “ SpanCtRΣ1,Gu let

ZGpM, f1, f2qpAq “
ÿ

CPRΣ2,G

¨

˝

ÿ

BPRM,Gppf1q˚pAq\pf2q˚pCqq

#AutpCq

#AutpBq

˛

‚C
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Corollary 4.1.5. (ZG is a TQFT except for the Gluing Axiom)

• For Σ P obpCobd`1q we have ZGpΣ
˚q “ ZGpΣq

˚.

• For Σ1,Σ2 P obpCobd`1q we have ZGpΣ1 \ Σ2q “ ZGpΣ1q b ZpΣ2q.

• For H P obpCobd`1q we have ZpHq “ C.

• For Σ P obpCobd`1q and pΣˆr0, 1s, IdΣ˚ , IdΣq P HomCobd`1
pΣ,Σq we have

ZpΣˆ r0, 1s, IdΣ˚ , IdΣq “ idZpΣq P HomCobd`1
pZpΣq, ZpΣqq.

The only thing left to check is that ZG satisfies the gluing axiom. To prove this,
we need the following lemmas. We will suppress some of the notation in the next
few lemmas. In particular, we will not name all the inclusions of the boundary and
certain isomorphisms.

Definition: (Gluing Covers Together)
Let Σ be a smooth closed d-manifold, M1,M2 smooth pd` 1q manifolds
and let pπ1 : P1 Ñ M1, G, ¨q and pπ2 : P2 Ñ M2, G, ¨q be G-covers with
a fixed inclusion BM1 Ě Σ Ď BM2 such that for some C P RG,Σ we
have π´1

1 pΣq – C – π´1
2 pΣq with these isomorphism covering the fixed

inclusions and fix these isomorphisms. For ϕ P AutpCq define

P1 Y
ϕ
C P2 “ P1 \ P2{ „

to be the space where p1 „ p2 if p1 P π
´1
1 pΣq Ď P1 and p2 P π

´1
2 pΣq Ď P2

and using the fixed isomorphisms π´1
1 pΣq – C – π´1

2 pΣq we have p1 “

ϕpp2q.

Let π : P1 Y
ϕ
C P2 Ñ M2 YΣ M2 such that for p1 P P1 and p2 P P2 we

have πpp1q “ π1pp1q and πpp2q “ π2pp2q. This is well defined as using the
fixed isomorphisms π´1

1 pΣq – C – π´1
2 pΣq we have π1|C “ π2|C and so

π1|Cppq “ π2|Cppq “ π2|Cpϕppqq.

We then have an action of G on P1 Y
ϕ
C P2 given by the G action on

P1 and P2. Notice that this is well defined as p ¨ g „ ϕpp ¨ gq “ ϕppq ¨ g.

Note that in particular ϕ is a diffeomorphism so we can give P1 Y
ϕ
C P2 a

smooth structure induced from the gluing. Taking local trivialisations at
points in C in P1 and P2 we can see that the P1Y

ϕ
CP2 is locally trivial and

therefore we have a G-cover defined by pπ : P1Y
ϕ
C P2 ÑM1YΣ M2, G, ¨q.

Lemma 4.1.6. Let Σ be a smooth closed d-manifold, M a connected smooth pd`1q
manifold and let pπ : P ÑM,G, ¨q be a G-cover with a fixed inclusion Σ Ď BM such
that π´1pΣq – C covering the inclusion and fix this isomorphism.

Then AutpP q ď AutpCq.
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Proof. Let r : AutpP q Ñ AutpCq such that rpϕq “ ϕ|C . We claim this is an
injection. Notice from the proof of lemma 4.1.2 that the automorphisms of P are
determined by a single element of G. Therefore if rpϕ1q “ rpϕ2q they must extend
to the same unique automorphism of P . In other words ϕ1 “ ϕ2.

To prove ZG is a TQFT, we need to understand the number of automorphisms of a
G-cover glued together along some boundary. This uses the following lemmas.

Lemma 4.1.7. Let Σ be a smooth closed d-manifold, M1,M2 be connected smooth
pd ` 1q manifolds and let pπ1 : P1 Ñ M1, G, ¨q and pπ2 : P2 Ñ M2, G, ¨q be G-covers
with a fixed inclusions BM1 Ě Σ Ď BM2 such that π´1

1 pΣq – C – π´1
2 pΣq covering

the inclusions and fix these isomorphisms. We have

P1 Y
ϕ
C P2 – P1 Y

ψ
C P2

if and only if there exists α1 P AutpP1q ď AutpCq, α2 P AutpP2q ď AutpCq such that

α2 ˝ ϕ “ ψ ˝ α1

Proof. “ð”
If α2 ˝ ϕ “ ψ ˝ α1. Then take F : P1 Y

ϕ
C P2 – P1 Y

ψ
C P2 such that

F ppq “

"

α1ppq if p P P1

α2ppq if p P P2

This is well defined as for p P C we have p „ϕ ϕppq we have F ppq “ α1ppq „ψ ψ˝α1ppq
and F pϕppqq “ α2 ˝ ϕppq “ ψ ˝ α1ppq “ ψ ˝ α1ppq „ψ α1ppq.

Notice that we have inverse F´1 : P1 Y
ψ
C P2 – P1 Y

ϕ
C P2 such that

F´1
ppq “

"

α´1
1 ppq if p P P1

α´1
2 ppq if p P P2

This is well defined as for p P C we have p „ψ ψppq we have F´1ppq “ α´1
1 ppq „ϕ

ϕ ˝ α´1
1 ppq and F´1pψppqq “ α´1

2 ˝ ψppq “ ϕ ˝ α´1
1 ppq „ϕ α

´1
1 ppq.

“ñ”
If F : P1 Y

ϕ
C P2 – P1 Y

ψ
C P2 then let F |P1 “ α1 P AutpP1q and F |P2 “ α2 P AutpP2q.

For p P C we have F ppq „ψ F ˝ϕppq and so α1ppq „ψ α2 ˝ϕppq however we also have
α1ppq „ψ ψ ˝ α1ppq. So α2 ˝ ϕppq “ ψ ˝ α1ppq.

Corollary 4.1.8. Let Σ be a smooth closed d-manifold, M1,M2 be connected smooth
pd ` 1q manifolds and let pπ1 : P1 Ñ M1, G, ¨q and pπ2 : P2 Ñ M2, G, ¨q be G-
covers with a fixed inclusions BM1 Ě Σ Ď BM2 such that π´1

1 pΣq – C – π´1
2 pΣq

covering the inclusions and fix these isomorphisms. Then for ϕ P AutpCq we have
F : P1Y

ϕ
C P2 – P1Y

ϕ
C P2 if and only if there exists α1 P AutpP1q, α2 P AutpP2q such

that F |P1 “ α1 and F |P2 “ α2 and

α2 ˝ ϕ “ ϕ ˝ α1
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Proof. Apply the proof of 4.1.7 for ψ “ ϕ.

Corollary 4.1.9. Let Σ be a smooth closed d-manifold, M1,M2 be connected smooth
pd ` 1q manifolds with fixed inclusions BM1 Ě Σ Ď BM2 and let M1 YΣ M2 “ M .
Let pπ : P ÑM,G, ¨q be a G-cover, P |M1 “ pπ1 : P1 ÑM1, G, ¨q, P |M2 “ pπ2 : P2 Ñ

M2, G, ¨q and P |Σ “ C. Then

#tϕ P AutpCq : P – P1 Y
ϕ
C P2u “

#AutpP1q#AutpP2q

#AutpP q

Proof. P induces fixed isomorphisms π´1
1 pΣq – C – π´1

2 pΣq. So there exists
ψ P AutpCq such that P “ P1 Y

ψ
C P2 by simply restricting P to M1 and M2 and

taking note of the fixed isomorphisms π´1
1 pΣq – C – π´1

2 pΣq.

For each α1 P AutpP1q and α2 P AutpP2q we get ϕ “ α´1
2 ˝ ψ ˝ α1 such that

P – P1 Y
ϕ
C P2 by lemma 4.1.7 and this gives all possible ϕ again by lemma

4.1.7. However by the corollary 4.1.8 we have over counted each ϕ by a factor
of #AutpP q “ #AutpP1 Y

ϕ
C P2q.

Lemma 4.1.10. (Automorphisms of Glued Covers)
Let G a finite group, M1 and M2 connected smooth manifolds with fixed inclusions
BM1 Ě Σ Ď BM2 and M “ M1 YΣ M2. Let B P RBM,G with B1 “ B|BM1´Σ and
B2 “ B|BM2´Σ. For C P RΣ,G let SpCq “ tpP1, P2q P RM1,GpB1, CqˆRM2,GpC,B2qu.
Then

ÿ

PPRM,GpBq

1

#AutpP q
“

ÿ

CPRΣ,G

¨

˝

ÿ

pP1,P2qPSpCq

#AutpCq

#AutpP1q#AutpP2q

˛

‚

Proof. By corollary 4.1.9 we have

#tϕ P AutpCq : P – P |M1 Y
ϕ
C P |M2u

#AutpP |M1q#AutpP |M2q
“

1

#AutpP q

Notice that if we take all pairs pP1, P2q P SpCq and all ϕ P AutpCq we will get all
possible bundles P such that P |Σ “ C. We will however over count a given bundle
P by a factor of #tϕ P AutpCq : P – P |M1 Y

ϕ
C P |M2u. This means that

ÿ

pP1,P2qPSpCq

#AutpCq

#AutpP1q#AutpP2q
“

ÿ

pP1,P2qPSpCq

¨

˝

ÿ

ϕPAutpCq

1

#AutpP1q#AutpP2q

˛

‚

“
ÿ

PPRM,GpBq
s.t P |Σ“C

#tϕ P AutpCq : P – P |M1 Y
ϕ
C P |M2u

#AutpP |M1q#AutpP |M2q
“

ÿ

PPRM,GpBq
s.t P |Σ“C

1

#AutpP q

Then summing over C P RΣ,G gives

ÿ

PPRM,GpBq

1

#AutpP q
“

ÿ

CPRΣ,G

¨

˚

˚

˝

ÿ

PPRM,GpBq
s.t P |Σ“C

1

#AutpP q

˛

‹

‹

‚
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“
ÿ

CPRΣ,G

¨

˝

ÿ

pP1,P2qPSpCq

#AutpCq

#AutpP1q#AutpP2q

˛

‚

Corollary 4.1.11. (Theorem 4.1.3)
ZG is a TQFT.

Proof. We checked everything except the composition or gluing axiom in corollary
4.1.5.

When gluing disconnected manifolds we can simply glue a connected component
at a time and therefore reduce the proof that the gluing axiom is satisfied to show-
ing it is satisfied when gluing connected manifolds.

We used the calculation in lemma 4.1.4 to define ZG. Now to make sure that
this is consistent and the gluing axiom holds take connected smooth manifolds M1

and M2 with inclusions ι1 : Σ ãÑ BM1, ι2 : Σ ãÑ BM2, f1 : Σ1 ãÑ BM1 ´ ι1pΣq
and f2 : Σ2 ãÑ BM2 ´ ι2pΣq. Let M “ M1 Y

ι1,ι2
Σ M2. We need to show that

for pM1, f1 \ ι1,Hq, pM2, ι2 \ f2,Hq, pM, f1 \ f2,Hq and B P RΣ1\Σ2,G with
B|Σ1 “ B1 P RΣ1,G and B|Σ2 “ B2 P RΣ2,G we have

ZGpM, f1 \ f2,HqpBq

“
ÿ

CPRΣ,G

#AutpCqZGpM1, f1 \ ι1,HqpB1, CqZGpM2, ι2 \ f2,HqpC,B2q

This is exactly the content of lemma 4.1.10.

The invariants associated to ZG can be explicitly calculated using the fundamental
group. Notice that in particular this means that these invariants are therefore weaker
than the fundamental group. We have the following result for general dimension.

Theorem 4.1.12. (Partition Function for Dijkgraaf-Witten TQFT)
Let M be a connected smooth manifold, BM – Σ1 \ ...\ Σn with Σi connected and
G a finite group. Let ZG be the Dijkgraaf-Witten TQFT of the dimension of M .
Then for A P RΣ1\...\Σn,G and fi : Σi ãÑ BM with corresponding representation for
pfiq˚pA|Σiq given by ρAi P Hompπ1pfipΣiq, Gq{G we have

ZGpM, f1 \ ...\ fn,HqpAq “
#tρ P Hompπ1pMq, Gq : rρ|π1pfipΣiqqs “ ρAiu

#G

Proof. By the definition of ZG for A P RBM,G Ď ZGpBMq we have

ZGpM, f1 \ ...\ fn,HqpAq “
ÿ

BPRM,Gpf˚pAqq

1

#AutpBq

Notice that by by lemma 4.1.2 and the proceeding remark we see that if ρB represents
the representation class associated to the bundle B we have #AutpBq “ #StabpρBq.
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Then by theorem 4.1.1 we have

ÿ

BPRM,Gpf˚pAqq

1

#AutpBq
“

ÿ

ρPHompπ1pMq,Gq{G

s.t rρ|Σi s“ρAi

1

#Stabpρq

Now by the orbit stabiliser relation we have

1

#Stabpρq
“

#Orbpρq

#G

Combining this with the previous statements gives

ZGpMqpAq “
ÿ

BPRM,Gpf˚pAqq

1

#AutpBq
“

ÿ

ρPHompπ1pMq,Gq{G

s.t rρ|π1pfipΣiqq
s“ρAi

#Orbpρq

#G

“
ÿ

ρPHompπ1pMq,Gq

s.t rρ|π1pfipΣiqq
s“ρAi

1

#G
“

#tρ P Hompπ1pMq, Gq : rρ|π1pfipΣiqqs “ ρAiu

#G

The calculation can be taken even further in the case of p1` 1q-dimensional TQFT.
This exploits the classification of p1 ` 1q-dimensional TQFTs discussed in section
G.3 to get the following results.

Theorem 4.1.13. (Partition Function for Dijkgraaf-Witten TQFT on a Surface)
Let Σg,n be the closed surface of genus g with n boundary circles given by C1, ..., Cn –
S1, G a finite group, irredpGq the finite dimensional irreducible C-representations of
G and χα : GÑ C the character of the representation α. Consider ZG the Dijkgraaf-
Witten TQFT at dimension 1 ` 1. For A1, ..., An P G{AdpGq “ HompZ, Gq{G “

Hompπ1pS
1q, Gq{G “ RS1,G “ ZGpS

1q we have

#tρ P Hompπ1pΣg,nq, Gq : rρ|Cis “ Aiu

#G
“ ZGpΣg,nqpA1, ..., Anq

“ G2g´2`n
ÿ

αPirredpGq

χαpA1q...χαpAnq

AutpA1q...AutpAnq dimpαq2g´2`n

Corollary 4.1.14. (Mednykh’s Formula)
Let Σg,0 be the closed surface of genus g, G a finite group and let irredpGq be the
finite dimensional irreducible C-representations of G. Consider ZG the Dijkgraaf-
Witten TQFT at dimension 1` 1. We have the following formula

#Hompπ1pΣg,0q, Gq

#G
“ ZGpΣg,0q “ G2g´2

ÿ

αPirredpGq

1

dimpαq2g´2

Proof. The LHS of the equality was shown in theorem 4.1.12.

We now want to use the explicit properties of p1 ` 1q-dimensional TQFTs. Re-
call from section G.3 the following properties.
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• The information of a p1 ` 1q-dimensional TQFT is the same as that of a
commutative Frobenius algebra.

• The multiplication is determined by the pair of pants and the cylinder.

• The metric is determined by the cylinder.

• The unit is determined by the disk.

To recalculate the Dijkgraaf-Witten p1 ` 1q-dimensional TQFT we must therefore
calculate ZGpΣ0,3q, ZGpΣ0,2q and ZGpΣ0,1q.

Firstly let A1, A2, A3 P G{AdpGq “ RS1,G. We want to think of A1, A2, A3 P ZpCGq
the center on the group algebra in the standard way. That is take A1 “

ř

gPA1
g P

ZpCGq etc. Notice that for π1pΣ0,nq we have

#tρ P Hompπ1pΣ0,nq, Gq : rρ|Cis “ Aiu

#G
“

coefficient of e in A1...An
#G

Therefore we see that

• ZGpΣ0,1qpA1q “

"

1
#G

if A1 “ e

0 otherwise

• ZGpΣ0,2qpA1, A2q “

"

#A1

#G
if A1 “ A´1

2

0 otherwise

• ZGpΣ0,3qpA1, A2, A3q “
coefficient of e in A1A2A3

#G

Note that pcoefficient of e in A1A2A
´1q “ pcoefficient of A in A1A2A

´1Aq
“ pcoefficient of A in A1A2q ˆ#A. From these formulas we can see that

ÿ

A“A´1
3 PRS1,G

ZGpΣ0,3qpA1, A2, Aq
A3

ZGpΣ0,2qpA,A3q

“
ÿ

APRS1,G

coefficient of e in A1A2A
´1

#A
A

“
ÿ

APRS1,G

pcoefficient of A in A1A2q ˆ#A

#A
A “ A1A2 P ZpCGq

Notice that this means not only can we think of ZGpS
1q “ ZpCGq as vector spaces

but in fact ZGpS
1q “ ZpCGq as algebras. Recall of course that class functions on a

finite group correspond to the center of the group algebra. Notice that ZGpΣ0,2q is
the standard inner product on class functions. Notice that ZGpΣ0,1q corresponds to
the unit in ZpCGq as well.

We see that center of the group algebra ZpCGq is the Frobenius algebra associ-
ated to the p1` 1q-dimensional Dijkgraaf-Witten TQFT ZG.
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From the study of irreducible representations of finite groups we see that ZpCGq is
semi-simple and in fact the idempotent basis is given by #Gχα

dimpαq
for α P irredpGq.

(See [Art91] for an introduction to finite group representations.)

From our calculations in G.3 we have the following formula given the basis of idem-

potents
!

#Gχα
dimpαq

)

αPirredpGq
where we note that

A

#Gχα
dimpαq

, #Gχα
dimpαq

E

“
#G2

dimpαq2
.

ZGpΣg,nqpA1, ..., Anq “ #G2g´2`n
ÿ

αPirredpGq

χαpA1q...χαpAnq

AutpA1q...AutpAnq dimpαq2g´2`n

Remark: These relations in group theory don’t necessarily say anything
too deep about a relation to the topology of 2 manifolds. Considering that
the fundamental group of a 2 manifold is free besides one commutator
relation, it follows that the representations should be closely related to
the structure of the group. The main point is that both the group algebra
and p1` 1q-dimensional cobordisms possess Frobenius structures.

Remark: Notice the similarity between Mednykh’s formula and Wit-
ten’s formula 3.2.1 for the volumes of the moduli space of flat connections.
This seems to put Witten’s result as a clear generalisation of Mednykh’s
formula to the case of connected simple Lie groups. This motivates the
next section 4.2.

In dimension p1`1q we have calculated the Dijkgraaf-Witten TQFT with respect to
some group theoretic quantities. This used the classification of p1` 1q-dimensional
TQFTs. In dimension p2 ` 1q we don’t have this luxury so we will build up some
examples.

Example: (Simple Calculations in p2` 1q-dimensions)

• Let Sg be the genus g handle-body. Then Σg “ BSg. We have

ZGpΣgq “ SpanCtpa1, b1, ..., ag, bgq P G
2g : a1b1a

´1
1 b´1

1 ...agbga
´1
g b´1

g “ eu{G

Then for ra1, b1, ..., ag, bgs P G
2g{G such that a1b1a

´1
1 b´1

1 ...agbga
´1
g b´1

g “ e.

ZGpSg, ι,Hq : ZGpΣgq Ñ C s.t

ZGpSg, ι,Hqra1, b1, ..., ag, bgs “

#

1
#StabGpa1,b1,...,ag ,bgq

if for all i we have bi “ e

0 otherwise
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• Notice that pSg \ Sg, ι\ ι,Hq ˝ pΣg ˆ r0, 1s,H, ι\ ιq “
`

pS2 ˆ S1qg#,H,H
˘

.
Let pa1, b1, ..., ag, bgq “ pa, bq, pa, eq “ pa1, e, ..., ag, eq and

R “ tpa1, b1, ..., ag, bgq P G
2g : a1b1a

´1
1 b´1

1 ...agbga
´1
g b´1

g “ eu{G

We then have

ZGppS
2
ˆ S1

q
g#
q “

ÿ

pa,bqPR

ZGpSg, ι,Hqpa, bqZGpSg, ι,Hqpa, bq#StabGpa, bq

“
ÿ

aPGg{G

1

#StabGpa, eq
“

ÿ

aPGg{G

OrbGpa, eq

#G
“

#Gg

#G
“ #Gg´1

This can be calculated directly using theorem 4.1.12 and noting that π1ppS
2ˆ

S1qg#q “ Fg and therefore #HompFg, Gq “ #Gg and so ZGppS
2 ˆ S1qg#q “

#Gg

#G
“ #Gg´1.

• Suppose f : Σg Ñ Σg swap the a and b cycles on the surface. For example for
g “ 1 the isomorphism that switches factors S1 ˆ S1 – S1 ˆ S1. Then notice
pSg \ Sg, ι\ f,Hq ˝ pΣg ˆ r0, 1s,H, ι\ ιq “ pS

3,H,Hq. Now

ZGpSg, f,Hqra1, b1, ..., ag, bgs “

#

1
#StabGpa1,b1,...,ag ,bgq

if for all i we have ai “ e

0 otherwise

This means

ZGpS
3
q “

ÿ

pa,bqPR

ZGpSg, ι,Hqpa, bqZGpSg, f,Hqpa, bq#StabGpa, bq

“
Stabpe, eq

Stabpe, eq2
“

1

Stabpe, eq
“

1

#G

Notice that using theorem 4.1.12 we have ZGpS
3q “

#Hompπ1pS3q,Gq
#G

“ 1
#G

.

Remark: Throughout this section we have explicitly used the fact that
G is finite. To understand what happens when we replace our finite
group with a Lie group G in general requires work. For those interested
consult [FHLT09]. In the next section we will exploit the classification
of p1`1q-dimensional TQFTs to construct an analogue of the Dijkgraaf-
Witten TQFT in dimension p1` 1q with Lie groups.

Remark: The definition 4.1.2 means that G-covers can be glued to-
gether. This allows one to define the subcategory of Cobd`1 given by
the G-covers. This will be denoted GCovd`1. There is a functor Base :
GCovd`1 Ñ Cobd`1 which takes a G-cover to its base. There is a map

Aut : HomGCovd`1
pP1, P2q Ñ

1
#G

Zą0 such that for P P HomGCovd`1
pP1, P2q

we have AutpP q “ #AutpP2q

#AutpP q
. Notice that #AutpP q is related to the pre-

image Base´1pΣˆ r0, 1sq.
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For Σ P obpCobd`1q we define ZGpΣq “ SpanCtBase
´1pΣqu and

ZGpMqpP1q “
ÿ

PPBase´1pMq

s.t P |Σ1
“P1

AutpP qP |Σ2

To generalise Dijgkraaf-Witten TQFT to Lie groups these kinds of cate-
gories and functors could be important.

4.2 Recursions and Topological Quantum Field

Theory

Covering spaces give rise to a completely rigorous TQFT with a partition function
being defined as a finite sum of G-covers on a given cobordism.

Although this is rigorous, the case of most interested is when we replace finite group
with a Lie group. This will be the case of interest when we study gauge theory with
a Lie group symmetry on a manifold.

Notice that representation classes of the fundamental group into a Lie group are
described by the moduli space of flat connections. Therefore, we wish to define a
measure on the moduli space in order to define the partition function and to calcu-
late the associated invariants.

Atiyah and Bott have defined such a measure and this is exactly the content of
section 2.1.2. This defines some measure on the moduli space of flat connections
and in fact Witten has calculated the volume associated to this measure as shown
in theorem 3.2.1.

We want to understand how these volumes could correspond to a partition func-
tion of some TQFT.

4.2.1 Volume Recursions with a Canonical Basis of Class
Functions

A trivial topological gauge theory should take d dimensional manifolds the free vec-
tor space of flat connections on the manifolds. It should take pd ` 1q-dimensional
manifolds as functions that take in boundary conditions and give numbers or in
particular the volume of the moduli space of flat connections. This is exactly the
definition of the Dijkgraaf-Witten TQFT.

When d “ 1 the vector space associated to the circle as spanned by flat connec-
tions on the circle which is the set of conjugacy classes. This is closely related
to the class functions from the Lie group. The issue on the outset is that the di-
mension of ZpS1q is infinite and this will lead to ZpS1ˆS1q “ dimpZpS1qq “ 8 P C.
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p1 ` 1q-dimensional TQFTs correspond to Frobenius algebra’s over some module.
In this section we will study the L2pGq functions on a compact group and show
that they illustrate various properties of a Frobenius algebra over C. This will be
analogous to the group algebra CrGs of a finite group.

Definition: (L2pGq Banach Algebra)
Let G be a compact Lie group. Using the Haar measure on G we can
define the Banach space L2pGq. L2pGq has an inner product such that
for f, g P L2pGq we have

xf, gy “

ż

G

fpx´1
qgpxqdx

We can also define a product structure on L2pGq via convolution. For
f, g P L2pGq we have

f ‹ gpxq “

ż

G

fphqgph´1xqdh

This space is not quite the space we are interested in and we will consider the
subspace of class functions and see if the inner product x´,´y and ‹ satisfy the
Frobenius condition.

Definition: (ZG)
Let G be a compact semi-simple Lie group. Let ZG Ď L2pGq be the
subset of class functions (i.e fpyxy´1q “ fpxq). This is a sub-algebra
of L2pGq. Notice that ZG Ď tf : RS1,G Ñ Cu is the subset of square
integrable functions.

Theorem 4.2.1. (Canonical Basis)
Let G be a compact semi-simple Lie group. Let irredpGq be the set of finite di-
mensional irreducible representations and for α P irredpGq let the character of the
representation be denoted χα : GÑ C.

Then tχαuαPirredpGq is an orthonormal Schauder basis of ZG with respect to the inner
product x´,´y on L2pGq. That is for α, β P irredpGq we have

xχα, χβy “

ż

G

χαpx
´1
qχβpxqdx “ δα,β

Moreover with the convolution product ‹ we have

χα ‹ χβ “ δα,β
V olpGq

dimpαq
χα

Proof. See the theorem of Peter-Weyl theorem B.2.2 and section II 4 of [Bt03].

Corollary 4.2.2. (ZG is a Non-Unital Frobenius Banach Algebra)
For f, g, h P ZG we have

xf ‹ g, hy “ xf, g ‹ hy
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Proof. By the previous theorem we know that tχαuαPirredpGq is a basis so we need
only check this result on basis elements. The theorem also gives the following

xχα ‹ χβ, χγy “ δα,β,γ
V olpGq

dimpαq
“ xχα, χβ ‹ χγy

Definition: (Volumes as Linear Maps)
Let G be a compact semi-simple Lie group let F be Weyl denominator
of theorem B.2.8. Define the following linear maps

ZG,g,n : ZbnG Ñ C s.t ZG,g,npf1, ..., fnq “ V olpGq´n

ż

G{AdpGq

...

ż

G{AdpGq

VG,g,npC
´1
1 , ..., C´1

n qf1pC1q...fnpCnq
a

F pC1q...F pCnqdC1...dCn

Remark: The volumes as calculated by Witten are not well defined for
all Euler characteristics as his expressions have divergences. Therefore
the above linear map is not always defined however we will abstract and
avoid the issues associated with convergence. This is the same reason
that ZG is non-unital.

Remark: We would like to define a p1` 1q-dimensional TQFT ZG with
ZG “ ZGpS

1q and ZG,g,n “ ZpΣg,nq. However we want to be able to ex-
tract the volume from these linear maps ZpΣg,nq. This won’t be possible
without Dirac δ-functions which are not in L2pGq.

Lemma 4.2.3. (Convolution Product vs. ZG,0,3)
Let G be a compact semi-simple Lie group. Then for f, g, h P ZGpS

1q we have

xf ‹ g, hy “
#ZpGq

V olpT q3
ZGpΣ0,3qpf, g, hq

Proof. We will prove this fact on the basis of characters χα and this will be enough.
Now we know

xχα ‹ χβ, χγy “ δα,β,γ
V olpGq

dimpαq

From theorem 3.2.6 we know that

VG,0,3pC1, C2, C3q

“
#ZpGqV olpGq

V olpT q3

ÿ

αPirredpGq

χαpC1qχαpC2qχαpC3q
a

F pC1qF pC2qF pC3q

dimpαq

This means that using the Weyl integration formula theorem B.2.6 we have

ZGpΣ0,3q pχα, χβ, χγq “ V olpGq´3 #ZpGqV olpGq

V olpT q3

ÿ

εPirredpGq

V olpGq3δα,εδβ,εδγ,ε
dimpεq

“ δα,β,γ
#ZpGqV olpGq

V olpT q3 dimpαq
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Remark: (Conjugacy Classes Almost a Canonical Basis)
To extract the volumes from ZG,g,n we need to allow δ-functions centred
at a given conjugacy class in ZG. This brings some complications so we
will instead take a formal version of the L2pGq algebra which will we then
use to construct a p1` 1q-dimensional TQFT.

4.2.2 Graded Topological Quantum Field Theories and 1+1-
Dimensional Gauge Theories

In this section a formal version or analogue of L2pGq will be defined and will be shown
to capture the information of the volume of the moduli space of flat connections.

Definition: (Formal Space of Characters)
Let G be a compact semi-simple Lie group. Let irredpGq be the set of
finite dimensional irreducible representations. Let

ZGpS
1
q “ CirredpGq

be the one dimensional CirredpGq-module given by component wise multi-
plication.

Remark: This ring should be viewed as formal sums of the irreducible
characters χα. Note however that the product is not quite the convolu-
tion.

Definition: (Representation of the Conjugacy Classes)
Let G be a compact semi-simple Lie group. Let C P G{AdpGq. Then we
can take

C P ZGpS
1
q

such that for α P irredpGq we have Cα “ χαpCq.

Definition: (Linear Maps related to Volumes)
Let G be a compact semi-simple Lie group. Then define

ZGpΣg,nq : ZGpS
1
q
bn
Ñ CirredpGq s.t

ZGpΣg,nqpv1, ..., vnqα “
V olpGq2g´2`n

dimpαq2g´2`n
pv1qα...pvnqα

Theorem 4.2.4. (Topological Gauge Theory as a TQFT)
Let G be a compact semi-simple Lie group. Then ZG defines a p1` 1q-dimensional
TQFT over the ring CirredpGq.

Proof. To prove that ZG is a TQFT we must check that it satisfies the Frobenius
object conditions. That is we must check ZGpΣ0,2q and defines a product, ZGpΣ0,3q

defines a product with unit defined ZGpΣ0,1q.

For puαqαPirredpGq, pvαqαPirredpGq P ZGpS
1q we have

xpuαqαPirredpGq, pvαqαPirredpGqy “ ZGpΣ0,2qppuαqαPirredpGq, pvαqαPirredpGqqα
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“
V olpGq2ˆ0´2`2

dimpαq2ˆ0´2`2
uαvα “ uαvα

This is a non-degenerate inner product. We have the following basis for ZGpS
1q

given by I such that Iα “ 1 for all α P irredpGq. Notice that ZGpΣ0,2qpI, Iq “ I.

We now want to check that ZGpΣ0,3q defines a product. This needs to contract
using ZGpΣ0,2q. Notice that as ZGpS

1q is 1-dimensional that the sum in the contrac-
tion has only one term. We can define a product as follows

puαqαPirredpGq¨pvαqαPirredpGqqα “
`

ZGpΣ0,3qppuαqαPirredpGq, pvαqαPirredpGqqα, IqZGpI, Iq´1I
˘

α

“
V olpGq2ˆ0´2`3

dimpαq2ˆ0´2`3
uαvα “

V olpGq

dimpαq
uαvα

Notice that puαqαPirredpGq¨pvαqαPirredpGqqα is associative and commutative. Also notice
that as ZG is one dimensional this product is completely determined by pI ¨ Iqα “
V olpGq
dimpαq

. We now need to check the Frobenius condition. We have

xpuαqαPirredpGq ¨ pvαqαPirredpGq, pwαqαPirredpGqyα “
V olpGq

dimpαq
uαvαwα

“ xpuαqαPirredpGq, pvαqαPirredpGq ¨ pwαqαPirredpGqyα

The last check is that ZGpΣ0,1q induces a unit as follows.

`

ZGpΣ0,1qpIqZ0,2pI, Iq´1I
˘

α
“
V olpGq2ˆ0´2`1

dimpαq2ˆ0´2`1
“

dimpαq

V olpGq

Now notice that
`

ZGpΣ0,1qpIqZ0,2pI, Iq´1I ¨ puαqαPirredpGq
˘

α
“
V olpGq

dimpαq

dimpαq

V olpGq
uα “ uα

We have checked all the conditions and therefore ZG does indeed define a TQFT.

Definition: (`1
`

CirredpGq
˘

)

`1
`

CirredpGq
˘

“

$

&

%

pvαqαPirredpGq P CirredpGq :
ÿ

αPirredpGq

|vα| ă 8

,

.

-

The we can define a map µ : `1
`

CirredpGq
˘

Ñ C such that for pvαqαPirredpGq P

`1
`

CirredpGq
˘

µ
`

pvαqαPirredpGq
˘

“
ÿ

αPirredpGq

vα

Theorem 4.2.5. (Relation to Volumes of the Moduli Space of Flat Connections)
Let G be a compact semi-simple Lie group and F be the Weyl denominator of the-
orem B.2.8. For C1, ..., Cn P ZGpS

1q representing the conjugacy classes C1, ..., Cn P
G{AdpGq – RS1,G. If VG,g,npC1, ..., Cnq is finite and ZGpΣg,nqpC1, ..., Cnq P `

1
`

CirredpGq
˘

then

VG,g,npC1, ..., Cnq “
#ZpGq

a

F pC1q...F pCnq

V olpT qn
µ pZGpΣg,nqpC1, ..., Cnqq

Proof. This follows directly from the definition of µ pZGpΣg,nqpC1, ..., Cnqq and the-
orem 3.2.1.
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Appendix A

Smooth Manifolds, Fibre Bundles
and Tangent Bundles

Will define these basic objects in the theory of differential topology. For more details
and examples consult either [Spi70] or [KN63]. For vector bundles specifically one
may consult [MS74] for the basic definitions and results. All the following definitions
try to make rigorous the ideas of local differentiation and integration in a topological
space that looks locally like Rn.

A.1 Smooth Manifolds

Definition: (Manifold)
Let M be a Hausdorff and second countable topological space. If for each
x PM there exists

• an open set U ĎM with x P U

• a open set Ω Ď Rn

• and a homeomorphism ϕ : Ω Ñ U

we call M an n-manifold.

Remark: This definition says that M is locally homeomorphic to Rn.
Note also that the dimension n is an invariant of the manifold.

Notation: Let Ω Ď Rn be an open set. Let CrpΩ,Rmq be the set of continuous
functions such that all partial derivative up to order r are continuous.

C0pΩ,Rmq will be continuous functions and C8pΩ,Rmq will be the smooth func-
tions (i.e all partial derivative exists and are continuous).

Definition: (Cr Atlas)
Let M be a n-manifold. Let I is some indexing set and for i P I let

• an open set Ui ĎM
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• a open set Ωi Ď Rn

• and a homeomorphism ϕi : Ωi Ñ Ui

such that
Ť

iPI Ui “ M . If for i, j P I we have ϕ´1
j ˝ ϕi|ϕ´1

i pUiXUjq
a Cr

map between subsets of Rn then we say tpUi, ϕiquiPI is a Cr atlas for M
and pUi, ϕiq a chart in the atlas.

M

Rn Ě Ωi Ωj Ď Rn

ϕi
ϕj

Definition: (Cr Manifold)
Let M be a n-manifold. A Cr structure on M is an equivalence class of
Cr atlases. Two atlases tpopeni, ϕiquiPI and tpVj, φjqujPJ are equivalent
if tpUi, ϕiquiPI Y tpVj, φjqujPJ is a Cr atlas. An n-manifold and its Cr

structure is called a Cr n-manifold.

An n-manifold with a C0 structure will be called a topological n-manifold
and a n-manifold with a C8 structure will be called a smooth n-manifold.

Definition: (Cr Maps)
Let M be Cr n-manifold and N be Cr m-manifold with atlases in their
Cr structures tpUi, ϕiquiPI and tpVj, φjqujPJ respectively. If φ´1

j ˝ f ˝
ϕi|ϕ´1

i pf´1pVjqq
is a Cr between subsets of Rn and Rm for all i P I and

j P J then we say f is a Cr map from M to N .

M N

Rn Ě Ui Vj Ď Rm

f

ϕi φj

Let CrpM,Nq be the set of Cr maps from M to N and CrpMq be the
real commutative algebra of smooth maps from M to R with point wise
addition and multiplication.

Definition: (Diffeomorphism)
If M and N are smooth manifolds and f : M Ñ N is a smooth bijection
with smooth inverse then we say that f is a diffeomorphism.

Remark: It can be seen that Cr manifolds and Cr maps form a category.
In particular we are interested in the category of smooth manifolds and
smooth maps.

Definition: (Manifolds with Boundary)
Let M be a Hausdorff and second countable topological space. If for each
x PM there exists
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• an open set U ĎM with x P U

• a open set Ω Ď Rn´1 ˆ Rě0

• and a homeomorphism ϕ : Ω Ñ U

we call M an n-manifold with boundary.

Remark: For a manifold with boundary M we can define the boundary
of M denoted BM . Then M ´ BM is a manifold in the ordinary sense
and we can define Cr structures on manifolds with boundary.

A.2 Smooth Bundles and Tangent Bundles

We wish to define that tangent space of a smooth manifold at a point and then
define the tangent bundle and induced maps between tangent bundles. Firstly, we
will consider the definition of a fibre bundle. For more information on fibre bundles
consult the classic text [Ste51].

Definition: (Fibre Bundle)
Let E, B and F be topological spaces and π : E Ñ B a surjective map.
If for every point x P B there exists an open set U Ď B with x P U such
that ϕ : π´1pUq – U ˆF with projU ˝ϕ “ π we say that pπ : E Ñ B,F q
is a fibre bundle.

If E,B, F are smooth manifolds with π a smooth map we say that
pπ : E Ñ B,F q is a smooth fibre bundle.

Definition: (Bundle Map)
Let pπ1 : E1 Ñ B1, F1q and pπ2 : E2 Ñ B2, F2q be fibre bundles. Let
f : B1 Ñ B2 be a continuous map. Then a continuous map g : E1 Ñ E2

is called a bundle map covering f if π2 ˝ g “ f ˝ π1.

Definition: (Sections)
Let pπ : E Ñ B,F q be a fibre bundle. A section is a continuous map
s : B Ñ E such that π˝s “ id. For smooth fibre bundles we take smooth
maps s.

Definition: (Real Vector Bundle)
Let V be a topological vector space over R. Suppose we have a fibre
bundle pπ : E Ñ B, V q such that for x P B we have the structure of
vector space π´1pxq – V . If for each x P B there exists an open set
U Ď B with x P U with a homeomorphism ϕ : U ˆ V – π´1pUq such
that projU “ π ˝ϕ such that ϕpx,´q : V Ñ π´1pxq is an isomorphism of
vector spaces then we call pπ : E Ñ B, V q a real vector bundle.
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Remark: Smooth vector bundles can be defined by requiring all spaces
and maps to be smooth. We can also analogously define complex vector
bundles by choosing V a complex vector space. The underlying theme
of any bundle is local triviality. In other words, locally we have some
Cartesian product of spaces potentially with some additional structure.

Notation: If pπ : E Ñ B, V q is a vector bundle. For x P B we denote the fibre
above x with its vector space structure as Ex. We will right elements of Ex with a
subscript as follows as vx P Ex.

There is a natural vector space associated to a vector bundle pπ : E Ñ B, V q defined
as follows.

Definition: (Space of Sections)
Let pπ : E Ñ B, V q be a vector bundle. Consider the set of sections.
We then define addition and scalar multiplication as follows for sections
s1, s2 : B Ñ E and r P R.

• s1 ` s2 : B Ñ E such that ps1 ` s2qpxq “ s1pxq ` s2pxq

• rs1 : B Ñ E such that prs1qpxq “ rps1pxqq

The local triviality condition means that these maps will indeed be con-
tinuous and in fact smooth for smooth fibre bundles. We define ΓpEq to
be the space of sections of E.

There are two natural vector bundles associated to every smooth manifolds.

Definition: (Derivations)
Let M be a smooth manifold and x P M . Consider the following vector
space where C8pMq˚ denote the dual of the vector space C8pMq.

TxM “ tDx : C8pMq˚ : Dxpfgq “ Dxpfqgpxq ` fpxqDxpgqu

This is called the space of derivations on M at the point x PM .

Remark: Amazingly, the dimension of TxM is the same as the dimen-
sion of M . There is a geometric interpretation of these derivations as
directional derivative and this definition canonically coincides with more
geometric definitions of tangent vectors so we will refer to TxM as the
tangent space of M at x PM .

Notation: Let T ˚xM “ pTxMq
˚. We call this the cotangent space of M at x PM .

Lemma A.2.1. Let M be a smooth n-manifold, x P M , U Ď M and Ω Ď Rn be
open with x P U , and ϕ : Ω Ñ U a diffeomorphism. Then the derivations B

Bϕi
|x

defined by B

Bϕi
|x : C8M Ñ R such that B

Bϕi
|xpfq “

B

Bxi
pf ˝ ϕq|ϕ´1pxq form a basis for

TxM .

Notation: Let dϕi|x be the dual basis element to B

Bϕi
|x.
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Definition: (Induced Maps)
Let M and N be smooth manifolds. Let f : M Ñ N be a smooth map.
For x P M consider TxM , TfpxqN , T ˚xM and T ˚fpxqN . We can define
the following maps from TxM to TfpxqN and T ˚fpxqN to T ˚xM induced

by the map f as follows for g P C8pMq and h P C8pNq noting that
h ˝ f P C8pMq.

Txf “ dfx “ pf˚qx : TxM Ñ TfpxqN s.t ppf˚qxpvxqqphq “ vxph ˝ fq

T ˚x f “ pf
˚
qx : T ˚fpxqN Ñ T ˚xM s.t pf˚qxpωxq “ ωx ˝ pf˚qx

Remark: Rigorously defining all the categories we can make Tx a co-
variant functor from based smooth manifolds to real vector spaces and
T ˚x a contravariant functor from based smooth manifolds to real vector
spaces.

Definition: (Tangent Bundle)
Let M be a smooth n-manifold. Let TM “

Ů

xPM TxM as a set. Define a
topology and smooth structure on TM as follows. For v P TM we have
v P TxM for some x and so we have an open set U Ď M with x P U , an
open set Ω Ď Rn and a diffeomorphism ϕ : Ω Ñ U .

Define the following chart Φ : Ω ˆ Rn Ñ
Ů

uPU TuM such that for
Φpy, a1, ..., anq “ a1

B

Bϕ1
|ϕpyq ` ...` an

B

Bϕn
|ϕpyq.

So TM inherits the structure of a smooth manifold. The canonical pro-
jection π : TM ÑM such that for v P TxM we have πpvq “ x is smooth
and makes TM into a vector bundle we call the tangent bundle of M .

Define the following chart Ψ : Ω ˆ Rn Ñ
Ů

uPU T
˚
uM such that for

Φpy, a1, ..., anq “ a1dϕi|y ` ...` andϕi|y.

So T ˚M inherits the structure of a smooth manifold. The canonical
projection π˚ : T ˚M Ñ M such that for v P T ˚xM we have π˚pvq “ x
is smooth and makes T ˚M into a vector bundle we call the cotangent
bundle of M .

Definition: (Induced Maps)
Let M and N be smooth manifolds. Let f : M Ñ N be a smooth map.
M , TN , T ˚M and T ˚N . We can define the following maps from TM to
TN and T ˚N to T ˚M induced by the map f as follows.

Tf “ df “ f˚ : TM Ñ TN s.t f˚pvxq “ pf˚qxpvxq

T ˚f “ f˚ : T ˚N Ñ T ˚M s.t f˚pωq “ ω ˝ f˚

Remark: Rigorously defining all the categories we can make T a covari-
ant functor from smooth manifolds to smooth real vector bundles and
T ˚ a contravariant functor from smooth manifolds to smooth real vector
bundles.
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A.3 Vector Fields, Differential Forms and Inte-

gration

The cotangent bundle is important as we can analogously define the k-th exterior
power of the cotangent bundle ΛkT ˚M . We then use this to define differential forms
which we use to define integration on a manifold. For the functorial constructions of
vector bundles such as ΛkT ˚M a complete description is given in section 3f of [MS74].
For a great introduction to de Rham cohomology and differential forms see [BT82].

Definition: (Differential Forms)
The space of k-forms is defined as ΩkpMq “ ΓpΛkT ˚Mq.

Definition: (Vector Fields and Flow)
Let M be a smooth manifold. Let XpMq “ ΓpTMq be the space of
vector fields. Let X P XpMq. From existence and uniqueness results in
the study of differential equations we see that given a point x PM there
exists a unique path connected subset 0 P Ω Ď R and a path γ : Ω ÑM
such that γp0q “ x and Trγpvrq “ Xγprq.

Remark: We can view ΩkpMq as antisymmetric k-linear functions from
the space of vector fields XpMq to C8pMq.

Remark: The induced maps between tangent, cotangent bundles and
exterior powers of cotangent bundles induce maps between the sections
of these bundles.

Lemma A.3.1. Let M be a smooth map and a chart pU,ϕ : Ω Ñ Uq. Note that
then for ω P ΩkpMq and v P XpMq we have the following local forms of ω and v for
some fi1,...,ik , gi P C

8pΩq for ij, i P t1, ..., nu

ϕ˚pω|Uq “
ÿ

0ăi1ă...ăikďn

fi1,...,ikpx1, ..., xnqdxi1 ^ ...^ dxik

pϕ´1
q˚v “

n
ÿ

i“1

gipx1, ..., xnq
B

Bxi

Remark: We will often consider these kinds of objects locally. This is
often the way one builds up a k form or an vector field. Taking an atlas
for each open set locally they have the concrete form above and then one
checks that they agree on intersections. The next definition illustrates
this idea.

Definition: (Lie Derivative)
Let M be a smooth manifold and consider X, Y P XpMq, ω P ΩkpMq
and let ϕ : M ˆ R Ñ M be the flow generated by X. Define the lie
derivative of Y and ω in the direction of X as follows.

LXpY q “ lim
tÑ0

TϕtpY q ´ Y

t
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LXpωq “ lim
tÑ0

ϕ˚t pωq ´ ω

t

Note that the Lie derivative defines a Lie bracket on the vector fields
given by

rX, Y s “ LXpY q

Theorem A.3.2. (Frobenius’ Theorem)
Let M be a smooth manifold. If H Ď TM is a sub-bundle then H is defined by a
foliation if and only if H is integrable. That is, H is the tangent bundle of the leaves
of a foliation if and only if H is closed under the Lie bracket operation on vector
fields on H.

Definition: (Exterior Derivative)
Let M be a smooth manifold and ω P ΩkpMq. The exterior derivative is
the unique set of maps such that for k P Zě0 we have

• We have dk : ΩkpMq Ñ Ωk`1pMq a linear map

• For f P Ω0pMq “ C8pMq we have and d0f “ df “ Tf “ f˚

• dk`1 ˝ dk “ 0

• For α P ΩkpMq and β P ΩppMq we have

dk`ppα ^ βq “ dkpαq ^ β ` p´1qkα ^ dppβq

Equivalently if ω P ΩkpMq is given locally for a chart pU,ϕq by

ϕ˚pω|Uq “
ÿ

0ăi1ă...ăikďn

fi1,...,ikpx1, ..., xnqdxi1 ^ ...^ dxik

then dω P Ωk`1pMq is given by

ϕ˚pdω|Uq “
n
ÿ

ik`1“1

˜

ÿ

0ăi1ă...ăikďn

Bfi1,...,ik
Bxik`1

px1, ..., xnqdxik`1
^ dxi1 ^ ...^ dxik

¸

For vector fields X1, ..., Xk`1 P XpMq we have the following where

pX1, ...,xXi, ..., Xk`1q “ pX1, ..., Xi´1, Xi`1, ..., Xk`1q

denotes emission of the element Xi.

dωpX1, ..., Xk`1q “

k`1
ÿ

i“1

p´1qi`1XipωpX1, ...,xXi, ..., Xk`1qq

`
ÿ

1ďiăjďk`1

p´1qi`jωprXi, Xjs, X1, ...,xXi, ...,xXj, ..., Xk`1q
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Remark: We call forms ω P ΩkpMq closed if dω “ 0 and exact if there
exists β P Ωk´1pMq such that dβ “ ω. Notice that all exact forms are
closed as d2 “ dk ˝ dk´1 “ 0.

Definition: (De Rham Cohomology)
Let M be a smooth manifold. The i-th de Rham cohomology group is
defined as

H i
dRpMq “ kerpdiq{impdi´1q

Lemma A.3.3. (Poincaré’s Lemma)
Let M be a smooth manifold. If M is simply connected then for i ą 0 we have

H i
dRpMq “ 0

In particular if M – Bk “ tx P Rk : }x} ă 1u then for i ą 0

H i
dRpMq “ 0

We have an association between the Lie derivative and the exterior derivative.

Theorem A.3.4. (Cartan’s Magic Formula)
Let M be a smooth manifold. For ω P ΩkpMq and X P XpMq let ιX : Ω˚pMq Ñ
Ω˚´1pMq such that for β P ΩkpMq we have ιXpβqpX1, ..., Xk´1q “ βpX,X1, ..., Xk´1q

LXpωq “ ιXpdωq ` dpιXωq

Definition: (Integration)
Let M be a smooth n-manifold with K Ď M a smooth k-dimensional
sub-manifold and ω P ΩkpMq. We then have ι : K ãÑM . Define

ż

ιpKq

ω “

ż

K

ι˚pωq

Let tpUi, ϕi : Ωi Ñ UiquiPI be an atlas in the smooth structure for M and
1 “

ř

iPI ρi be a partition of unity where ρi P C
8pMq and supppρiq Ď Ui

(For details on existence and properties see the last section of chapter 2
of [Spi70] or the 3rd appendix in [KN63])

Noting that there is a function fi P C
8pΩiq such that pρi˝ϕ1qpι˝ϕiq

˚pωq “
fidx1^ ...^dxk where xj are the standard coordinate functions in Rk we
define

ż

K

ι˚pωq “
ÿ

iPI

ż

Ωi

ρipι ˝ ϕiq
˚
pωq “

ÿ

iPI

ż

Ωi

fidx1...dxk

where the elements of the sum are given by integration (Lebesgue or
Riemannian) in Rk. If the sum is not defined then we say the integral is
not defined. This is independent from the choice of atlas and partition
of unity.
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Definition: (Riemannian Metric)
Let M be a smooth manifold. Let η P ΓpT ˚M b T ˚Mq. If for all x P M
we have ηx : TxM b TxM Ñ R is a non-degenerate (or positive definite)
bilinear form then we say that η is a Riemannian metric on M and
pM, ηq is a Riemannian manifold.

Definition: (Hodge-‹ operator)
Let pM, ηq be a Riemannian n-manifold. Then the Hodge-‹ operator ‹ :
ΩkpMq Ñ Ωn´kpMq is uniquely determined such that for α, β P ΩkpMq
we have

α ^ ‹β “ xα, βyηV olpηq

where V olpηq is the volume form induced by η and x´,´yη : ΩkpMq b
ΩkpMq Ñ C8pMq is the non-degenerate pairing defined by η.

Definition: (The Fundamental Group)
Let M be a manifold. Let π1pM,xq “ tγ : r0, 1s Ñ M : γp0q “ γp1q “
xu{ „ where γ1 „ γ2 if there exists H : r0, 1s ˆ r0, 1s Ñ M such that
Hpt, 0q “ γ1ptq and Hpt, 1q “ γ1 and Hp0, sq “ Hp1, sq “ x.

This set can be given a group structure. For rγ1s, rγ2s P π1pMq we take
representatives γ1, γ2 and let

γ1 ¨ γ2ptq “

#

γ1p2tq if 0 ď t ď 1
2

γ2p2t´ 1q if 1
2
ď t ď 1

Then define rγ1s ¨ rγ2s “ rγ1 ¨ γ2s. This is well defined. We can see that
for rγs P π1pM,xq and γ : r0, 1s ÑM such that γptq “ γp1´ tq we have

rγs “ rγs´1

See [Hat02] for details and results concerning the fundamental group.
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Appendix B

Lie Groups, Lie Algebras and
Affine Lie Algebras

We briefly define Lie groups and Lie algebras and describe their correspondence.
We then define the affine Lie algebras and discuss some of the irreducible modules
of the Lie algebras and the affine Lie algebras. For a detailed exhibition of the
theory surrounding Lie algebras and lie groups see [Bou98] or [Hum12]. For some
of the aspect related to the Fourier analysis on Lie groups see [Bt03]. For a detailed
exhibition of the theory of affine Lie algebras see [Kac94] however an extremely
concise reference that covers the important points needed for this thesis is [Bea94].

B.1 Lie Groups and Associated Lie Algebra

Definition: (Lie Group)
If G is a smooth manifold with the structure of a group with multipli-
cation given by ¨ such that the group multiplication ¨ : G ˆG Ñ G and
inversion ´´1 : GÑ G are smooth then we say G is a Lie group.

Definition: (Lie Algebra)
Let g be a vector space with an bilinear antisymmetric bracket operation
r´,´s : gˆ gÑ g such that for u, v, w P g we have

ru, rv, wss ` rw, ru, vss ` rv, rw, uss “ 0

This last condition is called the Jacobi identity. pg, r´,´sq is called a
Lie algebra.

Example: (Lie Algebra of Vector Fields)
Let M be a smooth manifold. Let XpMq “ ΓpTMq be the space of vector fields.
Consider f P C8pMq and X P XpMq. We then get a smooth functions Xpfq P
C8pMq such that for x P M we have Xpfqpxq “ Xxpfq. Define the following
bracket operation r´,´s : XpMq ˆ XpMq Ñ XpMq such that

rX, Y sxpfq “ XxpY pfqq ´ YxpXpfqq

It can be shown that LXpY q “ rX, Y s where LX is the Lie derivative in the direction
of X.
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Definition: (Lie Algebra Associated to a Lie Group)
Let G be a Lie group and e P G the identity in G. For g P G define
Rg : G Ñ G to be Rgphq “ h ¨ g. For Xe P TeG define the vector field
X such that Xg “ TeRgpXeq. Let LiepGq “ g and define the bracket
r´,´s : gˆ gÑ g such that for Xe, Ye P g we have

rXe, Yes “ rX, Y se

where the right hand side is given by the Lie bracket of vector fields.

Definition: (The Exponential Map)
Let G be a Lie group and LiepGq “ g be the associated Lie algebra. We
can define a map exp : gÑ G as follows. Let Xe P g and take the vector
field X P XpGq such that Xg “ TeRgpXeq. Take the flow of X through e
given by γ : RÑ G. Define exppXq “ γp1q.

Lemma B.1.1. Let G be a Lie group and LiepGq “ g be the associated Lie algebra.
Let X P g. The map expX : R Ñ G such that expXptq “ expptXq defines a Lie
group homomorphism from pR,`q to G.

Remark: Lie is a functor from Lie groups to Lie algebras. With enough
adjectives this functor is an equivalence of categories with the exponential
map giving the quasi-inverse functor.

B.2 Representations, Functions on Lie Groups and

Integration

Definition: (Representation)
Let G be a Lie group. A representation of G is a group homomorphism
for some vector space V given by ρ : GÑ EndpV q

Remark: Given a G-representation we can define V as a G module and
visa versa.

Definition: (Irreducible Representation)
A G-representation is irreducible if the G-module associated to the
representation has no proper sub-modules (i.e is simple).

Definition: (Class functions)
Let G be a Lie group. A class function is a function f : G Ñ C such
that fpgq “ fphgh´1q for all g, h P G.

Definition: (Character of a G-representation)
Let G be a Lie group. The character of a representation ρ : G Ñ

EndpV q is given by χρ “ Tr ˝ ρ : GÑ C.
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Definition: (Adjoint Actions)
Let G be a Lie group and g “ LiepGq be the corresponding Lie algebra.
Define the adjoint action of G on g as follows for g P G, X P g and
Cg : GÑ G such that Cgphq “ ghg´1.

AdgpXq “ TeCgpXq

Now define the adjoint action of g on g as follows for X, Y P g

adXpY q “ rX, Y s

Remark: The adjoint action defines a representation of G into Endpgq.

Definition: (The Killing Form)
Let g be a finite dimensional Lie algebra. The following form on g is
called the Killing form. For X, Y P g we have

κpX, Y q “ xX, Y y “ TrpadX ˝ adY q

This is symmetric from properties of the trace function and is non-
degenerate if and only if g is semi-simple (a direct product of Lie algebras
with only trivial ideals).

Definition: (Maurer-Cartan Form)
Let G be a Lie group. Define the Maurer-Cartan form ωG P Ω1pG, gq
as follows

pωGqgpXgq “ TgLg´1pXgq

Lemma B.2.1. Let G be a Lie group and ωG the Maurer-Cartan form. For v, u P
TgG

pdωGqgpu, vq ` rpωGqgpvq, pωGqgpuqs “ 0

In the notation developed in section D.1 we have

dωG ` rωG ^ ωGs “ 0

Proof. Let u, v P TgG. Consider X, Y P XpGq such that Xh “ TgLhg´1puq and Yh “
TgLhg´1pvq. Notice that Xg “ u and Yg “ v. Then note that ωGpXq “ TgLg´1puq
and ωGpY q “ TgLg´1pvq. So

pdωGqgpu, vq “ pdωGqgpXg, Ygq “ upωGpY qq ´ vpωGpXqq ´ pωGqgprX, Y sgq

“ ´pωGqgprX, Y sgq “ ´TgLg´1prX, Y sgq “ r´TgLg´1pXgq,´TgLg´1pYgqs

“ ´rpωGqgpvq, pωGqgpuqs

Definition: (Invariant Metric)
Let G be a Lie group, κ a killing form and ωG the Maurer-Cartan form.
We can define a Riemannian metric on G we’ll denote γ P ΓpT ˚GbT ˚Gq
such that for g P G and Xg, Yg P TgG we have

γgpXg, Ygq “ κpωgpXgq, ωgpYgqq
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Remark: For g semi simple the invariant metric defines above defines a
volume form on G which induces a measure on G.

Definition: (Haar Measure)
Let G be a Lie group. There exists a unique Borel measure dg on G
called the Haar measure that satisfies

• For some measurable set S we have
ş

S
dg “

ş

gS
dg

•
ş

G
dg “ 1

Remark: Haar measures can be defined on any topological vectors space
and smoothness isn’t needed in the construction.

Definition: (L2pGq)
Let G be a Lie group. Let L2pGq “ tf : GÑ C :

ş

G
fpgq2dg ă 8u be the

vector space of square integrable functions on G with norm given by

}f} “
`ş

G
fpgq2dg

˘
1
2 .

Definition: (Representative Functions)
Let G be a Lie group. Let f : G Ñ C be a continuous function.
We say that f is representative if th : G Ñ C : there exists g P
G such that hpxq “ fpxgqu is finite dimensional.

Remark: These representative functions are given by composing a rep-
resentation ρ : GÑ EndpV q and a linear map F : EndpV q Ñ C.

Definition: (Banach Algebra)
Let G be a compact Lie group. Then C0pG,Cq is an Banach algebra with
the supremum norm |f | “ supgPG |fpgq| and product

pf ˚ gqpxq “

ż

G

fpzqgpz´1xqdz

Theorem B.2.2. (Peter-Weyl Theorem)(See chapter III of [Bt03])
Let G be a compact Lie group.

• The representative functions are dense in both C0pG,Cq and L2pGq.

• The irreducible characters generate a dense subspace of the space of continuous
class functions.

Definition: (Torus)
Let G be a compact Lie group. A torus in G is a closed subgroup T such
that T is connected and Abelian. Note that the only connected compact
Abelian Lie groups are given by Up1qn. We say that T is maximal if for
another torus T 1 we have T ď T 1 ď G then T “ T 1.
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Definition: (Cartan Sub-algebra)
Let G be a compact connected Lie group and g “ LiepGq. Let T ď G be
a maximal torus. Then LiepT q “ h Ď g is called a Cartan Sub-algebra.

Definition: (Weights)
Let G be a compact connected Lie group. Let V be a representation.
Let h P h and v P V such that hv “ λphqv for some λphq P C. Now as
h is Abelian every k P h acts via a constant kv “ λpkqv. This defines an
element λ P h˚. We say that v is a weight vector of weight λ P h˚.

Theorem B.2.3. (Decomposition into Roots)
Let G be a simply connected, compact, semi-simple Lie group. Then we have the
following decomposition for R “ tλ P h˚ : rh,Xs “ λphqXu.

g “ h‘ p‘αPRgαq

Remark: For semi-simple compact g the set R can be given be embed-
ded in Euclidean space. The arrangements of R in Euclidean space satisfy
certain properties that make R what is called a root system. Classifying
all root systems then classifies all semi-simple Lie algebras.

Theorem B.2.4. (Classification of Semi-simple Lie Algebras)
All finite dimensional simple (only trivial ideals) complex Lie algebras are isomorphic
to one of the following for n P Zą0

An “ sln`1pCq, Bn “ so2n`1pCq, Cn “ sp2npCq, Dn “ so2npCq, E6, E7, E8, F4, G2

where E6, E7, E8, F4, G2 are called the exceptional simple complex Lie algebras. We
won’t define them here for definitions see [Hum12]. The letters An, Bn, Cn, Dn,
E6, E7, E8, F4, G2 correspond to the irreducible root systems. Again see [Hum12]
for definition of a root system and how they are associated to Lie algebras.

Theorem B.2.5. (Classification of Irreducible Representations)
For a simple complex Lie algebra g there is an associated root system say R. Let
P be the integer lattice spanned by the positive integral weights of R. The finite
irreducible g-modules are in bijection with P . They are explicitly constructed as
maximal quotients of Verma modules associated to the elements of P . See [Hum12]
for details.

Remark: We can translate the previous two statements into statements
about Lie groups using the association between Lie groups and Lie alge-
bras via the exponential map and taking the left invariant vector fields.

Theorem B.2.6. (Weyl Integration Formula)(See Chapter IV of [Bt03])
Let G be a compact connected Lie group, T ď G a maximal torus, W “ NpT q{T the
Weyl group, g “ LiepGq, h “ LiepT q and f P C0pG,Cq. Letting det

`

I ´ adg{hpt
´1q

˘

“

F ptq we have

|W |

ż

G

fpgqdg “

ż

T

ˆ

F ptq

ż

G

fpgtg´1
qdg

˙

dt
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Corollary B.2.7. Noting that
ş

G
dg “ 1 if f is a class function then

|W |

ż

G

fpgqdg “

ż

T

fptqF ptqdt

Theorem B.2.8. (Weyl Denominator Theorem)
Let G be a compact connected Lie group with maximal torus T and Weyl group
W “ NpT q{T . Let h “ LiepT q Ď g “ LiepGq. Let P Ď h˚ be the set of positive
roots and ρ “ 1

2

ř

λPP λ. Let h P h then consider expphq P T . Then we have

F pexpphqq “
ÿ

wPW

signpwqeρpw¨hq

Theorem B.2.9. (Weyl Character Formula)
Let G be a compact connected Lie group with maximal torus T and Weyl group
W “ NpT q{T . Let h “ LiepT q Ď g “ LiepGq. Let P Ď h˚ be the set of positive
roots and ρ “ 1

2

ř

λPP λ. Let h P h then consider expphq P T . Let V be an irreducible
representation of G with highest weight λ P h˚ then

χV pexpphqq “

ř

wPW signpwqepλ`ρqpw¨hq

F pexpphqq
“

ř

wPW signpwqepλ`ρqpw¨hq
ř

wPW signpwqeρpw¨hq

Corollary B.2.10. (Weyl Dimension Formula)
By taking the limit as hÑ 0 and applying L’Hôpital’s rule we can show that

dimpV q “

ś

αPP κ
˚pα, λ` ρq

ś

αPP κ
˚pα, ρq

B.3 Affine Lie Algebras

Definition: (Affine Lie Algebra)
Let g be a simple complex Lie algebra. Define the affine Lie algebra
associated to g to be a central extension of the Lie algebra tensored with
formal Laurent series pg “ pCppzqq bC gq ‘ Cc with c central and the
bracket given by

rfpzq bX, gpzq b Y s “ fpzqgpzq b rX, Y s ` xX, Y yResz“0pgdfqc

Note that 0 “ Resz“0dpfgq “ Resz“0pfdg ` gdfq so this antisymmetric.

Definition: (Level)
Let pg be an affine Lie algebra and V a pg-module. If c P pg is the element
of the central extension then for some l P C and for all v P V we have
c ¨ v “ lv. We call l the level of the representation.

Theorem B.3.1. Let pg be an affine Lie algebra and l P Zą0. Let P be the positive
integral weights associated to g. The reasonable irreducible representations of pg of
level l are in bijection with Pl. Where Pl is the set of positive integral weights such
that evaluating on the highest root is less than equal to l.
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Appendix C

The Theory of Principle Bundles
and their Connections

We will define and give some immediate results relating to principle G-bundles
and their connections. We will touch on all the details we will need to define the
moduli space of flat connections. A good introduction to this is provided in [KN63]
and [Mor01].

C.1 Principle Bundles

Definition: (Principle Bundle)
Let G be a Lie group and pπ : P Ñ M,F q a smooth fibre bundle. If G
acts smoothly on P via ¨ : P ˆGÑ P such that for p P P and g P G

πpp ¨ gq “ πppq

and G acts freely and transitively on π´1pxq for all x P M then we say
pπ : P Ñ M,F,G, ¨q is a principle G-bundle. Notice that M – P {G
and F – G. So we can write our principle bundle as pπ : P Ñ M,G, ¨q.
We take the morphisms between principle G-bundles to be equivariant
smooth bundle maps.

Example: (Principle Bundle)

• Let M be a smooth manifold, G a Lie Group, ϕM : M ˆ G Ñ M such that
ϕMpx, gq “ x and for px, gq P P and h P G we have px, gq ¨ h “ px, ghq. We
call pϕM : M ˆ G Ñ M,G, ¨q the trivial G-bundle over M . Notice that for
M “ point the theory of principle bundles is the same as the theory of Lie
groups.

• Let π : L Ñ M be a complex line bundle with a norm ν. Let P “ tp P L :
νppq “ 1u and π|P : P Ñ M . Then we can see that π|´1

P pxq – Up1q and that
Up1q acts naturally on π|´1

P pxq via the (scalar) complex multiplication defined
by L and that this action is free and transitive on the fibres. It can be seen
that π|P : P ÑM is a fibre bundle and so defines a principle bundle.
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More explicitly take M “ CPn, P “ tpl, zq P CPn ˆCn`1 : z P l and }z} “ 1u,
G “ Up1q and for pl, zq P P and eiθ P G have pl, zq ¨ eiθ “ pl, eiθzq.

Notation: We will often shorten the notation pπ : P ÑM,G, ¨q to simply P if the
additional structure is clear from context.

Remark: Note that a manifold with a free proper G-action defines a
principle bundle with total space the manifold and base space the orbit
space which inherits a natural smoothness structure. To prove this one
needs a result such as the slice theorem. See [Aud04] or [dS02].

Remark: If we instead took G to be a finite group in our definition
then we would be considering covering spaces with Deck transformations
given by G. In fact it is sometimes possible to change the topology of P
to make it into a covering space however there is no canonical way to do
this in general. To do this canonically we need more structure such as a
flat connection. In this sense all connections for a finite group are flat.

Remark: Every n-dimensional F-vector bundle pν : E Ñ B,Fnq can
be realised as by a principle GLnpFq-bundle pπ : P Ñ M,GLnpFq, ¨q as
follows

E “ P ˆ Fn{ „ and ν : E Ñ B “M s.t νpp, vq “ πppq

where for p P P , v P Fn and A P GLnpFq we have pp ¨ A, vq „ pp,Apvqq
where we view GLnpFq “ AutpFnq. We get the structure of a vector
space in each fibre from the vector space structure of Fn.

Lemma C.1.1. Let pπ : P ÑM,G, ¨q be a principle bundle. If there exists a smooth
map s : M Ñ P such that π ˝ s “ id then P is a trivial bundle.

Proof. Define Φ : M ˆ G Ñ P such that Φpx, gq “ spxq ¨ g and check that this is
indeed an isomorphism of principle bundles.

To each principle bundle we can define a canonical vector bundle as follows.

Definition: (Adjoint Bundle)
Let pπ : P Ñ M,G, ¨q be a principle bundle. Let g be the Lie algebra of
G. Let G act on g by the left adjoint action. Define the following bundle
over M

πP : gP “ P ˆG gÑM s.t πP pp, vq “ πppq

The notation ˆG means that we impose the following equivalence relation
on P ˆ g

pp ¨ g, vq „ pp,Adgpvqq

where we have taken the left adjoint action. Notice that this is well
defined as πpp ¨ gq “ πppq. We call this vector bundle the adjoint g-
bundle associated to P .

Many structures on P can be determined by structures on gP .
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Canonical functions and G action on TP : Let pπ : P ÑM,G, ¨q be a principle
bundle. We have the following canonical smooth functions

• For g P G define Rg : P Ñ P such that Rgppq “ p ¨ g

• For p P P define Lp : GÑ P such that Lppgq “ p ¨ g

• For p P P define Ip : π´1 pπppqq Ñ G such that Ippp ¨ gq “ g.

• For g P G define Rg,P : gP Ñ gP such that Rg,P pp, vq “ pp ¨ g, vq „ pp,Adgpvqq

• For pv, pq P gP define Lpp,vq : G Ñ gP such that Lpp,vqpgq “ pp ¨ g, vq „
pp,Adgpvqq

Given a principle bundle pπ : P Ñ M,G, ¨q we will take the these functions above
with this notation as a given.

As G acts freely and transitively on the fibres of P we can see that Lp defines
an equivariant diffeomorphism onto the fibre containing p (if we take right group
multiplication as the action of G on itself) with inverse given by Ip.

Given an element v P g we can define a vector field of P which can be geomet-
rically interpreted as the direction of the infinitesimal action of v of P . This is
called the fundamental vector field associated to v. We will denote it v˚ and it
is defined as v˚p “ TeLppvq.

We can use the functions Rg to define a natural action of G on TP . For q P P
we can see that by the chain rule ¨ : TP ˆ G Ñ TP such that vq ¨ g “ TqRgpvqq
defines an action of G on TP and this will vary smoothly with g P G so in fact
defines a smooth action on TP .

C.2 Connections on Principle Bundles

Definition: (Connection)
Let pπ : P Ñ M,G, ¨q be a principle bundle. Let H Ď TP be a
smooth sub-bundle such that for V “ kerpπ˚q we have TP “ V ‘ H
and TpRgpHpq “ Hp¨g for all g P G and p P P . We call H a connection
on P .

Remark: We call V the vertical tangent space and H the horizontal
tangent space of the connection H.

Example: (Connections)

• Let π : MˆGÑM be the trivial bundle. Then let H “ tpXp, 0q P TMˆTGu.
This is called the trivial connection on a trivial bundle.
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• Let π : M ˆ G Ñ M be the trivial G-bundle over M . Let f : M Ñ G be
smooth and let H “ tpXx, TxpRg ˝ fqpXxqq P TM ˆ TG : x P M, g P Gu.
Notice that by Lemma 1.1 this is in fact isomorphic to the trivial bundle with
trivial connection.

Definition: (Principle Bundle with Connection)
Let pπ : P Ñ M,G, ¨q be a principle bundle and H a connection on P .
We call pπ : P Ñ M,G, ¨, Hq a principle bundle with connection.
We will often denote it simply pP,Hq.

This forms a category where for pP,H1q and pQ,H2q principle bundles
over G with connections we take the morphisms as morphisms of principle
bundles

f : P Ñ Q s.t Tf |H1 : H1 Ñ H2

Note that taking bundle maps means vertical tangent vectors are sent to
vertical tangent vectors and the other condition on f says that horizontal
tangent vectors are sent to horizontal tangent vectors.

Example: We have depicted a local piece of a principle Up1q-bundle π : P Ñ M .
As always our vertical tangent space V is naturally given to us by the bundle via
V “ kerpdπq and our horizontal tangent space H is given to us by our connection.

M

HP

V

Definition: (Lie-Algebra Valued k-forms)
LetM be a smooth manifold andG a Lie group with Lie algebra LiepGq “
g. The vector space ΩkpM, gq “ Γ

`

pM ˆ gq b pΛkT ˚Mq
˘

– ΩkpMq b g
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is the space of Lie-Algebra Valued k-Forms on M . Notice that these
are sections of the bundle of antisymmetric k-linear homomorphisms from
the tangent space to g.

Definition: (Pseudotensorial Forms, Tensorial Forms and Connection
1-forms)
Let pπ : P ÑM,G, ¨q be a principle bundle. We say that β P ΩkpP, gq is
pseudotensorial if for g P G we have R˚g pβq “ β ˝ TRg “ Adg´1 ˝ β.

We say β is tensorial if it is pseudotensorial and if for some i P t1, ..., ku
we have Xi P V Ď TP , the vertical tangent vectors, then βpX1, ..., Xkq “

0.

We say that β P Ω1pP, gq is a connection 1-form if β is pseudotensorial
and βppTeLppvqq “ v, that is for the fundamental vector field associated
to v given by v˚ we have βpv˚q “ v.

Definition: (k-forms with Values in the Adjoint Bundle)
Let pπ : P Ñ M,G, ¨q be a principle bundle. Define ΩkpM, gP q “
ΓpΛkT ˚M b gP q to be the space of k-forms with Values in the Ad-
joint Bundle.

Lemma C.2.1. Let pπ : P Ñ M,G, ¨q be a principle bundle. Let β P ΩkpP, gq be
tensorial. There is a canonical k-form βP P ΩkpM, gP q associated to β. Moreover
this association is bijective.

Proof. Given a tensorial k-form β P ΩkpP, gq define βP P ΩkpM, gP q such that for
Xx P pTxMq

bk take Yp P pT
bk
p πq´1pXxq and let βP pXxq “ pp, βppYpqq and this will

be well defined as β is tensorial.

Given βP P ΩkpM, gP q define β P ΩkpP, gq to be the form such that if βP pT
bk
p πpYpqq “

pp, Zpq we have βpYpq “ Zp. This will be tensorial.

There are multiple ways to view a connection. Here we list a few.

Lemma C.2.2. Let pπ : P Ñ M,G, ¨q be a principle bundle. The following objects
are canonically bijective

• Connections on P .

• Smooth linear equivariant vertical projections ϕV : TP Ñ V that is a splitting
of the short exact sequence

0 V TP TP {V 0

ϕV

• Connection 1-forms on P
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Proof. Firstly we clarify what is meant by smooth linear equivariant vertical pro-
jections ϕV : TP Ñ V . That is for p P P a linear projection pϕV qp : TpP Ñ Vp that
vary smoothly with p and is such that pϕV qp¨g ˝ TpRg “ TpRg ˝ pϕV qp.

Given a connection H for Xp P TpP we have unique XVp P Vp and XHp P Hp

such that Xp “ XVp `XHp . Let pϕV qppXpq “ XVp . This will be smooth as we vary
p P P . It is a linear projection of TpP onto Vp. It is equivariant as TpRgpHpq “ Hp¨g.

Given a smooth linear and equivariant projection ϕV : TP Ñ V defineH “ kerpϕV q.

The map Rp defines an isomorphism between G and the fibre of P containing p.
Therefore we see that TeLp : TeG “ g Ñ Vp is an isomorphism. We use this iso-
morphism to pass between smooth linear and equivariant vertical projections and
connection 1-forms.

If β P Ω1pP, gq is associated to ϕV then the equivariance of becomes ϕV becomes

Tp¨gIp¨g ˝ pϕV qp¨g ˝ TpRg “ Tp¨gIp¨g ˝ TpRg ˝ pϕV qp

ñ βp¨g ˝ TpRg “ Tp¨gIp¨g ˝ TpRg ˝ TeLp ˝ βp “ Adg´1 ˝ βp

As for h P G we have Ip¨g ˝ Rg ˝ Lpphq “ Ip¨g ˝ Rgpp ¨ hq “ Ip¨gpp ¨ hgq “ Ip¨gpp ¨
gg´1hgq “ g´1hg and by the chain rule and definition of the adjoint action Adg´1 “

Te pIp¨g ˝Rg ˝ Lpq “ Tp¨gIp¨g˝TpRg˝TeLp. Now the projection property of the smooth
linear equivariant vertical projections becomes the following

pϕV qppTeLppvqq “ TeLp ˝ βppTeLppvqq “ TeLppvq

These two conditions exactly state that β is a connection 1-form.

Remark: The objects in bijection with the connections on P described
in lemma C.2.2 have natural topologies and in fact are homeomorphic
with respect to the bijection.

Remark: The condition that says for a connection 1-form β, v P g and
p P P that βppTeLppvqq “ v or in other words βpv˚q “ v says that
β|π´1pπppqq is the Maurer-Cartan form on π´1 pπppqq using Lp to identify
G and π´1 pπppqq.

Remark: This theorem geometrically says that projections determine
the horizontal space. We have again depicted a principle Up1q-bundle
π : P Ñ M . We have let ϕVA : TP Ñ V and ϕHA : TP Ñ H be vertical
and horizontal projections associated to a connection A.
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M

HP

p

XpϕVApXpq
ϕHApXpq

V

Locally principle bundles are trivial and therefore connections on trivial principle
bundles are fundamental. We have the following important result.

Lemma C.2.3. Let P “ M ˆ G be the trivial principle G bundle over M . The
connections on P are in canonical bijection with Ω1pM, gq – Ω1pM, gMˆGq.

Proof. Notice that for a 1-form α P Ω1pM, gq we can define a connection 1-form as
β P Ω1pP, gq such that for pu, vq P TxM ˆTgG we have βpx,gqpu, vq “ Adg´1pαxpuqq`
pωGqgpvq where ωG is the Maurer-Cartan form. Similarly we can given a connection
1-form β P Ω1pP, gq we can define a 1-form α P Ω1pM, gq such that for v P TxM we
have αxpvq “ βpx,eqpv, 0q. These correspondences give the canonical bijection.

Remark: We need a section of the manifold for this argument to go
through. So this only works for the trivial bundle. The canonical part
of the theorem comes from the canonical trivial section which is sent to
0 P Ω1pM, gq.

C.3 Space of Connections

Affine Structure: Let pπ : P ÑM,G, ¨q be a principle bundle. Both the smooth
linear equivariant vertical projections from TP to V and the connection 1-forms
are subsets of spaces with a natural addition and in fact the structure of a vector
space. We claim that the difference inherited from these spaces gives the smooth
linear equivariant vertical projections from TP to V and the connection 1-forms the
structure of an affine space.
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Lemma C.3.1. Let pπ : P ÑM,G, ¨q be a principle bundle. The difference inherited
by Ω1pP, gq gives the connection 1-forms on P the structure of an affine space based
on Ω1pM, gP q.

Proof. Let α and β be two connection 1-forms on P . Notice that for p P P and
X P Vp we have

pα ´ βqppXpq “ αppXpq ´ βppXpq “ TpIppXpq ´ TpIppXpq “ 0

Notice that as α and β are connection 1-forms we see that pα´ βqp¨g ˝ TpRgpXpq “

Adg´1 ˝ pα ´ βqppXpq. This shows that pα ´ βq is a tensorial 1-form. From lemma
C.2.1 we can see that there is a canonical 1-form in Ω1pM, gP q associated to pα´βq.

Notice that if for γ P Ω1pM, gP q and for Xp P TpP we have that γπppqpTpπpXpqq “

pp, Ypq then pα ` γqppXpq “ αppXpq ` Yp defines a connection 1-form on P .

Therefore the connection 1-forms on P have the structure of an affine space with
associated vector space Ω1pM, gP q.

Definition: (Space of Connections)
Let pπ : P Ñ M,G, ¨q be a principle bundle. Define AP to be the
affine space of connections on P with the topology inherited from
Ω1pM, gP q.

Remark: Notice that for trivial bundleAMˆG – Ω1pM, gq – Ω1pM, gMˆGq
is in fact a vector space with the 0 vector given by the trivial connection.
For the general bundle there is no such canonical 0 so we only get an
affine space.

Remark: In fact Ω1pM, gP q can be given a smooth structure which
means that AP can be given a smooth structure. Notice this means we
need to define what a smoothness structure on an infinite dimensional
manifold is. For those interested see [KM97] for some of the theory
needed.

Tangent Space: The tangent space at a point of a smooth affine space is isomor-
phic to the vector space the affine space is based on. This means that for A P AP
we have TAAP – Ω1pM, gP q.

Notation: Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP . We will use
the following notation

• HA Ď V ‘HA “ TP will be the horizontal subspace associated to A

• ϕVA will be the equivariant vertical projection associated to A.

• id´ ϕVA “ ϕHA will be the equivariant horizontal projection associated to A

• ωA P Ω1pP, gq will be the connection 1-form associated to A
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Appendix D

Additional Structures and
Invariants of Connections

We will continue on from the last section and consider the additional structure
connections give us and how we can define invariants of a given connection. Again
a good introduction can be found in [KN63] and [Mor01]. We will however describe
all the details we need to define the moduli space of flat connections.

D.1 Covariant Derivative

The start of this section is slightly technical but gives us the basics we need to
describe flat connections in terms of their connection 1-forms.

Definition: (Wedge Product)
Let M be a smooth manifold, G a Lie group with LiepGq “ g the associ-
ated Lie algebra. Define the wedge product of Lie algebra valued forms
for k, l P Zě0, α P ΩkpM, gq and β P ΩlpM, gq and X1, ..., Xk`l P XpMq
we have

rα ^ βspX1, ..., Xk`lq

“
1

pk ` lq!

ÿ

σPSk`l

signpσqrαpXσp1q, ..., Xσpkqq, βpXσpk`1q, ..., Xσpk`lqqs

Notice that the wedge product is not completely antisymmetric however
satisfies the following

rα ^ βs “ p´1qkl`1
rβ ^ αs

Definition: (Exterior Derivative)
Let M be a smooth manifold, G a Lie group with LiepGq “ g the asso-
ciated Lie algebra. We can analogously define the exterior derivative
to satisfy the following

• We have dk : ΩkpM, gq Ñ Ωk`1pM, gq a linear map

• For f P Ω0pM, gq “ C8pM, gq we have and d0f “ df “ Tf “ f˚ using
the canonical association Tvg – g so that d0f : TM Ñ g.
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• dk`1 ˝ dk “ 0

• For α P ΩkpM, gq, β P ΩppM, gq we have dk`prα ^ βs “ rdkpαq ^ βs `
p´1qkrα ^ dppβqs.

Equivalently if ω P ΩkpM, gq is given locally for a chart pU,ϕq by

ϕ˚pω|Uq “
ÿ

0ăi1ă...ăikďn

fi1,...,ikpx1, ..., xnqdxi1 ^ ...^ dxik

then dω P Ωk`1pM, gq is given by

ϕ˚pdω|Uq “
n
ÿ

ik`1“1

˜

ÿ

0ăi1ă...ăikďn

Bfi1,...,ik
Bxik`1

px1, ..., xnqdxik`1
^ dxi1 ^ ...^ dxik

¸

For vector fields X1, ..., Xk`1 P XpMq we have the following where

pX1, ...,xXi, ..., Xk`1q “ pX1, ..., Xi´1, Xi`1, ..., Xk`1q

denotes emission of the element Xi.

dωpX1, ..., Xk`1q “

k`1
ÿ

i“1

p´1qi`1XipωpX1, ...,xXi, ..., Xk`1qq

`
ÿ

1ďiăjďk`1

p´1qi`jωprXi, Xjs, X1, ...,xXi, ...,xXj, ..., Xk`1q

From the various properties it can be shown that the exterior derivative
is natural and equivariant in the following ways.

d ˝ ϕ˚ “ ϕ˚ ˝ d

and
d ˝ Adg´1 “ Adg´1 ˝ d

Definition: (Covariant Derivative)
Let pπ : P ÑM,G, ¨q be a principle bundle and A P AP . Let ϕHA be the
horizontal projection associated to A. Define the covariant derivative
of A to be

dA : Ωk
pP, gq Ñ Ωk`1

pP, gq s.t

dApβqpX1, ..., Xk`1q “ dβ pϕHApX1q, ..., ϕHApXk`1qq

D.2 Curvature

Definition: (Curvature)
Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP . Let ωA be the
connection 1-form associated to A. The curvature of A is defined as
follows

FA “ dApωAq P Ω1
pP, gq
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Lemma D.2.1. Let pπ : P Ñ M,G, ¨q be a principle bundle, A P AP , ωA be the
connection 1-form associated to A and FA P Ω2pP, gq be the curvature associated to
A. FA is tensorial.

Proof.

R˚g pFAqpX, Y q “ R˚g pdAωAqpX, Y q “ dAωApTRgpXq, TRgpY qq

“ dωApϕHA ˝ TRgpXq, ϕHA ˝ TRgpY qq “ dωApTRg ˝ ϕHApXq, TRg ˝ ϕHApY qq

“ pR˚g ˝ dqpωAqpϕHApXq, ϕHApY qq “ pd ˝R
˚
g qpωAqpϕHApXq, ϕHApY qq

“ d pAdg´1 pωApϕHApXq, ϕHApY qqqq “ Adg´1 pdωApϕHApXq, ϕHApY qqq

“ Adg´1pdApωApX, Y qqq “ Adg´1pFApX, Y qq

Notice that for X P V Ď TP we have

FApX, Y q “ dωApϕHApXq, ϕHApY qq “ dωAp0, ϕHApY qq “ 0

By the antisymmetry of X and Y we see that FA is tensorial 2-form. So following
lemma C.2.1 there is some element of Ω2pM, gP q that represents the curvature FA.

Lemma D.2.2. (Structure Equation of Maurer-Cartan)
Let pπ : P Ñ M,G, ¨q be a principle bundle, A P AP and ωA be the connection
1-form associated to A. We have the following equality for X, Y P XpP q.

FApX, Y q “ dωApX, Y q ` rωApXq, ωApY qs

Using the wedge product of Lie algebra valued forms we have

FA “ dωA ` rωA ^ ωAs

Remark: This structure equation can be thought of as a generalisation
of B.2.1 the relation satisfied by the exterior derivative of the Maurer-
Cartan form which is the case when we have a principle bundle over a
point. In this sense the one connection on the a principle bundle over a
point has 0 curvature.

Proof. As FApX, Y q and dωApX, Y q`rωApXq, ωApY qs are bilinear and antisymmetric
with respect to X and Y we can reduce the proof to the following cases

• Case 1: X and Y are horizontal.
That is ϕHApXq “ X and ϕHApY q “ Y and so ωApXq “ ωApY q “ 0 so

FApX, Y q “ pdAωAqpX, Y q “ dωApϕHApXq, ϕHApY qq “ dωApX, Y q

“ dωApX, Y q ` r0, 0s “ dωApX, Y q ` rωApXq, ωApY qs
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• Case 2: X and Y are vertical.
That is ϕVApXq “ X and ϕVApY q “ Y . Let p P P then pωAqppXq “ TpIppXpq

and pωAqppYpq “ TpIppYpq. Let u “ TpIppXpq and v “ TpIppYpq. Let u˚, v˚ P
XpP q be the fundamental vector fields associated to u and v. Notice that
Xp “ up and Yp “ up and notice that we have ru, vs˚ “ ru˚, v˚s and so
ωApru, vsq “ rωApuq, ωApvqs. Also note that ωApu

˚q “ u and ωApv
˚q “ v and

more importantly they are fixed and so uppωApvqq “ 0 and vppωApuqq “ 0. We
then see that

pFAqppXp, Ypq “ pdAωAqppXp, Ypq “ pdωAqppϕHApXqp, ϕHApY qpq

“ pdωAqpp0, 0q “ 0 “ ´ωApru, vspq ` rωApuqp, ωApvqps

“ uppωApvqq ´ vppωApuqq ´ pωAqppru, vspq ` rpωAqppupq, pωAqppvpqs

“ pdωAqppup, vpq`rpωAqppupq, pωAqppvpqs “ pdωAqppXp, Ypq`rpωAqppXpq, pωAqppYpqs

So as p P P was arbitrary we can see that

FApX, Y q “ dωApX, Y q ` rωApXq, ωApY qs

• Case 3: X horizontal and Y vertical.
That is ϕHApXq “ X and ϕVApY q “ Y and so pωAqppXq “ 0 and pωAqppY q “
TpIppYpq. Let p P P and v “ TpIppYpq and consider v˚ P XpP q the fundamental
vector field associated to v. Notice that Yp “ vp and ωApv

˚q “ v and more
importantly it is fixed and so XpωApvqq “ 0. We claim that rX, vs is horizontal.
The flow generated by v is given by P ˆ R Q pp, tq Ñ p ¨ expptvq and so

rX, vs “ lim
tÑ0

TRexpptTpIppYpqqpXq ´X

t

By assumption X is horizontal and horizontal vectors are sent to horizontal
vectors under the action of G so TRexpptTpIppYpqqpXq ´ X is horizontal and so

rX, vs “ limtÑ0
TRexpptTpIppYpqqpXq´X

t
is horizontal. We now see that

pFAqppXp, Ypq “ pdAωAqppXp, Ypq “ pdωAqppϕHApXqp, 0q “ pdωAqppXp, 0q “ 0

“ XppωApv
˚
qq ´ v˚p pωApXqq ´ pωAqpprX, v

˚
spq ` r0, pωAqppYpqs

“ pdωAqppXp, v
˚
p q ` r0, pωAqppYpqs “ pdωAqppXp, Ypq ` rpωAqppXpq, ωApYpqs

So as p P P was arbitrary we can see that

FApX, Y q “ dωApX, Y q ` rωApXq, ωApY qs

This completes the proof of the Structure Equation. The next lemma is proved by
a similar method.

Lemma D.2.3. Let pπ : P ÑM,G, ¨q be a principle bundle, A P AP and ωA be the
connection 1-form associated to A. Let β P Ω1pP, gq be a tensorial 1-form. Then we
have the following equation for X, Y P XpP q

dAβpX, Y q “ dβpX, Y q ` rβpXq, ωApY qs ` rωApXq, βpY qs

That is
dAβ “ dβ ` 2rβ ^ ωAs
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From the structure equation D.2.2 we can derive another expression for curvature.

Lemma D.2.4. (Curvature)
Let pπ : P ÑM,G, ¨q be a principle bundle and A P AP . Then

FApX, Y q “ ´ωAprϕHApXq, ϕHApY qsq

Proof.
FApX, Y q “ FApϕHApXq, ϕHApY qq

“ dωApϕHApXq, ϕHApY qq ` rωApϕHApXqq, ωApϕHApY qqs

“ ϕHApXqpωApϕHApY qq ´ ϕHApY qpωApϕHApXqq ´ ωAprϕHApXq, ϕHApY qsq ` r0, 0s

“ ϕHApXqp0q ´ ϕHApY qp0q ´ ωAprϕHApXq, ϕHApY qsq “ ´ωAprϕHApXq, ϕHApY qsq

Remark: Notice that we can start to see something geometric that the
curvature is capturing. The curvature is only 0 at a point if the hori-
zontal tangent space associated to the connection is closed under the Lie
bracket of vector fields at this point. This is sometimes called Frobenius
integrability.

Lemma D.2.5. (Bianchi’s Identity)
Let pπ : P ÑM,G, ¨q be a principle bundle and A P AP . Then

dAFA “ 0

Proof. By the structure equation D.2.2 we have

dAFApX1, X2, X3q “ dFApϕHApX1q, ϕHApX2q, ϕHApX3qq

“ dpdωA ` rωA ^ ωAsqpϕHApX1q, ϕHApX2q, ϕHApX3qq

“ drωA ^ ωAspϕHApX1q, ϕHApX2q, ϕHApX3qq

Now using the formula for the exterior derivative given here

drωA, ωAspϕHApX1q, ϕHApX2q, ϕHApX3qq

“

3
ÿ

i“1

p´1qi`1XiprωA ^ ωAspϕHApX1q, ..., {ϕHApXiq, ..., ϕHApX3qqq

`
ÿ

1ďiăjď3

p´1qi`jrωA ^ ωAsprϕHApXiq, ϕHApXjqs, ϕHApXj‰k‰iqq

So noting that ωA ˝ ϕHA “ 0 we see

drωA, ωAspϕHApX1q, ϕHApX2q, ϕHApX3qq “ 0
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D.3 Covariant Derivatives and Curvature

Lemma D.3.1. (Covariant Derivative Chain Complex)
Let pπ : P ÑM,G, ¨q be a principle bundle and A P AP .

dA ˝ dA “ 0 if and only if FA “ 0

Proof. Let FA “ 0. We then see

pdA ˝ dAβqpX1, ..., Xk`2q

“ dpdAβqpϕHA
pX1q, ..., ϕHA

pXk`2qq “

k`2
ÿ

i“1

p´1q
i`1

ϕHA
pXiqpdAβpϕHA

pX1q, ...,
{ϕHA
pXiq, ..., ϕHA

pXk`2qqq

`
ÿ

1ďiăjďk`2

p´1q
i`j

dAβprϕHA
pXiq, ϕHA

pXjqs, ϕHA
pX1q, ...,

{ϕHA
pXiq, ...,

{ϕHA
pXjq, ..., ϕHA

pXk`2qq

“

k`2
ÿ

i“1

p´1q
i`1

ϕHA
pXiqpdβpϕHA

pX1q, ...,
{ϕHA
pXiq, ..., ϕHA

pXk`2qqq

`
ÿ

1ďiăjďk`2

p´1q
i`j

dβpϕHA
rϕHA

pXiq, ϕHA
pXjqs, ϕHA

pX1q, ...,
{ϕHA
pXiq, ...,

{ϕHA
pXjq, ..., ϕHA

pXk`2qq

“ d
2
βpϕHA

pX1q, ..., ϕHA
pXk`2qq

´
ÿ

1ďiăjďk`2

p´1q
i`j

dβpϕVA
rϕHA

pXiq, ϕHA
pXjqs, ϕHA

pX1q, ...,
{ϕHA
pXiq, ...,

{ϕHA
pXjq, ..., ϕHA

pXk`2qq

“
ÿ

1ďiăjďk`2

p´1qi`jdβpTeL¨pFApXi, Xjqq, ϕHApX1q, ..., {ϕHApXiq, ..., {ϕHApXjq, ..., ϕHApXk`2qq

Where the last equality uses the lemma D.2.4 and the fact d2 “ 0 and where we
took TeL¨pvq to be the vector field such that pTeL¨pvqqp “ TeLppvq. So if FA “ 0 then
dA ˝ dA “ 0 by considering the last line in the equation for pdA ˝ dAβqpX1, ..., Xk`2q.

If dA ˝ dA “ 0 then for β P Ω0pP, gq and so k “ 0 we have the following using
the last line in the equation for pdA ˝ dAβqpX1, ..., Xk`2q

pdA ˝ dAβqpX, Y q “ ´dβpTeL¨pFApX, Y qqq

“ ´TeL¨pFApX, Y qqpβq “ 0

This is true for all X, Y and β if and only if FA “ 0.

Lemma D.3.2. Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP . If
β P ΩkpP, gq is pseudotensorial then

• β ˝ ϕbkHA is tensorial

• dβ is pseudotensorial

• dAβ is tensorial

Proof. Suppose that β P ΩkpP, gq is pseudotensorial. It follows from equivariance
of ϕHA that R˚g pβ ˝ ϕ

bk
HA
q “ β ˝ ϕbkHA ˝ TRg “ β ˝ TRg ˝ ϕ

bk
HA

“ R˚g pβq ˝ ϕ
bk
HA

“

Adg´1pβ ˝ϕbkHAq. Similarly if X P XpV q and Xi P XpP q then β ˝ϕbkHApX,X2, ..., Xkq “

βpϕHApXq, ϕHApX2q, ..., ϕHApXkqq “ βp0, ϕHApX2q, ..., ϕHApXkqq “ 0.

We also have R˚g pdβq “ dpR˚g pβqq “ dpAdg´1pβqq “ Adg´1pdβq.

The last dot point follows from the first two.
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Definition: (Affine Covariant Derivative)
Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP . Using the as-
sociation in lemma C.2.1 between ΩkpM, gP q and the tensorial forms in
ΩkpP, gq and the previous lemma D.3.2 we can then define the affine co-
variant derivative associated to the connection A. The affine covariant
derivative is defined as follows

DA : Ωk
pM, gP q Ñ Ωk`1

pM, gP q s.t DApβq – dAβ P Ωk
pP, gq

Notice that from the lemma D.2.3 we have the following formula for the
DA

DApβq “ dβ ` 2rβ ^ ωAs

Remark: It can be shown DA ˝ DA “ 0 if and only if FA is zero as
in lemma D.3.1. Using the association between tensorial forms on the
bundle and adjoint valued forms on the base we will identify dA “ DA.

Lemma D.3.3. (Derivative of the Curvature Map)
Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP . Then for β P TAAP –
Ω1pM, gP q

TAF pβq “ dAβ

Proof. We will blur the line between Ω1pM, gP q and the tensorial 1-forms in Ω1pP, gq.
Notice from the structure equation D.2.2 that

FA`tβpX, Y q “ dωA`tβpX, Y q ` rωA`tβpXq, ωA`tβpY qs

“ dpωA ` tβqpX, Y q ` rpωA ` tβqpXq, pωA ` tβqpY qs

“ dωApX, Y q`rωApXq^ωApY qs`tpdβpX, Y q`rβpXq, ωApY qs`rωApXq, βpY qsq`t
2
rβpXq, βpY qs

Now notice that from lemma D.2.3 we have dβpX, Y q`rβpXq, ωApY qs`rωApXq, βpY qs “
dAβpX, Y q. So we see that

FA`tβ “ FA ` dAtβ ` t
2
rβ ^ βs

This means that TAF pβq “ limtÑ0
FA`tβ´FA

t
“ dAβ.
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Appendix E

Holonomy

Holonomy and parallel transport could be described as the fundamental motivation
mathematically to define connections. Given a path in the base we are interested in
lifting the path into the bundle. There is no canonical way of lifting a given path in
the base to a path in the bundle however given a point in a fibre and a connection
there is a canonical way to lift the path to a horizontal path in the bundle. In
the theory of affine connections on vector bundles this is used to compare tangent
vectors at nearby points to take directional derivatives of vector fields via the affine
covariant derivative.

E.1 Parallel Transport

Lemma E.1.1. (Parallel Transport)
Let pπ : P Ñ M,G, ¨q be a principle bundle. Let A P AP and let HA be the
horizontal sub-bundle of TP associated to A. Given a piecewise differentiable path
γ : r0, 1s ÑM and p P π´1pγp0qq there exists a unique path rγ : r0, 1s Ñ P such that
for t P I and v P TtI we have Ttrγpvq P Hrγptq, rγp0q “ p and π ˝ rγ “ γ.

Proof. We can reduce to this lemma to a local statement of P as we are only inter-
ested in the tangent vectors of the curve. Locally we can formulate the conditions
Ttrγpvq P Hrγptq, rγp0q “ p and π ˝ rγ “ γ into differential equations with specified
boundary values. Using results in the theory of differential equations locally there
is a unique solution for the path rγ and by compactness of r0, 1s we can extend this
solution rγ to the whole path.

Example: (Parallel Transport)

• Let pπ : M ˆGÑM,G, ¨q be a the trivial principle bundle and A P AMˆG be
the trivial connection. Then for a piecewise differentiable path γ : r0, 1s ÑM
and pγp0q, gq PM ˆG we have the following horizontal lift rγ : r0, 1s ÑM ˆG
such that rγptq “ pγptq, gq.

• Let π : Up1qˆUp1q Ñ Up1q such that πpw, zq “ w be the trivial principle Up1q-
bundle over Up1q. Topologically this is the torus. Consider the connection A
with horizontal subspace HA “ tpu, ruq : TUp1q ˆ TUp1qu for r P R. Then for
γ : r0, 1s Ñ Up1q such that γptq “ e2πit we have pγptq “ pe2πit, er2πitq.
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• Let pπ : M ˆGÑM,G, ¨q be a the trivial principle bundle and A P AMˆG be
the connection with horizontal subspace given by TfpTMq for some section
f : M Ñ M ˆ G. For pγp0q, fpγp0qqgq P M ˆ G we have the horizontal lift
rγ : r0, 1s Ñ M ˆ G such that rγptq “ Rg ˝ f ˝ γptq. This example covers the
last with the trivial section. This is important as locally flat connections are
described by the trivial connection.

Remark: Loops in M generally do not lift to loops in P . This then
leads us to the following definition.

Definition: (Holonomy Group)
Let pπ : P ÑM,G, ¨q be a principle bundle andA P AP . Let PWC8pr0, 1s, γp0q “
γp1q,M, xq be the set of piecewise smooth paths based at x. For γ P
PWC8pr0, 1s, γp0q “ γp1q,M, xq and p P π´1pxq let rγ P PWC8pr0, 1s, P, pq
be the horizontal lift of γ based at p.

HolP,ppAq “ tg P G : for γ P PWC8pr0, 1s, γp0q “ γp1q,M, xq we have rγp1q “ p ¨ gu

Note that this is a subspace as we can compose paths and take in-
verse paths to find that the set HolP,ppAq is indeed a subspace. We
call HolP,ppAq the holonomy group of A at p.

Lemma E.1.2. Let pπ : P ÑM,G, ¨q be a principle bundle and A P AP .

HolP,p¨gpAq “ Adg´1 pHolP,ppAqq “ g´1HolP,ppAqg

Proof. Let consider h P HolP,p¨gpAq. So there exists γ P PWC8pr0, 1s, γp0q “
γp1q,M, πpxqq and p P π´1pxq with rγ P PWC8pr0, 1s, P, pq the horizontal lift of γ
based at p with rγp1q “ p¨h. Then Rg˝rγ is horizontal piecewise continuous curve with
Rg˝rγp0q “ p¨g and π˝Rg˝rγ “ π˝rγ “ γ and so is the horizontal lift of γ based at p¨g.
We have Rg ˝ rγp1q “ p ¨ h ¨ g “ pp ¨ gq ¨ pg´1hgq. So HolP,p¨gpAq ď Adg´1 pHolP,ppAqq.
A similar argument in reverse shows that Adg pHolP,p¨gpAqq ě HolP,ppAq and so
HolP,p¨gpAq ě Adg´1 pHolP,ppAqq.

Definition: (Infinitesimal Holonomy Group)
Let pπ : P ÑM,G, ¨q be a principle bundle and A P AP . Let Up “ tU Ď
M : for open U and πppq P Uu. We have a directed system by inclusion
for U Ď V and U, V P Up we have Holπ´1pUq,ppA|Uq ď Holπ´1pV q,ppA|V q.
The colimit of this directed system defines the infinitesimal holonomy
group at p as follows

HolppAq “
č

UPUp

Holπ´1pUq,ppA|Uq

Remark: The infinitesimal holonomy group HolppAq is trivial if and
only if the connection A is flat at p. That is pFAqp “ 0.

Example: (Holonomy)
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• Let pπ : M ˆ G Ñ M,G, ¨q be the trivial bundle and A P AP the trivial
connection. Then HolP,ppAq “ teu ď G and similarly HolppAq “ teu.

• Let π : Up1q ˆ Up1q Ñ Up1q such that πpw, zq “ w be the trivial principle
Up1q-bundle over Up1q. Consider the connection A with horizontal subspace
HA “ tpu, ruq : TUp1q ˆ TUp1qu for r P R. For r “ a ` b

c
P Q with a, b, c P Z

with |b| ă |c| we haveHolP,ppAq “ Z{cZ. For r P R´Q we haveHolP,ppAq “ Z.
However in all cases for r P R we have HolppAq “ teu.

E.2 Holonomy and Representations of the Fun-

damental Group

Lemma E.2.1. (Flat Connections and Homotopy)
Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP,flat. Let γ0 and γ1 be
piecewise smooth paths in M with a homotopy H : r0, 1s ˆ r0, 1s Ñ M such that
Hpt, 0q “ γ0ptq and Hpt, 1q “ γ1ptq with rγ0 and rγ1 being the horizontal lifts of γ0

and γ1. Then the homotopy lifts to a homotopy rH : r0, 1s ˆ r0, 1s Ñ P such that
rHpt, 0q “ rγ0ptq and rHpt, 1q “ rγ1ptq

Proof. By definition flat connections are locally the given by the trivial bundle with
trivial connection. Homotopies horizontally lift on the trivial bundle with trivial
connection. By compactness of r0, 1s we can therefore horizontally lift homotopies
into a bundle with a flat connection.

Corollary E.2.2. (Representations of the Fundamental Group)
Let pπ : P Ñ M,G, ¨q be a principle bundle and A P AP,flat. Consider x P M
and p P π´1pxq. For the connection A we can canonically define an element ρA P
Hompπ1pM,xq, Gq{G where G acts on Hompπ1pM,xq, Gq such that pρ ¨ gqpxq “
g´1ρpxqg.

Remark: Notice that with the extra information of p P π´1pxq we have
a representation ρp called the holonomy representation of the connection
A of the fundamental group based at x with respect to p.

Proof. For rγs P π1pM,xq from lemma E.2.1 we can define an element ρpprγsq P
HolP,ppAq. Notice that if we had instead chosen p ¨ g P π´1pxq from lemma E.1.2 we
get ρp¨gprγsq “ g´1ρpprγsqg.

The question is then raised as to what extent this conjugacy class of representation
determines the flat connection and if all conjugacy classes of representations can be
achieved by holonomy representation.
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Appendix F

Symplectic Geometry

Symplectic Geometry is a modern take on classical Hamiltonian mechanics. Sym-
plectic manifolds are more flexible than Riemannian Manifolds and have no lo-
cal invariants. However there are some important properties that separate them
from smooth manifolds. These rigidity properties are exemplified in Gromov non-
squeezing theorem , the Gromov-Eliashberg’s Rigidity Theorem and Arnold’s Con-
jecture. See [MS95] for more details on the foundational aspects of symplectic
geometry another good reference is [dS02]. This is also covered in [Aud04] which is
most relevant for our purposes.

F.1 Classical Mechanics

As we mentioned in the introduction to Appendix F symplectic geometry is a modern
take on classical Hamiltonian mechanics. Hamiltonian mechanics is a method of
modelling classical (i.e non-quantum or ”big”) mechanical systems. For the classical
examples arising in the study of mechanics, such as free body motion and motion
where the force is specified by some potential, Hamiltonian mechanics can be used
to derive Newtons laws and vice versa. In fact its not much of a shift from the ideas
of Newton and is more of a rephrasing. The ideas of Hamilton are more general
than we will present but these are the basic ideas.

Example: (Hamilton’s Equations for n Particles in 1-Dimension)
We want to consider n particles in 1-dimensional space. The position and momen-
tum of these particles specifies 2n real parameters. We assume this completely
determines the system (i.e there are no other degrees of freedom).

Let M “ R2n “ tpq1, p1, ..., qn, pnq : q1, p1, ..., qn, pn P Ru be the phase space of
our system where we view qi as the position of the i-th particle and pi as the mo-
mentum of the i-th particle. When modelling a particular 1-dimensional system of
n particles we try to guess a Hamiltonian function H : M Ñ R that is supposed to
represent the energy of the system.

Given a point x P M representing the state of the classical system at time 0 we
want to consider a function γ “ pγq1 , γp1 , ..., γqn , γpnq : R Ñ M such that γp0q “ x
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and γ satisfies Hamilton’s equations which are the following

dγqi
dt

ˇ

ˇ

ˇ

ˇ

t

“
BH

Bpi

ˇ

ˇ

ˇ

ˇ

γptq

and
dγpi
dt

ˇ

ˇ

ˇ

ˇ

t

“ ´
BH

Bqi

ˇ

ˇ

ˇ

ˇ

γptq

Given the Hamiltonian or energy H of the system if γ satisfies Hamilton’s equations
then γptq represents the state of the system at time t notice that for t “ 0 we have
γp0q “ x the initial state of the system. Again we stress that Hamilton’s equations
are equivalent to Newton’s equations in most contexts of interest.

We are interested in what are called observable quantities associated to our system.
In particular we are interested in f P C8pMq which will represent any quantity
related to our system we could potentially measure in an experiment. Consider the
function f ˝ γ : RÑ R. We are interested in how the observable quantity f changes
in time (i.e the derivative of f ˝ γ). We have

df ˝ γ

dt

ˇ

ˇ

ˇ

ˇ

t

“

n
ÿ

i“1

df

dqi

ˇ

ˇ

ˇ

ˇ

γptq

dγqi
dt

ˇ

ˇ

ˇ

ˇ

t

`
df

dpi

ˇ

ˇ

ˇ

ˇ

γptq

dγpi
dt

ˇ

ˇ

ˇ

ˇ

t

“

n
ÿ

i“1

df

dqi

ˇ

ˇ

ˇ

ˇ

γptq

BH

Bpi

ˇ

ˇ

ˇ

ˇ

γptq

´
df

dpi

ˇ

ˇ

ˇ

ˇ

γptq

BH

Bqi

ˇ

ˇ

ˇ

ˇ

γptq

Using this as motivation we define the Poisson bracket t´,´u : C8pMqbRC
8pMq Ñ

C8pMq such that for f, g P C8pMq and x PM we have

tf, gupxq “
n
ÿ

i“1

df

dqi

ˇ

ˇ

ˇ

ˇ

x

Bg

Bpi

ˇ

ˇ

ˇ

ˇ

x

´
df

dpi

ˇ

ˇ

ˇ

ˇ

x

Bg

Bqi

ˇ

ˇ

ˇ

ˇ

x

It can be shown that t´,´u defines the structure of a real Lie algebra on C8pMq.
Notice that C8pMq is also an algebra with point wise multiplication. It can also be
seen that t´,´u satisfies the Leibniz rule. That is for f, g, h P C8pMq

tfg, hu “ ftg, hu ` gtf, hu

So using the Poisson bracket we can see that the an observable f P C8pMq changes
in time as follows.

df ˝ γ

dt

ˇ

ˇ

ˇ

ˇ

t

“ tf,Hupγptqq

This is the general scheme of classical mechanics. All of the quantities of interest
are then calculated by solving the various differential equations. For example con-
servation of energy is simply proven as follows (note that we define H as the energy
so the use of the word proven is slightly circular)

dH

dt

ˇ

ˇ

ˇ

ˇ

t

“ tH,Hupγptqq “ 0

To generalise this we want to consider all possible phase spaces not just Euclidean
space. This means we also have to generalise Hamilton’s equations and the Poisson
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bracket. Notice that if we choose Hpq1, p1, ..., qn, pnq “ qi or Hpq1, p1, ..., qn, pnq “ pi
then Hamilton’s equations become

dγqi
dt

ˇ

ˇ

ˇ

ˇ

t

“ 0 and
dγpi
dt

ˇ

ˇ

ˇ

ˇ

t

“ ´1

or
dγqi
dt

ˇ

ˇ

ˇ

ˇ

t

“ 1 and
dγpi
dt

ˇ

ˇ

ˇ

ˇ

t

“ 0

An interesting object is then the two form

ω “ dq1 ^ dp1 ` ...` dqn ^ dpn P Ω2
pMq

This is a non-degenerate closed two form. We can rephrase the above equations as
follows. As ω is non-degenerate for f P C8pR2nq there exists a unique vector field
Xf P XpR2nq such that ωpXf , vq “ dfpvq. This is called the Hamiltonian vector field
associated to f because we have

dγ

dt

ˇ

ˇ

ˇ

ˇ

t

“ pXHqγptq

df ˝ γ

dt

ˇ

ˇ

ˇ

ˇ

t

“ tf,Hupγptqq “ ωγptqpXf , XHq “ TγptqHpXf q “ ´TγptqfpXHq

This is only a small part of the theory of classical mechanics. For more on the
physics see the classic text [GPS50].

F.2 Basic Definitions and Results

Definition: (Symplectic Manifold)
Let M be a smooth manifold. Let ω P Ω2pMq. If ω is closed and non-
degenerate

• dω “ 0

• For Xx P TxM ´ t0u there exists Yx P TxM such that ωxpXx, Yxq ‰ 0.

then we say pM,ωq is a symplectic manifold.

Remark: ωx is an antisymmetric non-degenerate bilinear form on TxM .
By induction it can be shown that this implies dimpTxMq is even. This
shows that symplectic manifolds must have even dimension.

Example: (Symplectic Manifold)

• The fundamental example is given by M “ R2n “ tpx1, y1, ..., xn, ynq P R2nu

and ω “ dx1 ^ dy1 ` ...` dxn ^ dyn.

• A well studied example is given by M “ Σg a compact orientable surface of
genus g and ω an area form.
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• Let N be a smooth n-manifold and take M “ T ˚N where we let π : M “

T ˚N Ñ N be the projection associated to the tangent bundle. We define
λ P Ω1pMq such that λxpXxq “ xpTxπpXxqq where we recall that x P T ˚N and
TxπpXxq P TN . Then take ω “ dλ.

Definition: (Symplectomorphism)
Let pM,ωq and pN, νq be a symplectic manifolds. Let f : M Ñ N be
a smooth map. We say f is a symplectomorphism if it preserves the
symplectic form, that is

f˚ν “ ω

Let AutpM,ωq be the group of symplectomorphisms from pM,ωq to
pM,ωq.

The following theorems describe the local invariants of a symplectic manifold. They
will show that in fact the only local invariant is the dimension of the manifold in
stark contrast to Riemannian geometry where one encounters curvature.

Theorem F.2.1. (Weinstein’s Theorem using Moser’s Trick)
Let M be a smooth manifold. Let V Ď M be a closed sub-manifold and let ω0, ω1 P

Ω2pMq be two symplectic forms on M such that for v P V we have pω0qv “ pω1qv.
Then there exists an open set U ĎM such that V Ď U and a map

ψ : U ÑM s.t ψ|V “ idV and for v P V pψ˚ω1qv “ pω0qv

Corollary F.2.2. (Darboux Theorem)
Let pM,ωq be a symplectic 2n-manifold and let x PM . Then there exists and open set
U ĎM such that x P U with a chart from an open set Ω Ď tpx1, y1, ..., xn, ynq P R2nu

given by ϕ : Ω Ñ U such that

ϕ˚pωq “ dx1 ^ dy1 ` ...` dxn ^ dyn

Proof. Consider the following path in Ω2pMq,

r0, 1s Q t ÞÑ ωt “ ω0 ` tpω1 ´ ω0q

Notice that ωt is closed for all t as dωt “ dpω0`tpω1´ω0qq “ dω0`tpdω1´dω0q “ 0.
Also notice that for v P V we have pωtqv “ pω0qv “ pω1qv. This means that ωt is
non-degenerate on V .

Now for v P V we have pωtqv is non-degenerate so there exists vector fields X, Y P

XpMq such that pωtqvpXv, Yvq ‰ 0. Now as M Q x ÞÑ pωtqxpXx, Yxq is smooth there
exists an open set Uv ĎM such that v P Uv and for x P Uv we have pωtqxpXx, Yxq ‰ 0.
In other words an open neighbourhood of v where ωt is non-degenerate.

Taking the union over v P V we have an open set U 1 Ď M such that V Ď U 1

and ωt|Ut is non-degenerate. So in fact ωt|Ut is a symplectic form on Ut. Now as
r0, 1s is compact we can find a neighbourhood U 1 such that ωt|U 1 is symplectic for
all t P r0, 1s.
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Now we can choose another open set U2 Ď U 1 such that V Ď U2 and where V is in
fact a deformation retract of U2. To see this simply take a small ball around each
v P V contained in the open set Uv. Let r : U2ˆI Ñ U2 be a deformation retraction.

Let ιY pωtqpXq “ ωtpY,Xq and take pXtqx “ Ttrx
`

B

Bt

˘

. We take the following homo-

topy operator Q : Ω2pU2q Ñ Ω1pU2q such that QpωqpXq “
ş1

0
r˚t pιXtωqpXqdt. We

then have
dpQpω1 ´ ω0qq “ Qpdpω1 ´ ω0qq ` dpQpω1 ´ ω0qq

“

ż 1

0

r˚t pιXtdpω1 ´ ω0qqdt`

ż 1

0

dr˚t pιXtpω1 ´ ω0qqdt

“

ż 1

0

r˚t pιXtdpω1 ´ ω0q ` dpιXtpω1 ´ ω0qqqdt “

ż 1

0

r˚t pLXtpω1 ´ ω0qqdt

“

ż 1

0

d

dt
r˚t pω1 ´ ω0qdt “ r˚1 pω1 ´ ω0q ´ r

˚
0 pω1 ´ ω0q “ ´pω1 ´ ω0q

where we used the Cartan magic formula, the definition of the Lie derivative and
the fundamental theorem of calculus. Let β “ Qpω1´ω0q and notice that for v P V
we have βv “ 0.

Now as ωt is non-degenerate we can define a vector field Yt P XpU2q for t P r0, 1s
such that ωtpYt, Xq “ βpXq. Notice that non-degeneracy implies that for v P V we
must have pYtqv “ 0. Let ϕt be the flow of the vector field Yt and notice that for ϕt
must therefore fix V . Therefore there exists a neighbourhood of V say U such that
ϕtpUq Ď U . Therefore we see that

d

dt
pϕ˚t ωtq “ ϕ˚t

ˆ

dωt
dt
` LYtpωtq

˙

“ ϕ˚t

ˆ

dω0 ` tpω1 ´ ω0q

dt
` ιYtdωt ` dpιYtωtq

˙

“ ϕ˚t ppω1 ´ ω0q ` dβq “ ϕ˚t ppω1 ´ ω0q ` pω0 ´ ω1qq “ 0

So ϕ˚t ωt is constant with respect to t. This means that ω0 “ ϕ˚0ω0 “ ϕ˚t ωt “ ϕ˚1ω1.
So let ψ “ ϕ1 to get the statement of the theorem.

To prove the corollary we use an exponential map associated to some Riemannian
metric to associate the standard symplectic form on the tangent space at a point
x PM induced by ωx to a neighbourhood around x and compare this to ω. We then
apply the theorem where V “ x.

We have now described our phase space where classical mechanics takes place that
is a symplectic manifold pM,ωq. This may now have interesting global structures
related to the topology of M and the symplectic form ω but locally this phase space
is the same as the classical example described in section F.1. Now we formalise the
other information relevant when studying classical mechanics. We need a Hamilto-
nian or Energy function and then we need to determine the time evolution of the
classical system given a state at time zero. This will correspond to the flow through
phase space.
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Definition: (Hamiltonian Flow and Hamiltonian Vector Fields)
Let pM,ωq be a symplectic manifold and let H P C8pMq. Consider the
vector field XH P XpMq such that for Y P XpMq we have

ωpXH , Y q “ dHpY q

This exists and is unique as ω is non-degenerate. Now let ϕH : M ˆ

R Ñ M be the flow of XH . We say that ϕH is the Hamiltonian flow
associated to the Hamiltonian H and XH is the Hamiltonian vector
field associated to the Hamiltonian H.

Definition: (Hamiltonian System)
Let pM,ωq be a symplectic manifold and H P C8pMq. We say that
pM,ω,Hq is a Hamiltonian system.

Example: The classic examples arising in physics are given by

• Newtonian gravity in 1-dimension where M “ R2 and ω “ dx ^ dy with
Hpx, yq “ 1

2m
y2 `mgx where m P R is the mass and g P R is the acceleration

due to gravity. Here 1
2m
y2 corresponds to the kinetic energy and mgx the

gravitational potential energy.

• the harmonic oscillator where M “ R2n and ω “ dx1 ^ dy1 ` ... ` dxn ^ dyn
with Hpx1, y1, ..., xn, ynq “

1
2m
y2

1 ` ... ` 1
2m
y2

1 `
1
2
kx2

1 ` ... ` 1
2
kx2

n. Here 1
2m
y2

corresponds to the kinetic energy and 1
2
kx2 the spring potential energy.

• These examples fall into the following class of examples. Let M “ R2n, ω “
dx1 ^ dy1 ` ... ` dxn ^ dyn and Hpx1, y1, ..., xn, ynq “

1
2m
y2

1 ` ... ` 1
2m
y2

1 `

V px1, ..., xnq for some potential V P C8pRnq.

Definition: (Poisson Bracket)
Let pM,ωq be a symplectic manifold. Define the Poisson bracket asso-
ciated to pM,ωq to be the following

t , u : C8pMq ˆ C8pMq Ñ C8pMq s.t tf, gu “ ωpXf , Xgq “ dfpXgq “ ´dgpXf q

where Xf , Xg P XpMq are the vector fields defined such that ωpXf , Y q “
dfpY q and ωpXg, Y q “ dgpY q.

Remark: Hamilton’s equations then become df˝ϕH
dt

“ tf,Hu ˝ϕH where
ϕH is the Hamiltonian flow of H which is a consequence of the chain
rule as tf,HupϕHpx, tqq “ TϕHpx,tqfpXHq but dϕp d

dt
q “

dϕH
dt
“ XH and so

df˝ϕH
dt

“ df ˝ dϕp d
dt
q “ dfpXHq “ tf,Hu. What this shows is that really

we are interested in the Hamiltonian flow of H as this corresponds to the
time evolution of the system when given x PM as initial conditions.

We have the following abstract definition.
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Definition: (Poisson Algebra)
Let A be an algebra over k. If r , s : A ˆ A Ñ A is a Lie bracket on A
that satisfies the Leibniz rule

rab, cs “ arb, cs ` ra, csb

Then we say pA, r , sq is a Poisson algebra.

Definition: (Poisson Manifold)
Let M be a smooth manifold. Consider the algebra over R given by
C8pMq. If pC8pMq, t , uq is a Poisson algebra then we say that pM, t , uq
is a Poisson manifold.

Remark: Every symplectic manifold is a Poisson manifold with the Pois-
son bracket defined via Hamiltonian flow above.

Definition: (Casimir Elements)
Let pM, t , uq be a Poisson manifold. We say f P C8pMq is Casimir if
tf, ¨u “ 0 or in other words the set of Casimir functions is given by the
center of the underlying Lie algebra.

Remark: Poisson manifolds are foliated by symplectic sub-manifolds
with symplectic leaves having fixed values for all the Casimir functions.

F.3 Symplectic Group Actions, the Moment Map

and Symplectic Quotients

Definition: (Symplectic Group Actions)
Let pM,ωq be a symplectic manifold. Let G be a group that acts on M
smoothly. We say that G acts symplectically if for x P M and g P G
we have R˚g pωq “ ω where Rg : M Ñ M such that Rgpxq “ x ¨ g. As
always with group actions we can think of the action as a homomorphism
into the group of symplectomorphisms.

Definition: (Hamiltonian S1 and R Actions)
Let pM,ωq be a symplectic manifold. Let G “ Up1q or G “ R act on
M symplectically. Consider Lx : G Ñ M such that Lxptq “ x ¨ t and
the vector field X such that Xx “ TeLxpvq for v P TeG. We say that
the G-action is Hamiltonian if there exists a function Hv such that
XHv “ X.

We can extend this definition to Cartesian products of Up1q and R. However this
definition is generalised to arbitrary Lie group as follows.

Definition: (Hamiltonian G Actions and the Moment Map)
Let pM,ωq be a symplectic manifold and G be a Lie group acting sym-
plectically on pM,ωq. We say that the G-action is Hamiltonian if
there exists a map called the moment map µ : M Ñ g˚ such that
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• For v P g “ TeG and v˚ “ X such that Xx “ TeLxpvq and for µv P C8pMq
given by µvpxq “ µpxqpvq that for Y P XpMq we have dµvpY q “ ωpX, Y q.

Remark: The condition says that for each 1-parameter subgroup if we
restrict the action the S1 or R-action is Hamiltonian in the previous
sense.

Remark: For f P g˚ then µ` f is another moment map.

Remark: If for g P G we have µ ˝ Rg “ Ad˚g ˝ µ in other words µ is
equivariant then we say that µ is an equivariant moment map.

Remark: We have two cases that are of great interest.

• G is semi-simple where any symplectic action is Hamiltonian and equiv-
ariant moment maps are unique.

• G is Abelian where symplectic actions may not be Hamiltonian the coad-
joint action is trivial so there is a g˚ worth of equivariant moment maps.

For the details on these facts see lecture 4 in [dS02].

Example: (Hamiltonian Actions)

• Take M “ tpx1, y1, ..., xn, ynq P R2nu “ R2n “ Cn “ tpz1, ..., znq P Cnu with
symplectic form given by ω “ dx1^dy1` ...`dxn^dyn. We have a symplectic
action of Up1q on M such that pz1, ..., znq¨e

2πiθ “ pz1e
2πiθ, ..., zne

2πiθq. This can
be generalised to a G “ Up1qn action such that for pe2πiθ1 , ..., e2πiθnq P Up1qn

we have pz1, ..., znq ¨ pe
2πiθ1 , ..., e2πiθnq “ pz1e

2πiθ1 , ..., zne
2πiθnq. A moment map

is given by µpx1, y1, ..., xn, ynq “
1
2
px2

1 ` y
2
1, ..., x

2
n ` y

2
nq P Rn – g˚

• M “ T ˚R3 “ tpx1, x2, x3, y1, y2, y3q P R6u and ω “ dx1^dy1`dx2^dy2`dx3^

dy3. Let SOp3q act on R3 in the standard way. Then we can lift the action to an
action on M . This is Hamiltonian with moment map µpx1, x2, x3, y1, y2, y3q “

px2y3 ´ x3y2, x3y1 ´ x1y3, x1y2 ´ x2y1q P R3 – sop3q˚. Notice that µ is the
angular momentum about 0.

• Take M “ tpx1, y1, ..., xn, ynq P R2nu “ R2n “ Cn “ tpz1, ..., znq P Cnu. Let
Upnq act in the standard way on Cn. This is Hamiltonian with moment map

µpz1, ..., znq “
i

2

»

–

z1z1 ... z1zn
: :

znz1 ... znzn

fi

fl P upnq – upnq˚

Definition: (Hamiltonian G-Space)
Let pM,ωq be a symplectic manifold and G a Lie group with a Hamilto-
nian action with moment map µ. We call pM,ω,G, µq a Hamiltonian
G-space.
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We wish to define a quotient in the category of symplectic manifolds. On the outset
there is no canonical way to do this. Purely on a dimensional argument if we have a
free action of an odd dimensional Lie group then the quotient manifold would be of
odd dimension and wouldn’t have a chance of being symplectic. The moment map
now enables us to define a symplectic quotient almost canonically for a Hamiltonian
G-space.

Theorem F.3.1. (Symplectic Quotient)
Let pM,ω,G, µq be a Hamiltonian G-space with compact G with µ equivariant. If
the G-action on µ´1p0q is free then µ´1p0q{G is a smooth manifold and there exists
ωred P Ω2pµ´1p0q{Gq such that pµ´1p0q{G,ωredq is a symplectic manifold. Moreover
if ι : µ´1p0q ãÑ M is the inclusion and π : µ´1p0q Ñ µ´1p0q{G is the quotient map
then π : µ´1p0q Ñ µ´1p0q{G is a principle bundle and ι˚pωq “ π˚pωredq.

Proof. The proof breaks into four different parts.

µ´1p0q is a manifold of dimension dimpMq ´ dimpGq:
For x P µ´1p0q let stabpxq “ tv P g : TeLxpvq “ 0u “ kerpTxLxq be the Lie algebra of
Stabpxq. Notice that by the definition of the moment map for Xx P TxM and v P g
we have ωxpTeLxpvq, Xxq “ Txµ

vpXxq and so kerpTxµq “ tXx P TxM : Txµ “ 0 P g˚u
using the canonical identification of Tµpxqg

˚ “ g˚. Using this identification if
Xx P kerpTxµq then for all v P g we have ωxpTeLxpvq, Xxq “ Txµ

vpXxq “ 0. So
kerpTxµq “ tXx P TxM : if v P g then ωxpTeLxpvq, Xxqu.

Now notice that impTxµq Ď Annpstabpxqq as for v P stabpxq we have TeLxpvq “ 0
and so Txµ

vpXxq “ ωxpTeLxpvq, Xxq “ ωxp0, Xxq “ 0 where we are again using the
canonical identification of Tµpxqg

˚ “ g˚.

Now counting dimensions dimkerpTxµq ` dimimpTxµq “ dimpTxMq. Notice that
dimkerpTxµq “ dimpTxMq´dimimpTeLxq and that dimkerpTeLxq`dimimpTeLxq “
dimpgq. This means that dimimpTxµq “ dimpgq ´ dimkerpTeLxq “ dimpgq ´
dimpstabpxqq.

Now we can see that dimpAnnpstabpxqqq “ dimpgq ´ dimpstabpxqq by taking a
basis for stabpxq extending that to a basis for g and then taking the dual basis of
that basis. So by the dimension count dimimpTxµq “ dimpAnnpstabpxqqq and so
impTxµq “ Annpstabpxqq.

Let G act freely on µ´1p0q. We see that Stabpxq “ 0 and therefore that impTxµq “
Annpstabpxqq “ Annpt0uq “ g˚. Then Txµ is surjective for all x P µ´1p0q. There-
fore 0 is a regular value of µ. So µ´1p0q Ď M is a sub-manifold of dimension
dimpMq ´ dimpGq.

π : µ´1p0q Ñ µ´1p0q{G is a principle G-bundle:
Using the slice theorem we can show a manifold with a free group action of a com-
pact Lie group G is the same as the information of a principle bundle. See chapter
1 of [Aud04] or proposition 5.4 in [dS02] for more details.
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Definition of ωred:
We have Txpx ¨ Gq Ď Txpµ

´1p0qq as x ¨ G Ď µ´1p0q. Notice that Txµ
´1p0q{Txpx ¨

Gq – Trxspµ
´1p0q{Gq. We can then define ωred P Ω2pµ´1p0q{Gq such that for

rXsrxs, rY srxs P Txµ
´1p0q{Txpx ¨ Gq “ Trxspµ

´1p0q{Gq with x P µ´1p0q such that
πpxq “ rxs and Xx, Yx P Txµ

´1p0q such that TxπpXxq “ rXsrxs and TxπpYxq “ rY srxs
we have pωredqrxsprXsrxs, rY srxsq “ ωxpXx, Yxq. Notice that x and Xx, Yx exist as π is
surjective.

ωred is well defined:
We have Txpµ

´1p0qq “ kerpTxµq “ tXx P TxM : if v P g then 0 “ ωxpTeLxpvq, Xxq “

Txµ
vpXxqu “ tXx P TxM : if Yx P Txpx ¨ Gq then 0 “ ωxpYx, Xxqu. This shows for

Wx, Zx P Txpx ¨ Gq we have ωxpXx, Yxq “ pωredqrxsprXsrxs, rY srxsq “ pωredqrxsprX `

W srxs, rY `Zsrxsq “ ωxpXx`Wx, Yx`Zxq “ ωxpXx, Yxq`ωxpXx, Zxq`ωxpWx, Yxq`
ωxpWx, Zxq “ ωxpXx, Yxq ` 0` 0` 0 “ ωxpXx, Yxq.

ωred is symplectic:
ωred is non-degenerate as if pωredqrxsprXsrxs, rY srxsq “ 0 for all rY sx then ωxpXx, Yxq “
0 for all Yx P Txµ

´1p0q and so X P Txpx ¨ Gq and so rXsrxs “ 0. We can see that
from the construction that ι˚pωq “ π˚pωredq and as π˚ is injective we can see that
0 “ ι˚pdωq “ d ˝ ι˚pωq “ d ˝ π˚pωredq “ π˚pdωredq means dωred “ 0.

Remark: The symplectic quotient is not unique and depends on the
moment map. One can also define the quotient by taking µ´1pfq for
a regular value of µ such that Ad˚g´1pfq “ f . However the different
symplectic quotients are often related.

Classical Mechanics and the Symplectic Quotient (Reduction): Suppose
that we have Hamiltonian system and Hamiltonian G-space pM,ω,H,G, µq with H
a G-invariant function or in other words Hpx ¨ gq “ Hpxq. In physics the action
of G represents a symmetry of the mechanical system given by pM,ω,Hq and µ
is representing some conserved quantity of Hamiltonian flow that comes from the
symmetry of G.

Notice that for translations and rotations of the standard symplectic space that
the moment map gives the momentum and angular momentum respectfully. These
symmetries represent a redundancy in the description of the system. Given an ini-
tial state (point in M) which determines the value of the moment map what the
symplectic quotient does is remove this redundancy in the description of the system.

Symbolically given pM,ω,H,G, µq with H equivariant and x P M with µpxq a
regular value of µ where G acts freely on µ´1pµpxqq. Here x is the initial point
of our system. Let γH,x be the flow of XH such that γH,xp0q “ x and notice that
γH : RÑ µ´1pµpxqq and that γH ¨g “ γH,x¨g. This means that pµ´1pµpxqq{G,ωred, Hq
with rxs P µ´1pµpxqq{G has the same dynamics as pM,ω,Hq with dimension reduced
by 2dimpGq which makes computations often much simpler.
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In the language of symplectic geometry Noether’s principle states that there is a nat-
ural one to one correspondence between the symmetries associated to one-parameter
subgroups of G and G-invariant functions which is achieved by the Hamiltonian flow
of G-invariant functions. See [GPS50] for more on the physics perspective.

Example: (Symplectic Quotients)

• Let M “ tpx1, y1, ..., xn, ynq P R2nu “ R2n and ω “ dx1 ^ dy1 ` ...` dxn ^ dyn
with Rm-action for m ă n given by px1, y1, ..., xn, ynq ¨ pa1, ..., amq “ px1 `

a1, y1, ..., xm ` am, ym, xm`1, ym`1, ..., xn, ynq with moment map

µpx1, y1, ..., xn, ynq “ py1, ..., ymq P Rm
“ pRm

q
˚

Consider

µ´1
p0q “ tpx1, 0, ..., xm, 0, xm`1, ym`1, ..., xn, ynq P R2n

u – R2n´m

and
µ´1

p0q{Rm
“ tpr0s, 0, ..., r0s, 0, xm`1, ym`1, ..., xn, ynqu

– tpxm`1, ym`1, ..., xn, ynq P R2n´2m
u “ R2n´2m

With the identification of µ´1p0q{Rm – tpxm`1, ym`1, ..., xn, ynq P R2n´2mu we
have ωred “ dxm`1 ^ dym`1 ` ...` dxn ^ dyn.

• Let M “ Cˆ ˆ Cn´1 and ω the standard symplectic form with G “ Up1q
acting on M such that pz1, ..., znq¨e

2πiθ “ pz1e
2πiθ, ..., znq. Consider coordinates

r1 P p0,8q and θ1 P Up1q with z1 “ re2πiθ1 . Then 2ω “ 2r1dr1 ^ dθ1 ´ dz2 ^

dz2 ´ ... ´ dzn ^ dzn and for the moment map µ, 2πi P up1q “ 2πiR and
x “ pr1, θ1, z2, ..., znq PM we have moment map Txµ

2πipXxq “ ωxpr1
B

Bθ1
, Xxq “

´1
2
r1X

r1
x . So Txµ

2πi “ 1
2
r1dr1 and we see µ “ 1

2
r2

1 ` c “ 1
2
px2

1 ` y2
1q ` c for

c P Ră0. We then have µ´1p0q{G “ Cn´1 and ωred “ dx2^dy2` ...`dxn^dyn.

• Let M “ Ckˆn and ω the standard symplectic form with G “ Upkq acting on
the by left matrix multiplication. This has moment map µpAq “ i

2
AA˚ ` Id

2i

where we use the canonical identification upkq “ upkq˚ (via the killing form).
Then we get a symplectic form ωred on µ´1p0q{G “ GrCpk, nq the grassmannian
manifold of k-planes in Cn.

Definition: (G-Actions on Poisson Manifolds)
Let pM, t , uq be a Poisson manifold and G a smooth Lie group. If G acts
on M such that for g P G and RG : M ÑM such that Rgpxq “ x ¨ g then
tf ˝Rg, g ˝Rgu “ tf, gu then we say that G is a Poisson action.

Definition: (Poisson Manifold Quotient)
Let pM, t , uq be a Poisson manifold and G a smooth Lie group that has
a Poisson action on pM, t , uq. If M{G induces a manifold then we can
define the quotient Poisson manifold such that for f, g P C8pM{Gq there

exists rf, rg P C8pMq such that rfpxq “ fprxsq and rgpxq “ gprxsq. Then

tf, guG “ t rf, rgu defines a Poisson bracket such that pM{G, t , uGq is a
Poisson manifold.
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Remark: If the quotient of a symplectic manifold by a symplectic action
is a manifold then there is a natural Poisson structure on the quotient
manifold and if the action is Hamiltonian then the Poisson structure is in
fact foliated by the pre-image of the coadjoint orbits in g˚. See chapter
III of [Aud04] for more on these results.

F.4 Toric Symplectic Manifolds and the Duistermaat-

Heckman Theorem

There are many beautiful results concerning toric varieties. We will list a few impor-
tant facts that will be needed in the calculation of the volume of the moduli space of
flat connections. We will also state the Duistermaat-Heckman formula. See [dS01]
for the toric symplectic manifolds and [dS02] also. For the Duistermaat-Heckman
theorem see [AB84] and [Aud04].

Theorem F.4.1. (The Atiyah-Guillemin-Sternberg Convexity Theorem)
Let T “ Up1qk be a torus with LiepT q “ t and pM,ω, T, µq be a Hamiltonian T -space
with µ equivariant. Then we have the following

• µ´1pvq is connected for all v P t˚.

• µpMq is the convex hull of the images of the fixed points of the action.

Remark: We will construct a symplectic structure on the moduli space
of SUp2q-flat connections in section 2.1.2 and exhibit a Hamiltonian torus
action on the moduli space in section 2.2.4. We will see that the im-
ages under the moment map will be constructed out of the moduli space
RSUp2q,0,3 which we have seen is a convex polytope in lemma 1.2.9.

Theorem F.4.2. (Duistermaat-Heckman Theorem)
Let T “ Up1qk be a torus with LiepT q “ t and pM,ω, T, µq be a Hamiltonian T -space
with µ equivariant. Then µ˚

`

ωn

n!

˘

is a piecewise polynomial multiple of the Lebesgue

measure on t˚ with highest degree given by dimpMq
2

´ k.

Remark: Notice that the support of the measure will be a polytope
from the previous theorem.

Remark: This result becomes in some sense trivial when one introduces
equivariant cohomology. A fantastic account of this is given in [AB84].

Theorem F.4.3. (Half Dimensional Torus Actions and Duistermaat-Heckman)
Let T “ Up1qk be a torus with LiepT q “ t and pM,ω, T, µq be a Hamiltonian T -space

with µ equivariant. If k “ dimpMq
2

then we have

V olωn
n!
pMq “ V olEucpµpMqq

Where the Euclidean volume on t is defined to assign volume 1 the fundamental
domain of the period lattice Λ Ď t such that T “ t{Λ.

Remark: This last theorem will be used to calculate the volumes of our
moduli space.
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Appendix G

Quantum Field Theories

G.1 Partition Functions in QFT

We will sketch some of the ideas related to path integration in Quantum Field
Theory and how this leads to the formal definition of TQFTs. We will follow the
outline of the theory described in the introduction of [Koh02].

Definition: (σ-Models)
Let X be a Riemannian manifold. The σ-model over X associated to a
compact oriented pd`1q-dimensional Riemannian manifold M is defined
to be the classical physical system

• with states given by fields φ : M Ñ X with φ P C8pM,Xq

• with Action given by the Dirichlet functional SM : C8pM,Xq Ñ R such
that SMpφq “

ş

X
}dφ}2dM for dM the volume form on M .

Remark: Fields that minimise the Action are called harmonic. These
fields describe the dynamics of the classical system.

Proposition G.1.1. (Action’s and Locality)
The Dirichlet functional SM : C8pM,Xq Ñ R such that SMpφq “

ş

X
}dφ}2dM

satisfies the following properties.

• For f : M Ñ N an isometry for the induced map f˚ : C8pN,Xq Ñ C8pM,Xq
we have SMpf

˚pφqq “ SNpφq.

• For M˚ denoting M with the reversed orientation we have SM˚pφq “ ´SMpφq

• If M “ M1 YΣ M2 for some d-dimensional manifold Σ (note this could be
empty) then SMpφq “ SM1pφ|M1q ` SM2pφ|M2q.

Remark: We can see that gluing together σ-models satisfies nice prop-
erties with respect to the Action.
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In physics it is often helpful when describing a quantum mechanical system to look
for a classical analogue of the system and quantise. On standard way to do this is
via Feynman path integrals. These path integrals calculate correlation functions.
Let J P C8pM,Xq. Then we symbolically represent the path integral as follows

ZpJq “

ż

C8pM,Xq

exp

ˆ

i

~
SMpφq `

i

~

ż

M

}J}2}φ}2
˙

Dφ

Correlation functions are gotten by differentiating with respect to J . In defining
invariants of the space time or in particular M we are interested in Zp0q “ Z given
by

Z “

ż

C8pM,Xq

exp

ˆ

i

~
SMpφq

˙

Dφ

Notice that both of these quantities are ill defined as we have not specified a mea-
sure on C8pM,Xq. This is often hard to do and these theories are often not math-
ematically well defined. To use physical intuition to build mathematically rigorous
theories we abstract these definitions to a well defined set of axioms. We then check
if rigorously given constructions satisfy similar structures as these partition func-
tions. The first key to the mathematical construction is by considering manifolds
with boundary.

For v P C8pBM,Xq we can define let C8v pM,Xq “ tf P C8pM,Xq : f |BM “ vu and
then define

Zpvq “

ż

C8v pM,Xq

exp

ˆ

i

~
SMpφq

˙

Dφ

We want to consider Z : C8pBM,Xq Ñ C. We want to define a vector space ZpBMq
such that we can identify Z P ZpBMq. As previously mentioned we want to abstract
the properties that such a vector space ZpBMq would satisfy. The properties of the
action listed in proposition G.1.1 will give us the following properties of ZpBMq and
Z “ ZpMq.

Proposition G.1.2. (Locality of the Partition Function)

• If BM “ BM1 \ BM2 we have and v|BM1 “ v1 and v|BM2 “ v2 we have

ZpBMqpvq “

ż

C8v pM,Xq
exp

ˆ

i

~
SM pφq

˙

Dφ

“

ż

C8v1 pM1,Xq

ż

C8v2 pM1,Xq
exp

ˆ

i

~
SM1pφ1q `

i

~
SM2pφ2q

˙

Dφ1Dφ2

“

˜

ż

C8v1 pM1,Xq
exp

ˆ

i

~
SM1pφ1q

˙

Dφ1

¸˜

ż

C8v2 pM1,Xq
exp

ˆ

i

~
SM2pφ2q

˙

Dφ1Dφ2

¸

“ ZpBM1qpv1qZpBM2qpv2q

So we want to take ZpBMq “ ZpBM1q b ZpBM2q

127



• For M “M1 YΣ M2 we have
ZpMq

“

ż

C8pM,Xq
exp

ˆ

i

~
SM pφq

˙

Dφ

“

ż

vPC8pΣ,Xq

ż

C8v pM2,Xq

ż

C8v pM1,Xq
exp

ˆ

i

~
SM1

pφ1q `
i

~
SM2

pφ2q

˙

Dφ1Dφ2Dv

“

ż

vPC8pΣ,Xq

˜

ż

C8v pM1,Xq
exp

ˆ

i

~
SM1

pφ1q

˙

Dφ1

¸˜

ż

C8v pM2,Xq
exp

ˆ

`
i

~
SM2

pφ2q

˙

Dφ2

¸

Dv

“

ż

vPC8pΣ,Xq

ZpM1qpvqZpM2qpvq

We therefore want to define ZpΣ˚q “ ZpΣq˚ and ZpMq “ xZpM1q, ZpM2qy.

Remark: One can play with the different properties such an integral
would satisfy. These integrals can be useful heuristic tools when it comes
to understanding different aspects of the topology of the space-time or
underlying manifold. In section G.2 we will however develop an axiomatic
approach to QFT. The particular types of QFTs we will study will in
the sense of the partition functions above come from special kinds of
Actions. For TQFT the Actions of the theory will be invariant under
diffeomorphism. For CFT on the other hand the Action will be invariant
under conformal transformations.

G.2 Topological Field Theories

We give a slightly refined version of Atiyah’s functorial definition of a Topological
Quantum Field Theory. This was based on Segal’s definition of Conformal Field
Theory via modular functors. We will firstly need the following definition.

Definition: (Cobordism Category)
We define the category of d` 1 dimensional cobordisms denoted Cobd`1

to be the category with

• obpCobd`1q “ tisomorphism classes of oriented d-manifoldsu

• For Σ1,Σ2 P obpCobd`1q we have

HomCobd`1
pΣ1,Σ2q “

!

isomorphism classes of oriented pd` 1q-manifolds M

with BM – Σ˚1 \ Σ2 and f1 : Σ˚1 ãÑ BM and f2 : Σ2 ãÑ BM
)

“ tpM, f1, f2qu

where Σ˚1 denotes Σ1 with the reversed orientation.

• The composition is given by glueing. That is

pM, f1 : Σ˚1 ãÑ BM, f2 : Σ2 ãÑ BMq ˝ pN, g2 : Σ˚2 ãÑ BM, g3 : Σ3 ãÑ BMq

“ pM Yf2,g2 N, f1 : Σ˚1 ãÑ BM Yf2,g2 N, f2 : Σ3 ãÑ BM Yf2,g2 Nq

where M Yf2,g2 N “ M \ N{ „ with x „ y if there exists z P Σ2 such that
f2pzq “ x and g2pzq “ y with canonical smooth structure and as f1, g3 map to
M\N with image away form the gluing they descend to maps into MYf2,g2N .
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Remark: The inclusions f1 and f2 are key to defining the category.
They allow us to glue together manifolds along common boundaries as
if we didn’t specify the embeddings we would not canonically be able to
glue together manifolds.

Remark: With the operation of disjoint union and the empty d-manifold
makes Cobd`1 a monoidal category. In fact we can find cobordisms that
form twist morphisms which makes Cobd`1 a symmetric monoidal cate-
gory.

Definition: (Pictorial Representations)
For i “ 1, ...,m let Σ1,i be a closed smooth connected d-manifold and for
i “ 1, ..., n let Σ2,i be a closed smooth connected d-manifold. Let M be
a smooth pd ` 1q-manifold with BM – Σ1,1 \ Σ1,m \ Σ2,1 \ ... \ Σ2,n.
pM, f1\ ...\fm, g1\ ...\gnq and let fi : Σ˚1,i ãÑ BM and gi : Σ2,i ãÑ BM .
We can represent pM, f1 \ ...\ fm, g1 \ ...\ gnq pictorially as follows.

f1 g1

: M :

fm gn

We can use these pictures to keep track of the gluing in Cobd`1.

We will also use the special pictorial representations

f

pΣˆ r0, 1s, f \ g,Hq “

g

f

ppΣˆ r0, 1sq˚,H, f \ gq “

g

ppΣˆ r0, 1sq˚, f, gq “ f g

Definition: (Topological Quantum Field Theory)(TQFT)
Let R be a commutative ring and let RMod be the category of finitely
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generated R-modules. A pd ` 1q-dimensional TQFT over R is a functor
Z : Cobd`1 Ñ RMod satisfying the following axioms

• For Σ P obpCobd`1q we have ZpΣ˚q “ ZpΣq˚. This says reversing orien-
tations corresponds to taking algebraic duals in RMod.

• For Σ1,Σ2 P obpCobd`1q we have ZpΣ1\Σ2q “ ZpΣ1qbRZpΣ2q. This says
that the monoidal structure in Cobd`1 corresponds to the monoidal structure
in RMod.

• For pM, f1, f2q P HomCobd`1
pΣ1,Σ2q and pN, g1, g2q P HomCobd`1

pΣ2,Σ3q

we have ZppM, f1, f2q˝pN, g1, g2qq “ ZpM, f1, f2q˝ZpN, g1, g2q. This says that
Z preserves the composition.

• For H P obpCobd`1q we have ZpHq “ R. This says that the identity in
Cobd`1 is sent to the identity in RMod.

• For Σ P obpCobd`1q and pΣ ˆ r0, 1s, IdΣ˚, IdΣq P HomCobd`1
pΣ,Σq we

have ZpΣˆ r0, 1s, IdΣ˚ , IdΣq “ idZpΣq P HomCobd`1
pZpΣq, ZpΣqq. Noting that

pΣˆr0, 1s, IdΣ˚ , IdΣq “ idΣ P HomCobd`1
pΣ,Σq this says that Z sends identity

morphisms to identity morphism.

Remark: The axioms state that Z is a symmetric monoidal functor from
the symmetric monoidal category Cobd`1 to the symmetric monoidal cat-
egory RMod.

Remark: The axioms allow us to determine the TQFT on disconnected
cobordisms by considering the connected components. Therefore we are
only really interested in the connected cobordims.

We now prove an immediate consequence of the axioms which will prove that we
must take finitely generated R-modules in our definition.

Lemma G.2.1. (Trace Formula)
Let Z : Cobd`1 Ñ RMod be a TQFT. Suppose that for all Σ P obpCobd`1q that
ZpΣq is a free R-module. Consider Σ P obpCobd`1q and f : Σ Ñ Σ. Now consider
pΣˆ r0, 1s, id˚Σ, fq P HomCobd`1

pΣ,Σq. We then get ZpΣˆ I, id˚Σ, fq “ Zf : ZpΣq Ñ

ZpΣq. Let Σf “ Σˆ r0, 1s{ „ where pfpxq, 0q „ px, 1q. Then we have

TrpZf q “ ZpΣf q

Corollary G.2.2. (Dimension Formula)
We then see that for f “ idΣ we get

ZpΣˆ S1q “ ZpΣidΣ
q “ TrpZidΣ

q “ TrpidZpΣqq “ dimpZpΣqq

Proof. Let v1, ..., vn be free generators for ZpΣq and let f1, ..., fn be the dual basis
such that fipvjq “ δij. Then we have for pΣˆ r0, 1s,H, idΣ \ fq some element

ZpΣˆ r0, 1s,H, idΣ \ fq “
n
ÿ

i,j“1

aijvi b vj P ZpΣq b ZpΣq
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Now for pΣˆ r0, 1s, id˚Σ\Σ,Hq we have some element

ZpΣˆ r0, 1s, id˚Σ\Σ,Hq “
n
ÿ

k,l“1

bijfi b fj P ZpΣq
˚
b ZpΣq˚

By the following gluing

f

idΣ ´ idΣ˚

idΣ˚

we must have

Zf “
n
ÿ

i,j,k,l“1

aijbklfkpvjqvi b fl “
n
ÿ

i,j,l“1

aijbklvi b fl

So we see that

Zf pvpq “
n
ÿ

i,j,l“1

aijbjlflpvpqvi “
n
ÿ

i,j“1

aijbjpvi

So representing Zf as a matrix we have pZf qip “
řn
j“1 aijbjp. Notice that if we take

the following gluing

f ´ idΣ˚

idΣ ´ idΣ˚

that we get

ZpΣf q “

n
ÿ

i,j,k,l“1

aijbklfkpviqflpvjq “
n
ÿ

i,j“1

aijbji “
n
ÿ

i“1

pZf qii “ TrpZf q

Remark: (Infinitely Generated TQFTs)
This lemma shows that if we had a TQFT with some Σ P obpCobd`1q

such that ZpΣq was free then it must be finitely generated. Otherwise
in the calculation above we would eventually need to take the trace of
an infinite dimensional matrix. Which for the identity matrix is not well
defined.

This shows that defining TQFT’s over finitely generated R-modules was
not just a choice but a necessity. The key axiom that requires this is that
ZpΣˆ r0, 1s, IdΣ˚ , IdΣq “ idZpΣq.

The issue with infinite dimensionality holds more generally when one
studies the categorical properties of Cobd`1.
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G.3 1+1 Dimensional Topological Field Theory

We will briefly describe the correspondence between Frobenius algebra’s and p1`1q-
dimensional TQFTs. There is a good introduction in [Law96] and slightly more
detailed exposition in [Koc04].

Remark: Notice that obpCob1`1q “ tHu Y tpS
1q\nunPZą0 . Therefore a

(1+1)-dimensional TQFT has only one interesting R module ZpS1q.

Remark: There is only one way two glue two circles together so we can
suppress the notation in HomCob1`1 as this won’t depend on the choice
of maps. The only information stored in the maps is the in and out
boundaries.

Lemma G.3.1. (Cylinder and a Bilinear Form)
Let Z be a p1` 1q-dimensional TQFT over R. Then

ZpΣ0,2, idpS1q˚ ˆ idpS1q˚ ,Hq : ZpS1
q b ZpS1

q Ñ R

is non-degenerate.

Proof. Follows from gluing rules described in the following picture and the fact that

ZpΣ0,2, idpS1q˚ , idS1q “ idZpS1q

Lemma G.3.2. (Pair of Pants and the Product)
Let Z be a p1` 1q-dimensional TQFT over R. Then

ZpΣ0,3, idpS1q˚ ˆ idpS1q˚ , idS1q : ZpS1
q b ZpS1

q Ñ ZpS1
q

defines a commutative product.

Proof. Commutativity follows from the following picture.
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Associativity follows from the following picture.

Lemma G.3.3. (Cap as the Identity)
The product defined by Σ0,3 has unit ZpΣ0,1,H, idS1q P ZpS1q.

Proof. This follows from the fact that ZpΣ0,2, IdpS1q˚ , IdS1q “ idZpS1q and the fol-
lowing picture.

Definition: (Frobenius Algebra’s)
Let pA, ¨q be a R-algebra. Let x´,´y : A b A Ñ R be a non-degenerate
bilinear form. If we have for a, b, c P A we have

xa ¨ b, cy “ xa, b ¨ cy

then we call pA, ¨, x´,´yq a Frobenius algebra.

Theorem G.3.4. (2d-TQFTs and Frobenius Algebras)
The association

Z ÞÑ pZpS1
q, ZpΣ0,3, idpS1q˚ ˆ idpS1q˚ , idS1q, ZpΣ0,2, idpS1q˚ ˆ idpS1q˚ ,Hqq

is a bijection between commutative Frobenius algebra’s and p1 ` 1q-dimensional
TQFTs.

Proof. We have show that every p1` 1q-dimensional TQFT defines a commutative
algebra. Notice that it is a Frobenius algebra by the following picture.
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To then see that every Frobenius algebra defines a p1 ` 1q-dimensional TQFT one
must consider trinion decompositions. We can see that using the product we can
define a TQFT given a trinion decomposition then one must check that this is inde-
pendent of the decomposition. This fact reduces to the identities defining Frobenius
algebras.

Remark: This theorem can be generalised to an association between
symmetric monoidal functors from Cob1`1 to a category C and the cate-
gory of commutative Frobenius objects in C. That is

cFrobpCq –
“

Cob1`1, C
‰

SymMon

For this more general discussion see [Koc04].

Theorem G.3.5. (Classification Formula for Semi-Simple p1`1q-dimensional TQFTs)
[Law96]
Let Z be a p1`1q-dimensional TQFT over K with pV, ¨, x´,´yq the associated Frobe-
nius algebra over K. If there exists a basis v1, ..., vm for V such that vi ¨ vj “ δijvi
then the Frobenius algebra is determined up to isomorphism by xvi, viy “ hi and we
then have

ZpΣg,nqpvi1 , ..., vinq “ δi1...inh
2p2g´2`nq
i1

h´3g`3´n
i1

“ δi1...inh
g´1`n
i1

Proof. Taking a pair of pants decomposition we have 2g ´ 2` n pairs of pants and
3g ´ 3 ` n cylinders gluing the pairs of pants together. For each pair of pants we
get a factor of h2

i1
and for each gluing cylinder we get a factor of h´1

i1
.
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[Bt03] Theodor Bröcker and Tammo tom Dieck. Representations of Compact
Lie Groups. Graduate Texts in Mathematics. Springer Berlin Heidelberg,
2003.

[dS01] Ana Cannas da Silva. Symplectic toric manifolds. 2001.

[dS02] Ana Cannas da Silva. Introduction to symplectic and Hamiltonian ge-
ometry. 2002.

135



[DW90] Robbert Dijkgraaf and Edward Witten. Topological gauge theories
and group cohomology. Communications in Mathematical Physics,
129(2):393–429, 1990.

[FHLT09] Daniel S. Freed, Michael J. Hopkins, Jacob Lurie, and Constantin Tele-
man. Topological quantum field theories from compact Lie groups. arXiv
preprint arXiv:0905.0731, 2009.

[FQ93] Daniel S. Freed and Frank Quinn. Chern-simons theory with finite gauge
group. Communications in Mathematical Physics, 156(3):435–472, 1993.

[Gol84] William M. Goldman. The symplectic nature of fundamental groups of
surfaces. Advances in Mathematics, 54(2):200 – 225, 1984.

[Gol85] William M. Goldman. Representations of Fundamental Groups of Sur-
faces, pages 95–117. Springer Berlin Heidelberg, Berlin, Heidelberg,
1985.

[Gol86] William M. Goldman. Invariant funtions on Lie groups and Hamiltonian
flows of surface group representations. Inventiones mathematicae, 1986.

[GPS50] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics.
A-W series in advanced physics. Addison-Wesley Publishing Company,
1950.

[Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[Hum12] James Humphreys. Introduction to Lie Algebras and Representation The-
ory. Graduate Texts in Mathematics. Springer New York, 2012.

[JK98] Lisa C. Jeffrey and Frances C. Kirwan. Intersection theory on moduli
spaces of holomorphic bundles of arbitrary rank on a Riemann surface.
Annals of Mathematics, 148(1):109–196, 1998.

[JW92] Lisa C. Jeffrey and Jonathan Weitsman. Bohr-Sommerfeld orbits in the
moduli space of flat connections and the Verlinde dimension formula.
Comm. Math. Phys., 150(3):593–630, 1992.

[JW94] Lisa C. Jeffrey and Jonathan Weitsman. Toric structures on the moduli
space of flat connections on a Riemann surface: Volumes and the moment
map. Advances in Mathematics, 106(2):151 – 168, 1994.

[Kac94] Victor G. Kac. Infinite-Dimensional Lie Algebras. Progress in mathe-
matics. Cambridge University Press, 1994.

[Kar92] Yael Karshon. An algebraic proof for the symplectic structure of moduli
space. Proceedings of the American Mathematical Society, 116(3):591–
605, 1992.

[KM97] Andreas Kriegl and Peter W. Michor. The Convenient Setting of Global
Analysis. Mathematical Surveys. American Mathematical Society, 1997.

136



[KN63] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential
Geometry, volume I. John Wiley & Sons, Inc, 1963.

[Koc04] Joachim Kock. Frobenius Algebras and 2-D Topological Quantum Field
Theories. Frobenius Algebras and 2D Topological Quantum Field The-
ories. Cambridge University Press, 2004.

[Koh02] Toshitake Kohno. Conformal Field Theory and Topology. Iwanami series
in modern mathematics. American Mathematical Society, 2002.

[Kon92] Maxim Kontsevich. Intersection theory on the moduli space of curves
and the matrix Airy function. Communications in Mathematical Physics,
147(1):1–23, 1992.

[Law96] Ruth J. Lawrence. An introduction to topological field theory. 1996.

[Mic13] Daan Michiels. Moduli spaces of flat connections, 2013.

[Mir06] Maryam Mirzakhani. Simple geodesics and Weil-Petersson volumes of
moduli spaces of bordered Riemann surfaces. Inventiones Mathematicae,
167:179–222, 2006.

[Mir07] Maryam Mirzakhani. Weil-Petersson volumes and intersection theory
on the moduli space of curves. Journal of the American Mathematical
Society, 20(1):1–23, 2007.

[MOP`13] Alina Marian, Dragos Oprea, Rahul Pandharipande, Aaron Pixton, and
Dimitri Zvonkine. The Chern character of the Verlinde bundle over the
moduli space of stable curves. arXiv preprint arXiv:1311.3028, 2013.

[Mor01] Shigeyuki Morita. Geometry of Differential Forms. Iwanami series in
modern mathematics. American Mathematical Society, 2001.

[MS74] John W. Milnor and James D. Stasheff. Charateristic Classes. Princeton
University Press, 1974.

[MS95] Dusa McDuff and Dietmar Salamon. Introduction to Symplectic Topol-
ogy. Oxford University Press, 1995.

[Spi70] Michael Spivak. A Comprehensive Introduction to Differential Geometry.
Number V. 1 in A Comprehensive Introduction to Differential Geometry.
Brandeis University, 1970.

[Ste51] Norman Steenrod. The Topology of Fibre Bundles. Princeton University
Press, 1951.

[Tha95] Michael Thaddeus. An introduction to the topology of the moduli space
of stable bundles on a Riemann surface. 1995.

[Tyu03] Andrei Tyurin. Quantization, Classical and Quantum Field Theory and
Theta Functions. American Mathematical Society, 2003.

137



[Ver88] Erik Verlinde. Fusion rules and modular transformations in 2d conformal
field theory. Nuclear Physics B, 300:360 – 376, 1988.

[Wei98] Jonathan Weitsman. Geometry of the intersection ring of the moduli
space of flat connections and the conjectures of Newstead and Witten.
Topology, 37(1):115–132, 1998.

[Wit91] Edward Witten. On quantum gauge theories in two dimensions. Com-
munications in Mathematical Physics, 141(1), 1991.

[Wit92] Edward Witten. Two dimensional gauge theories revisited. J. Geom.
Phys, page 303, 1992.

[Yos01] Takahiko Yoshida. The generating function for certain cohomology in-
tersection pairings of the moduli space of flat connections. 2001.

138


	Notation
	How to Read
	Introduction
	The Moduli Space of Flat Connections
	The Moduli Space of Flat Connections and the Gauge Group
	The Space of Connections
	The Gauge Group
	The Moduli Space of Flat Connections
	The Representation Variety and Character Variety

	The Moduli Space of Flat Connections on Circles and Surfaces
	The Moduli Space of Flat Connections on the Circle
	Trinion Decompositions and the Pair of Pants
	Remark on a Complex and Smooth Structure in the Algebraic Case


	A Symplectic Structure on [G]gn(C1,...,Cn)
	Atiyah-Bott Symplectic Form and a Symplectic Form on the Moduli Space of Flat Connections
	Definition and Moment Map
	Symplectic Form on [G]gn(C1,...,Cn)

	Torus Action on [G]gn(C1,...,Cn)
	Goldman's Functions
	Twist Flows


	Volumes of the Moduli Space of Flat Connections
	The Case of SU(2)
	Convex Polyhedra and Volumes
	Lattice Point Counts
	Recursions for Volumes

	The Case of Compact, Connected, Semisimple G
	Witten's Volume Formula and Intersection Numbers
	Recursion for Volumes
	Comparison to SU(2)

	Relations to the work of Mirzakhani and Further Directions
	The Case of SL2(R)
	Remark on Verlinde's Formula and Recursions for Volume


	Volumes of the Moduli Space as a Topological Quantum Field Theory
	Trivial Dijkgraaf-Witten Topological Quantum Field Theory
	Finite Gauge Groups and Covering Spaces
	Categorification to a Topological Quantum Field Theory

	Recursions and Topological Quantum Field Theory
	Volume Recursions with a Canonical Basis of Class Functions
	Graded Topological Quantum Field Theories and 1+1-Dimensional Gauge Theories


	Appendices
	Smooth Manifolds, Fibre Bundles and Tangent Bundles
	Smooth Manifolds
	Smooth Bundles and Tangent Bundles
	Vector Fields, Differential Forms and Integration

	Lie Groups, Lie Algebras and Affine Lie Algebras
	Lie Groups and Associated Lie Algebra
	Representations, Functions on Lie Groups and Integration
	Affine Lie Algebras

	The Theory of Principle Bundles and their Connections
	Principle Bundles
	Connections on Principle Bundles
	Space of Connections

	Additional Structures and Invariants of Connections
	Covariant Derivative
	Curvature
	Covariant Derivatives and Curvature

	Holonomy
	Parallel Transport
	Holonomy and Representations of the Fundamental Group

	Symplectic Geometry
	Classical Mechanics
	Basic Definitions and Results
	Symplectic Group Actions, the Moment Map and Symplectic Quotients
	Toric Symplectic Manifolds and the Duistermaat-Heckman Theorem

	Quantum Field Theories
	Partition Functions in QFT
	Topological Field Theories
	1+1 Dimensional Topological Field Theory

	Bibliography

