

Fundamentals of AI

Introduction and the most basic concepts

Notion of mean point in the data

Why bother about mean point?

- **Defining mean point** can be considered as a simple application of unsupervised learning approach
- Calculating mean point is the extreme case of **dimensionality reduction**: $R^N \rightarrow R^0$
- In **complex data spaces** the definition of mean point is non-trivial task
- Definition of mean depends on the **metrics of data space**
- General definition of mean leads to **important generalizations**

Notion of average (mean) point

Arithmetic mean

$$A = \frac{1}{n} \sum_{i=1}^n a_i = \frac{a_1 + a_2 + \cdots + a_n}{n} *$$

Geometric mean

$$\left(\prod_{i=1}^n a_i \right)^{\frac{1}{n}} = \sqrt[n]{a_1 a_2 \cdots a_n}. **$$

Harmonic mean

$$\bar{x} = n \left(\sum_{i=1}^n \frac{1}{x_i} \right)^{-1}$$

* a_i can be vectors!

** arithmetic mean of logarithms

Notion of average (mean) point

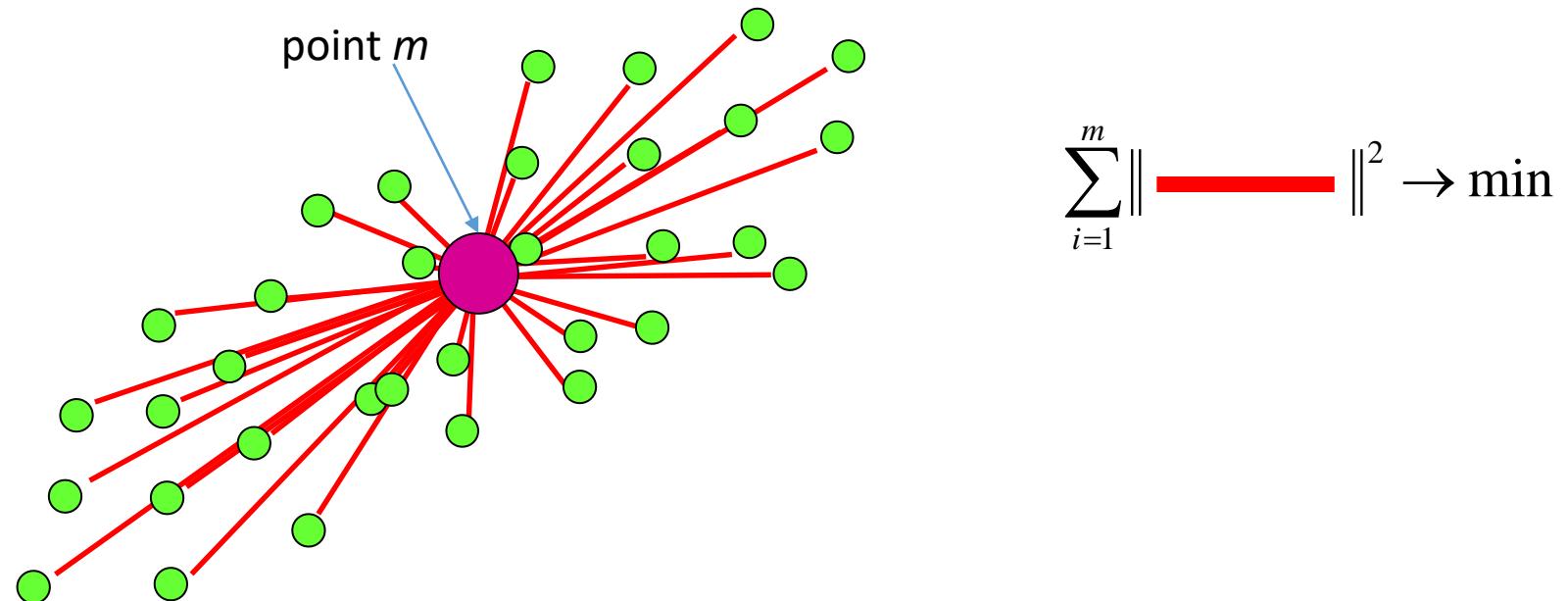
- In probability theory : ‘expected’ or ‘central’ value of the probability distribution
 - The analytical formula depends on the type of probability distribution!
 - Can be non-existent

$$\mathbb{E}[X] = \int_{\mathbb{R}} x f(x) dx$$

- In geometrical approach: point m minimizing the mean squared distance from all data points to m
 - this definition belongs to Maurice Fréchet (1878-1973)
 - depends on the metric structure of the feature space
 - can be non-unique

$$m = \arg \min_{p \in M} \sum_{i=1}^N d^2(p, x_i)$$

Notion of average (mean) point

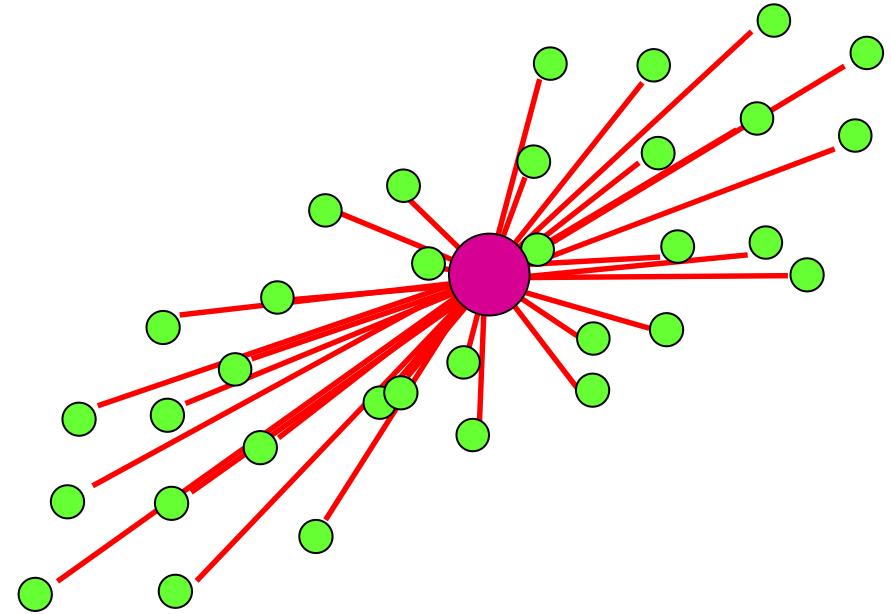

- In probability theory : ‘expected’ or ‘central’ value of the probability distribution, **first moment of the distribution**

Expected Values of Various Statistical Distributions

Distribution	Mathematical Distribution	Mean $E(X)$
Bernoulli	$X \sim b(1, p)$	p
Binomial	$X \sim B(n, p)$	np
Poisson	$X \sim Po(\lambda)$	λ
Geometric	$X \sim Geometric(p)$	$1/p$
Uniform	$X \sim U(a, b)$	$(a + b)/2$
Exponential	$X \sim \exp(\lambda)$	$1/\lambda$
Normal	$X \sim N(\mu, \sigma^2)$	μ
Standard Normal	$X \sim N(0, 1)$	0
Pareto	$X \sim Par(\alpha)$	$\alpha/(\alpha + 1)$ if $\alpha > 1$
Cauchy	$X \sim Cauchy(x_0, \gamma)$	undefined

Notion of average (mean) point

- In geometrical approach: point m minimizing the mean squared distance from all data points to m , ‘center of mass’



Simple exercise: what is the mean point in Euclidean space?

$$\sum_i \sum_k (x_i^k - m^k)^2 \rightarrow \min$$

i - point number

k - coordinate number

Simple exercise: what is the mean point in Euclidean space?

$$\sum_i \sum_k (x_i^k - m^k)^2 \rightarrow \min$$

i - point number

k - coordinate number

$$\left[\sum_i \sum_k (x_i^k - m^k)^2 \right]' = 0$$

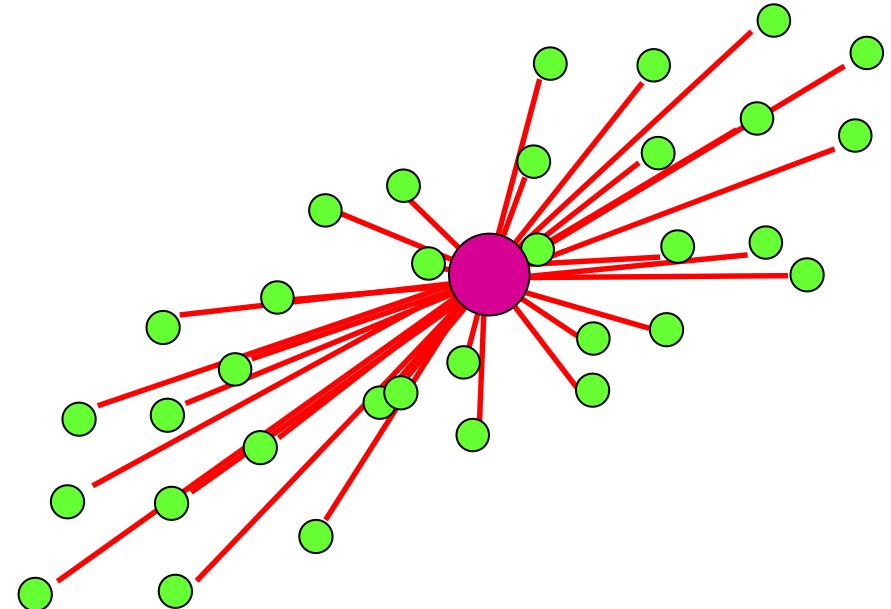
$$\Rightarrow 2 \sum_i (x_i^k - m^k) = 0$$

Simple exercise: what is the mean point in Euclidean space?

$$\sum_i \sum_k (x_i^k - m^k)^2 \rightarrow \min$$

i - point number

k - coordinate number


$$\left[\sum_i \sum_k (x_i^k - m^k)^2 \right]' \Big|_{m^k} = 0$$

$$\cancel{\cancel{2}} \sum_i (x_i^k - m^k) = 0$$

$$\sum_i x_i^k - \sum_i m^k = 0$$

$$\sum_i x_i^k - N m^k = 0$$

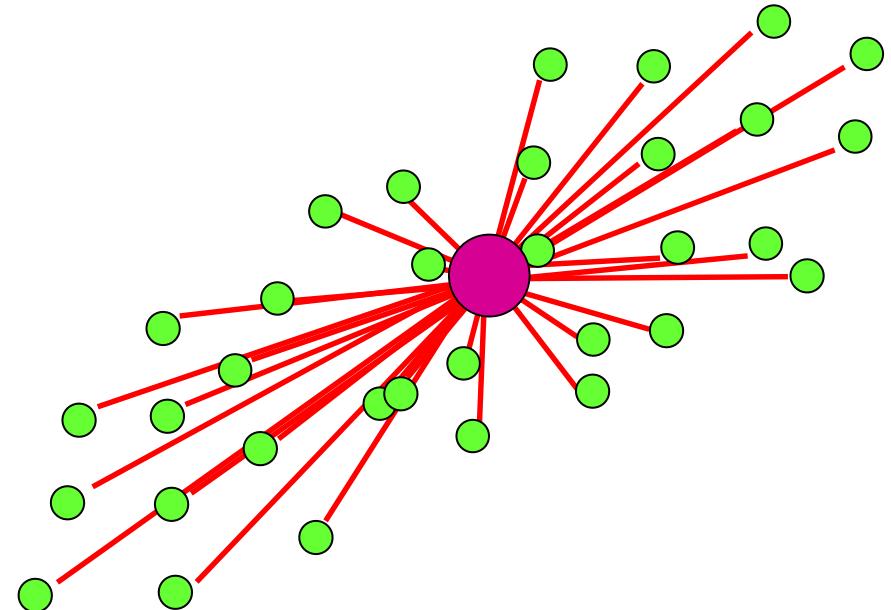
$$m_k = \frac{\sum_i x_i^k}{N}$$

Simple exercise: what is the mean point in Euclidean space?

$$\sum_i \sum_k (x_i^k - m^k)^2 \rightarrow \min$$

i - point number

k - coordinate number


$$\left[\sum_i \sum_k (x_i^k - m^k)^2 \right]' = 0$$

$$2 \sum (x_i^k - m^k) = 0$$

$$\sum_i x_i^k - \sum_i m^k = 0$$

$$\sum_i x_i^k - N m^k = 0$$

$$m_k = \frac{\sum_i x_i^k}{N}$$

Arithmetic mean! ☺

What is the mean point in L1 space?

$$\sum_i \sum_k \|x_i^k - m^k\|_{L1} \rightarrow \min$$

$$\sum_i \sum_k |x_i^k - m^k| \rightarrow \min$$

What is the mean point in L1 space?

$$\sum_i \sum_k \|x_i^k - m^k\|_{L1} \rightarrow \min$$

$$\sum_i \sum_k |x_i^k - m^k| \rightarrow \min$$

$$\left(\sum_i \sum_k |x_i^k - m^k| \right)'_{m^k} = 0$$

What is the mean point in L1 space?

$$\sum_i \sum_k \|x_i^k - m^k\|_{L1} \rightarrow \min$$

$$\sum_i \sum_k |x_i^k - m^k| \rightarrow \min$$

$$\left(\sum_i \sum_k |x_i^k - m^k| \right)'_{m^k} = 0$$

$$\left(\sum_{\substack{i \\ x_i^k > m^k}} \sum_k (x_i^k - m^k) - \sum_{\substack{i \\ x_i^k < m^k}} \sum_k (x_i^k - m^k) \right)'_{m^k} = 0$$

$$- \sum_{i, x_i^k > m^k} 1 + \sum_{i, x_i^k < m^k} 1 = 0$$

What is the mean point in L1 space?

$$\sum_i \sum_k \|x_i^k - m^k\|_{L1} \rightarrow \min$$

$$\sum_i \sum_k |x_i^k - m^k| \rightarrow \min$$

$$\left(\sum_i \sum_k |x_i^k - m^k| \right)'_{m^k} = 0$$

$$\left(\sum_{\substack{i \\ x_i^k > m^k}} \sum_k (x_i^k - m^k) - \sum_{\substack{i \\ x_i^k < m^k}} \sum_k (x_i^k - m^k) \right)'_{m^k} = 0$$

$$- \sum_{i, x_i^k > m^k} 1 + \sum_{i, x_i^k < m^k} 1 = 0$$

$$\#\{x_i^k < m^k\} = \#\{x_i^k > m^k\}$$

What is the mean point in L1 space?

$$\sum_i \sum_k \|x_i^k - m^k\|_{L1} \rightarrow \min$$

$$\sum_i \sum_k |x_i^k - m^k| \rightarrow \min$$

$$\left(\sum_i \sum_k |x_i^k - m^k| \right)'_{m^k} = 0$$

$$\left(\sum_{\substack{i \\ x_i^k > m^k}} \sum_k (x_i^k - m^k) - \sum_{\substack{i \\ x_i^k < m^k}} \sum_k (x_i^k - m^k) \right)'_{m^k} = 0$$

$$- \sum_{i, x_i^k > m^k} 1 + \sum_{i, x_i^k < m^k} 1 = 0$$

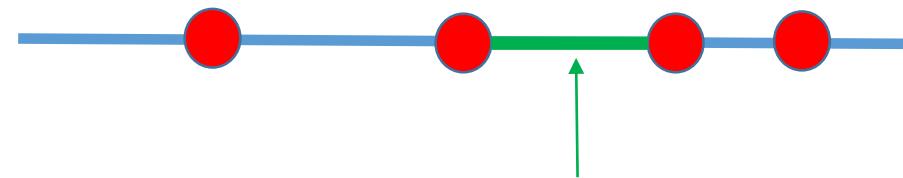
$$\#\{x_i^k < m^k\} = \#\{x_i^k > m^k\}$$

This is definition of median value!
Mean value in L1 space - **medoid**

What is the mean point in L1 space?

$$\sum_i \sum_k \|x_i^k - m^k\|_{L1} \rightarrow \min$$

$$\sum_i \sum_k |x_i^k - m^k| \rightarrow \min$$

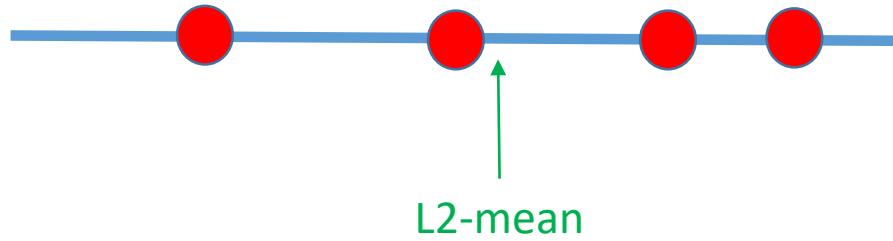

$$\left(\sum_i \sum_k |x_i^k - m^k| \right)'_{m^k} = 0$$

$$\left(\sum_{\substack{i \\ x_i^k > m^k}} \sum_k (x_i^k - m^k) - \sum_{\substack{i \\ x_i^k < m^k}} \sum_k (x_i^k - m^k) \right)'_{m^k} = 0$$

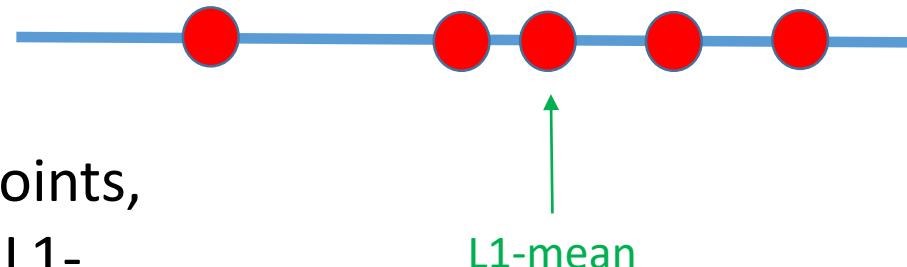
$$- \sum_{i, x_i^k > m^k} 1 + \sum_{i, x_i^k < m^k} 1 = 0$$

$$\#\{x_i^k < m^k\} = \#\{x_i^k > m^k\}$$

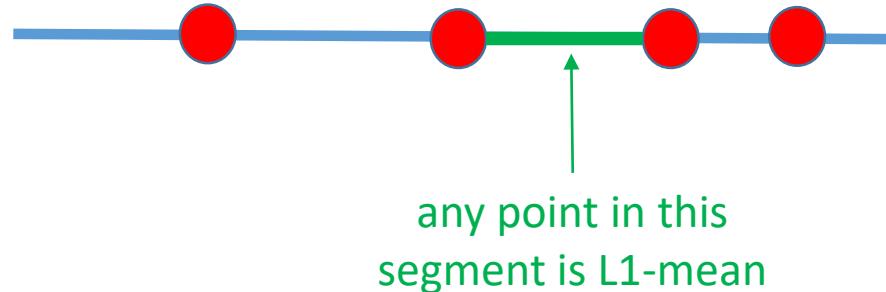
For even number of data points,
there is infinite number of L1-means

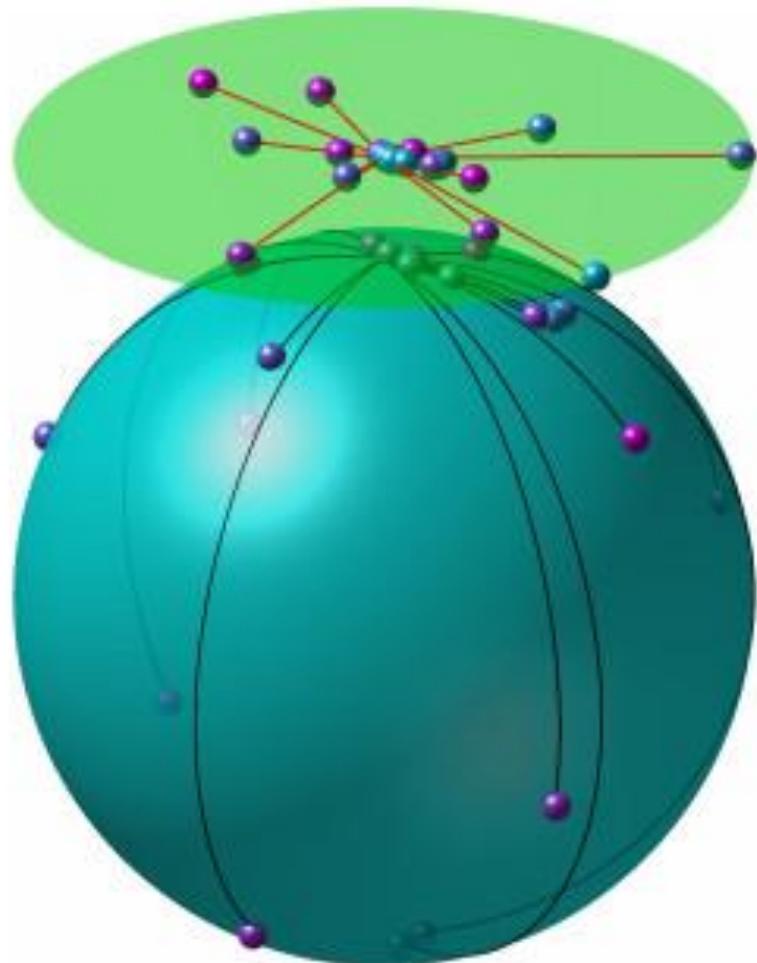


any point in this
segment is L1-mean


This is definition of median value!
Mean value in L1 space - **medoid**

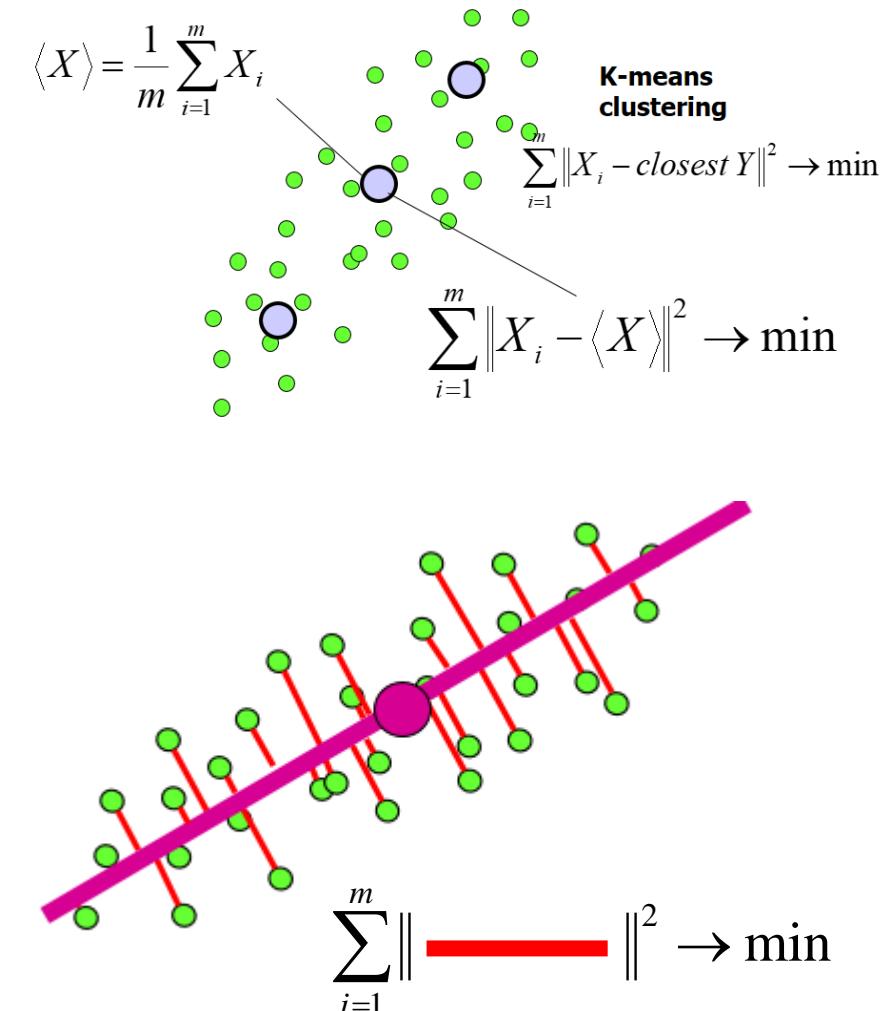
What is the mean point in L1 space?


Mean in Euclidean distance is unique


For odd number of data points, L1-mean is also unique

For even number of data points, there is infinite number of L1-means

Mean point on Riemann surface (e.g., sphere)


The distance is the length of the shortest path – of geodesics

Formula $m = \arg \min_{p \in M} \sum_{i=1}^N d^2(p, x_i)$

still holds!

Important generalizations of the mean point notion

- Mean value = best approximation of the data point cloud with **single object of zero dimension** (point)
- Best approximation of the data point cloud with **multiple objects of zero dimension** = *k-means clustering* (also called *k principal points*)
- Best approximation of the data point cloud with **multiple objects of zero dimension** in L1-space = *k-medoids clustering*
- Best approximation of the data point cloud with **single object of dimension 1** = *first principal component*

