Fundamentals of Al
Introduction and the most basic concepts

Part 3. The notion of probability
distribution, probability density
function (PDF))




Disclaimer

* The amount of material related to probability distributions
and probability densities is enormous

* This is (really!) the heart of the statistical learning theory

* Here we will just scratch the surface which will be necessary
for introducing some of the machine learning methods later

* Words that should become familiar after the lecture:
conditional independence, likelihood, probability density,
naive Bayes assumption, Bayesian networks, kernel density
estimate, conditional distributions



Joint Probability Distribution

* Probability of any combination of features to
happen

‘Banana-shaped probability
distribution’

* Fundamental assumption: dataset is i.i.d.
(Independent and identically distributed) sample
following PDF

* If we know PDF underlying our dataset then we
can predict everything (any dependence,
together with uncertainties)!

* Moreover, knowing PDF we can generate infinite
number of similar datasets with the same or X

different number of points Probability density function (PDF)
f(z,y) = exp (—TU — L(y+ Ba? — 1()()3)'-’)

* Really Platonian thing!



What is Likelihood?

Very generally likelihood is the probability that a given data point cloud
is sampled from a given joint probability distribution.

Usually, it works with probability distributions defined by analytical
functions with some parameters (statistical model)

Then it is the is the goodness of fit of a statistical model to a sample of
data for given values of the unknown parameters

L(O]|z)=pg(x) = Pp(X = x)

Calculations of Likelihood can deal with very small numbers, so it is
convenient to work with log-likelihood: main tool in probabilistic
approach to machine learning



Describing joint probability distribution

*Discrete variables : tabulations, histograms

* Continuous variables: Probability Density
Function (PDF)

* Mixed type data : combining two
representations



Short reminder on probability theory

 probability theory is simple in the case of discrete variables

* Ais a Boolean-valued random variable if A denotes an event,
and there is some degree of uncertainty as to whether A
occurs.

* Examples
* A=The US president in 2023 will be male
* A = You wake up tomorrow with a headache
* A =You have COVID



Probabilities

* We write P(A) as “the fraction of possible worlds in
which Ais true”

* We could at this point spend 2 hours on the
philosophy of this.

 But we won'’t.



Visualizing A

Event space of

all possible —™——
worlds

P(A) = Area of
reddish oval

/

Ilts areais 1
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The Axioms of Probability

e0<=P(A)<=1

*P(True) =1

* P(False) =0

* P(A or B) =P(A) + P(B) - P(A and B)




Interpreting the axioms

0<=PA) <=1

P(True) = 1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)

The area of A can't get
any smaller than 0

And a zero area would
mean no world could
ever have A true




Interpreting the axioms

0<=PA) <=1

P(True) =1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)

The area of A can't get
any bigger than 1

And an area of 1 would
mean all worlds will have
A true




Interpreting the axioms

0 <=PA) <=1

P(True) =1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)
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Interpreting the axioms

0 <=PA) <=1

P(True) =1

P(False) = 0

P(A or B) = P(A) + P(B) - P(A and B)

P(Aand B

L

Simple addition and subtraction
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These Axioms are Not to be Trifled With

* There have been attempts to do different methodologies for
uncertainty
* Fuzzy Logic
* Three-valued logic
* Dempster-Shafer
* Non-monotonic reasoning

* But the axioms of probability are the only system with this property:

If you gamble using them you can’t be unfairly exploited by an opponent using
some other system [di Finetti 1931]



*All this was just elementary applications of
basic set theory

*The actual probability theory starts from the
notion of conditional probability and
conditional independence!



Conditional Probability

* P(A|B) = Fraction of worlds in which B is true that also
have A true

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10

F
) P(F) = 1/40
)

P(H|F) = 1/2
}H

“Headaches are rare and flu is
rarer, but if you’re coming down
with ‘flu there’s a 50-50 chance
you’ll have a headache.”




Conditional Probability

P(H|F) = Fraction of flu-inflicted worlds in
which you have a headache

F
D = #worlds with flu and headache

|

H = “Have a headache”
F = “Coming down with Flu

} H #Hworlds with flu

= Area of “H and F” region

”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2



Definition of Conditional Probability

P(A 4 B)
P(A[B) = ---mmmmmmm-
P(B)

Corollary: The Chain Rule
P(A " B)=P(A|B) P(B)
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Bayes rule

P(AAB) P(A|B)P(B)
(Y T —
P(A) P(A)

Bayes, Thomas (1763) An essay towards
solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal
Society of London, 53:370-418
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The Joint Distribution

Example: Boolean
variables A, B, C

Recipe for making a joint distribution A & : "rob
of M variables: - : : o
3 0 1 0.05
1. Make a truth table listing all Z : ? E;c
combinations of values of your 1 - ] ,::,
variables (if there are M Boolean 1 - 1 T
variables then the table will have 1 1 . 025
M rows). 1 1 1 0.10

2. For each combination of values,

say how probable it is. -
3. If you subscribe to the axioms of / 0.05 \

probability, those numbers must \ 01 |
sum to 1. \ 45 /GEH o/

I -

o
=
wn

%\J_-ﬂi_-f/

0.30

Copyright & 2001, Andrew W. Moare Bayes Mats: Shde 35




Using the
Joint

P(Poor Male) = 0.4654

Copyright & 2001, Andrew W. Moare

gender hours_worked weallh
Female w0405 poor 0.253122
Heh  0.0245895 |
v1:40 5+ poor 00421768 |
ich  0.0116293 |
Male  vD:40.5- poor  0.231313 W
veh  0.0971295 [N
V140 5+ poor  0.134106 I
rich 0108923 |
P(E)= > P(row)

rows matching E
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gender hours_worked wealth

Inference Female wv0:40.5- poor 0.253122
. reh  0.0245835 |
W Ith the w1405+ poor 00421768 [}

" ich  0.0116293 1
JOInt Male w0405 poor 0331313 |
veh  0.0971295 [N
w1405+ poor 0134106 |
rich  0.108933 |

> P(row)
P(E | E ): P(E1 A Eg) _ rows matching E; and E;
o P(E,) > P(row)

rows matching E,
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gender hours_worked weallh

| n fe re n C e Female v0:40.5 poor  0.253122 NINGEEEE
- rich  0.0245835 i
W Ith th e v1:40 5+ poor 00421768 B}
rich 0.0116293 |

J 0 I nt @ale v0:40 5 _poor_0.331313 _

rich 0.0971295 N

f
( vi#05+  poor 0134106 DN

rich  0.105933 [N

> P(row)

. P(El A El) _ rows matching E) and B,

P(E,) > P(row)

rows matching E,

P(Male | )=0.46534/0.7604 =0.612
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Joint distributions

+ Good news
Once you have a joint

» Bad news
Impossible to create

distribution, you can
ask important
questions about
stuff that involves a
lot of uncertainty
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for more than about
ten attributes
because there are
SO many numbers
needed when you
build the damn
thing.
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