Fundamentals of Al
Introduction and the most basic concepts

Probability Density Function (PDF)




Joint Probability Distribution

* Probability of any combination of features to
happen

‘Banana-shaped probability
distribution’

* Fundamental assumption: dataset is i.i.d.
(Independent and identically distributed) sample
following PDF

* If we know PDF underlying our dataset then we
can predict everything (any dependence,
together with uncertainties)!

* Moreover, knowing PDF we can generate infinite
number of similar datasets with the same or X

different number of points Probability density function (PDF)
f(z,y) = exp (—TU — L(y+ Ba? — 1()()3)'-’)

* Really Platonian thing!



Probability Density Function

* PDF is a way to define joint probability distribution for
features with continuous (numerical) values

* Can immediately get us Bayesian methods that are sensible
with real-valued data

* You’ll need to intimately understand PDFs in order to do
kernel methods, clustering with Mixture Models, analysis of
variance, time series and many other things

* Will introduce us to linear and non-linear regression



Example of a 1D PDF
A PDF of American Ages in 2000




Example of a 1D PDF

A PDF of American Ages in 2000
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Let X be a continuous random
variable.

If p(x) is a Probability Density
Function for X then...

P(a <X< b)= jlp(x)alx

P(3O <Age< 50 jp(age)dage

age=30

=0.36



What’s the meaning of p(x)?

If
p(5.31) =0.06 and p(5.92) =0.03

then

when a value X is sampled from the distribution, you are 2 times
as likely to find that X is “very close to” 5.31 than that X is “very
close to” 5.92.



True or False?

vX: p(x) <1l TRUE

vX:P(X=x)=0 TRUE



Expectations (aka mean value)

E[X] = the expected value of random
variable X

plage}

= the average value we’d see if we
took a very large number of random
samples of X

= Tx pP(x) dx

X=—00
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Expectations
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E[X] = the expected value of random
variable X

= the average value we’d see if we
took a very large number of random
samples of X

= Tx pP(x) dx

X=—00
= the first moment of the shape

formed by the axes and the blue
curve

= the best value to choose if you
must guess an unknown person’s age
and you’ll be fined the square of
your error



Variance

o? = Var[X] = the
expected squared

difference between x
and E[X]
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o® = [ (x=u)* p(x)dx

X=—00

= amount you’d expect to lose if you
must guess an unknown person’s age
and you’ll be fined the square of
your error, and assuming you play
optimally



Standard Deviation

o2 = Var[X] = the
expected squared
plage}

difference between x
and E[X]
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ot = [(x— )’ ()

X=—00

= amount you’d expect to lose if you
must guess an unknown person’s age
and you’ll be fined the square of
your error, and assuming you play
optimally

o = Standard Deviation = “typical”
deviation of X from its mean

o =+/Var[X]



In 2

dimensions

density values:

weight 5000
4500
4000
3500
3000
2500

2000

density <= 8e-006

10
mpg

2.1e-005 <= density < 3.4e-005

3.4e-005 < density

8e-006 <= density < 2.1e-005

16 20 25 30 35 40 45

p(x,y) = probability density of
random variables (X,Y) at location
(x,y)




In 2

Let X,Y be a pair of continuous random variables, and
let R be some region of (X,Y) space...

dimensions

P((X,Y)eR)=[[ p(x, y)dydx

density values:

2.1e-005 <= density < 3.4e-005 ()(, y)e R

density <= 8e-006
8e-006 <= density < 2.1e-005
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H
T
- + 4 .
1 E.
4500 - il
+
E T
-t
HE R
— +
+ + . +
A
4000 .1 K8 |
M !o v
.
. ot
: .
| gk
3500 LIRS
.
.
.....
L -
“
- ot .
-
3000 i P AR
'l P
I da, tat
= 1 i’;’ -~
-+ +,=¥.,‘ .
— R T P
2500 SRS VR
- P
. 1 o! P g V‘
e gt Ter t
P ) .
2000 - o
*
- . 1

10 15 20 25 30 35 40 45
mpg
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area under the 2-d surface within the
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Independence
X LY It VX, y:p(Xx y) = p(x)p(y)

weight

density values:

5000

4500

4000
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2.1e-005 <= density < 3.4e-005

density <= 8e-006 3.4e-005 < density
8e-006 <= density < 2.1e-005

10 15 20 25 30 35 40 45
mpg

If X and Y are independent then
knowing the value of X does not help
predict the value of Y




Independence
X LY It VX, y:p(Xx y) = p(x)p(y)

density values: 3.16228e-007 <= density < 1e-005

density <= 3.16228e-007 1e-005 < density If X and Y are independent then

knowing the value of X does not help
predict the value of Y
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Multivariate Expectation

px = E[X]= | x p(x)dx

density values: 2.1e-005 <= density < 3.4e-005

density <= 8e-006
8e-006 <= density < 2.1e-005
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Marginal Distributions

density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006

8e-006 <= density < 2.1e-005
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p(mpg | weight = 4600)

Conditional
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p(mpg | weight = 4600)
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Conditional
Distributions

density values:
density <= 8e-006
8e-006 <= density < 2.1e-005

weight 5000 ¢

p(x]y) =

A

p(Y)
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Gaussian (normal) distribution

* The most used PDF

* Most of the classical statistical learning theory is based on Gaussians
* Connection to the mean-squared loss

e Connection with linearity

* Connection with Euclidean space

e Connection to a mean of (many) independent variables

* Distribution with the largest entropy among all distributions with unit
variance

* Mixture of Gaussians can approximate (almost) everything



Gaussian (normal) distribution

R
* The most used PDF ((\\)\\\
 Most of the classical statistical Iearnirv' O\)‘ . on Gaussians
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* Mix .>sians can approximate (almost) everything



ne dataset is a finite set of points.
ne PDF is continuous. How this is possible?

density values: 2.1e-005 <= density < 3.4e-005
density <= 8e-006
8e-006 <= density < 2.1e-005
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Learning PDF from data

 Part of unsupervised machine learning
* Histograms and multi-dimensional histograms

Histogram of Multimodal
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* Naive Bayes : P(X,Y,Z,T) = P(X)P(Y)P(Z)P(T)
e Bayesian networks, graphical models
* Kernel density estimate



Estimating PDF from data: Kernel Density
Estimate

On every data point x;, we place a kernel function K. The kernel
density estimate is

lN
NZK}C x,

=1

e Data

https://www.youtube.com/watch?v=gPWsDh59zdo



Estimating PDF from data: Kernel Density
Estimate

On every data point x;, we place a kernel function K. The kernel

density estimate is
N

ZK(x—x,-).

A 1
flx)= N
i—1

--- Kernel
e Data

https://www.youtube.com/watch?v=gPWsDh59zdo



Estimating PDF from data: Kernel Density
Estimate

On every data point x;, we place a kernel function K. The kernel
density estimate is

1N
:NZK.X X;

i=1

--- Kernel
e Data

https://www.youtube.com/watch?v=gPWsDh59zdo



Estimating PDF from data: Kernel Density
Estimate

On every data point x;, we place a kernel function K. The kernel
density estimate is

1N
:NZK.X X;

i=1

--- Kernel
e Data

https://www.youtube.com/watch?v=gPWsDh59zdo



Estimating PDF from data: Kernel Density
Estimate

On every data point x;, we place a kernel function K. The kernel
density estimate is

lN
_N>_: x—x).

-=-- Kernel
e Data

https://www.youtube.com/watch?v=gPWsDh59zdo



Estimating PDF from data: Kernel Density
Estimate

On every data point x;, we place a kernel function K. The kernel
density estimate is

1 N
I\
= 2 K(x—x;).
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---- Kernel
e Data
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Estimating PDF from data: Kernel Density
Estimate

On every data point x;, we place a kernel function K. The kernel
density estimate is

1 N
A
=N 2 K(x—x;).
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---- Kernel
e Data
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Estimating PDF from data: Kernel Density
Estimate

On every data point x;, we place a kernel function K. The kernel
density estimate is

7 [ &
:NZ X — X,

--- Kernel
— KDE
e Data




Estimating PDF from data: Kernel Density
Estimate

--—- Kernel
—— KDE
e Data




Estimating PDF from data: Kernel Density
Estimate

--—- Kernel
—— KDE
e Data




Estimating PDF from data: Kernel Density
Estimate

--—- Kernel
— KDE
e Data




Estimating PDF from data: Kernel Density
Estimate

--—- Kernel
— KDE
e Data




Estimating PDF from data: Kernel Density
Estimate

The kernel function K is typically

*+ everywhere non-negative: K(x) > 0 for every x
+ symmetric: K(x) = K(—x) for every x
* decreasing: K'(x) <0 for every x > 0.

Gaussian Box Tri Triweight

VAN/ENE|VAN[VAN




The triangular kernel (or linear kernel) is given by

f(x) ec max (1 —|x[.0). -

-=-=-- Kernel
—_— KDE (]

e Data




Estimating PDF from data: Kernel Density

Estimate
Choice of bandwidth

Too narrow

Wide

—— KDE

—— KDE




d-dimensional case

An approach to d-dimensional estimates is to write

X—X N
hdZw, (H il ): where Y w; = 1.
h i=1

'box', 2-norm 'tri', 2-norm
'‘biweight', 2-norm ‘gaussian’, 2-norm

L &



As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

N =10 data points
Norm p=2 Norm p=3 Norm p =inf




What to take from this lesson

* Probability density function (PDF) is the right way to describe the
joint probability distribution of continuous numerical features

Good news:

* Knowing PDF gives us all necessary information about the data

* There are ways to estimate PDF directly from data in non-
parameteric way (KDE)

Bad news:

* In data spaces with high intrinsic dimension (not equivalent to the
number of features!), PDF can not be computed from data in any
reasonable form



