
Introduction and the most basic concepts

Fundamentals of AI

Probability Density Function (PDF)



Joint Probability Distribution
• Probability of any combination of features to 

happen

• Fundamental assumption: dataset is i.i.d. 
(Independent and identically distributed) sample 
following PDF

• If we know PDF underlying our dataset then we 
can predict everything (any dependence, 
together with uncertainties)! 

• Moreover, knowing PDF we can generate infinite 
number of similar datasets with the same or 
different number of points

• Really Platonian thing!

‘Banana-shaped probability
distribution’

Probability density function (PDF)



Probability Density Function

• PDF is a way to define joint probability distribution for 
features with continuous (numerical) values

• Can immediately get us Bayesian methods that are sensible 
with real-valued data

• You’ll need to intimately understand PDFs in order to do 
kernel methods, clustering with Mixture Models,  analysis of 
variance, time series and many other things

• Will introduce us to linear and non-linear regression



Example of a 1D PDF



Example of a 1D PDF



What’s the meaning of p(x)?

If 

p(5.31) = 0.06 and p(5.92) = 0.03

then 

when a value X is sampled from the distribution, you are 2 times 
as likely to find that X is “very close to” 5.31 than that X is “very 
close to” 5.92.



True or False?
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Expectations (aka mean value)
E[X] = the expected value of random 
variable X

= the average value we’d see if we 
took a very large number of random 
samples of X
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Expectations
E[X] = the expected value of random 
variable X

= the average value we’d see if we 
took a very large number of random 
samples of X
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= the first moment of the shape 
formed by the axes and the blue 
curve

= the best value to choose if you 
must guess an unknown person’s age 
and you’ll be fined the square of 
your error

E[age]=35.897



Variance
s2 = Var[X] = the 
expected squared 
difference between x 
and E[X] 
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= amount you’d expect to lose if you 
must guess an unknown person’s age 
and you’ll be fined the square of 
your error, and assuming you play 
optimally02.498]age[Var 



Standard Deviation
s2 = Var[X] = the 
expected squared 
difference between x 
and E[X] 
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= amount you’d expect to lose if you 
must guess an unknown person’s age 
and you’ll be fined the square of 
your error, and assuming you play 
optimally

s = Standard Deviation = “typical” 
deviation of X from its mean
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In 2 
dimensions

p(x,y) = probability density of 
random variables (X,Y) at location 

(x,y)



In 2 
dimensions

Let X,Y be a pair of continuous random variables, and 
let R be some region of (X,Y) space…
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P( 20<mpg<30 and
2500<weight<3000) =

area under the 2-d surface within the 
red rectangle



Independence

If X and Y are independent then 
knowing the value of X does not help 

predict the value of Y

)()(),( :yx, iff ypxpyxpYX 

mpg,weight NOT independent



Independence

If X and Y are independent then 
knowing the value of X does not help 

predict the value of Y

)()(),( :yx, iff ypxpyxpYX 

the contours say that acceleration 
and weight are independent



Multivariate Expectation
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The centroid of the cloud

E[mpg,weight] =
(24.5,2600)



Marginal Distributions
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Conditional 
Distributions
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Conditional 
Distributions
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Why?



Gaussian (normal) distribution

• The most used PDF

• Most of the classical statistical learning theory is based on Gaussians

• Connection to the mean-squared loss

• Connection with linearity

• Connection with Euclidean space

• Connection to a mean of (many) independent variables

• Distribution with the largest entropy among all distributions with unit 
variance

• Mixture of Gaussians can approximate (almost) everything



Gaussian (normal) distribution

• The most used PDF
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variance

• Mixture of Gaussians can approximate (almost) everything



The dataset is a finite set of points.
The PDF is continuous. How this is possible?



Learning PDF from data
• Part of unsupervised machine learning

• Histograms and multi-dimensional histograms

• Naïve Bayes : P(X,Y,Z,T) = P(X)P(Y)P(Z)P(T)

• Bayesian networks, graphical models

• Kernel density estimate



Estimating PDF from data: Kernel Density 
Estimate

https://www.youtube.com/watch?v=gPWsDh59zdo
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Estimating PDF from data: Kernel Density 
Estimate





Estimating PDF from data: Kernel Density 
Estimate
Choice of bandwidth

Too narrow Wide



d-dimensional case





What to take from this lesson

• Probability density function (PDF) is the right way to describe the 
joint probability distribution of continuous numerical features

Good news:

• Knowing PDF gives us all necessary information about the data

• There are ways to estimate PDF directly from data in non-
parameteric way (KDE)

Bad news:

• In data spaces with high intrinsic dimension (not equivalent to the 
number of features!), PDF can not be computed from data in any 
reasonable form


