Fundamentals of Al
Clustering

K-means, the oldest clustering algorithm
MacQueen, 1967; Steinhaus, 1956; Loyd, 1957




Let us introduce a simple notion: Voronoi cell

Examples of Voronoi
decomposition. 1




Examples of Voronoi
decomposition. 2




K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5)
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K-means

1.

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations
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K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints)
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K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints)
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K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns

Copyright © 2001, 2004, Andrew W.

Auton’s Graphics

R

0.b

0.4

0.2

W)




K-means

1.

6.

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!
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K-means
Start

Advance apologies: in
Black and White this
example will deteriorate

Example generated by
Dan Pelleg’s super-duper
fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometlric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999,

(KDDS99) (available on
www.autonlab.org/pap.html)
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K-means
continues
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K-means
continues
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K-means
continues
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K-means
continues
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K-means
continues
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K-means
continues
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K-means
continues
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K-means

terminates

2004, Andrew W.
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K-means Questions

* What is it trying to optimize?

* Are we sure it will terminate?

* Are we sure it will find an optimal clustering?

* How should we start it?

* How could we automatically choose the number of centers?



What is it trying to optimize?  XJ——[-m

1-Mean




What is it trying to optimize?  XJ——[-m

1-Mean 2-Mean




Self-consistency, principal points




K-means as data encoder™

Given..

ean encoder function: ENCODE : SR™ — [1..k]
ea decoder function: DECODE : [1..k] > R™

Define...
R

Distortion = » (X, — DECODE[ENCODE(X;)])
=1

*This formulation is good for building a neural network!



Distortion

m
2 .
. | —> MIN
Given.. ;H H

ean encoder function: ENCODE : R™ — [1..k]
ea decoder function: DECODE : [1..k] — R™

Define...

R

Distortion = » (x, — DECODE[ENCODE(X;)])’
=1

We may as well write

DECODE[ J] =c;

R
so  Distortion = > (X; —Cencope(x))
i=1
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The Minimal Distortion

R
Distortion = Z (X, — CENCODE(xi))Z
=1

What properties must centers ¢, , ¢,, ..., ¢, have when
distortion is minimized?
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The Minimal Distortion (1)

R
- - 2
Distortion = > (X; —Cencope (x))
i=1
What properties must centers ¢, , c,, ..., ¢, have when
distortion is minimized?
(1) x; must be encoded by its nearest center

...why?

, 2
Cencope(x) = argmin (X; _Cj)

c;je{c1.Cy, O }

..at the minimal distortion
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The Minimal Distortion (2)

R
Distortion = Z (X, — CENCODE(xi))Z
=1

What properties must centers ¢, , ¢,, ..., ¢, have when
distortion is minimized?

(2) The partial derivative of Distortion with respect to
each center location must be zero.
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(2) The partial derivative of Distortion with respect to
each center location must be zero.

R
Distortion = Z (X; — CENCODE(xi))Z

=1
K

— Z Z ()( —C. ) OwnedBy(c; ) = the set of
j=1 icOwnedBy(c; )< records owned by Center ;.

oDistortion 0 Z(X' —c)?

8Cj aCj icOwnedBy(c )

= -2 > (x-c))

ieOwnedBY(c; )
= 0 (for a minimum)
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(2) The partial derivative of Distortion with respect to Zm:H
each center location must be zero. i

R
Distortion = Z (X; — CENCODE(Xi))Z

=1
K

- > o)

j=1 ieOwnedBYy(c )

H2 — min

oDistortion 0 Z(X' Y.

8Cj oC j icOwnedBy(c;)

= =2 Z(Xi_Cj)

ieOwnedBY(c; )
= 0 (for a minimum)

1
Thus, at a minimum:  C; = in
| OWﬂEd By(CJ) | ieOwnedBy(c;)
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At the minimum distortion

R
Distortion = Z (X, _CENCODE(xi))Z
=1

What properties must centers ¢, , ¢,, ..., ¢, have when distortion is
minimized?

(1) x; must be encoded by its nearest center

(2) Each Center must be at the centroid of points it owns.
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Improving a suboptimal configuration...

R
Distortion = Z (X, _CENCODE(xi))Z
=1

What properties can be changed for centersc,, ¢c,, ..., ¢, have when
distortion is not minimized?

(1) Change encoding so that x; is encoded by its nearest center
(2) Set each Center to the centroid of points it owns.

Alternate! ...And that’s K-means!

Easy to prove this procedure will terminate in a state at which
neither (1) or (2) change the configuration. Why?
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Improving a suboptimal

There are only a finite number of ways of
groups.
So there are only a finite number of possible configurations in which
What 0 5|l Centers areé the centroids of the points they own.

. |f the configuration changes on an iteration, it must have improved
distortiq the distortion-
So each time the configuration changes it must goto a configuration
it’s never been to before.
5o if it tried o 80 on forever, it would eventually run out of
(2) Set e| configurations.

part'\t'\oning R records into k

b when

(1) Cha

There’s

But it ca
gpre to alternate.

...And that’s K-means!

y

Moore

o neithe
pyright © 2001, 2004, Andrew W. r (1) or (2) Change the Configurat'
10N.



Will we find the optimal
configuration?

* Not necessarily.

e Can you invent a configuration that has converged, but
does not have the minimum distortion?



Will we find the optimal
configuration?

* Not necessarily.

e Can you invent a configuration that has converged, but
does not have the minimum distortion?
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Will we find the optimal
configuration?

* Not necessarily.

e Can you invent a configuration that has converged, but
does not have the minimum distortion?
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Trying to find good optima

* |dea 1: Be careful about where you start

* |[dea 2: Do many runs of k-means, each from a different
random start configuration

* Many other ideas floating around.
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Trying to find good optima

* |dea 1: Be careful about where you start

* |dea 2: D ns of k-means, each from a different
rand '

« Man Neat tr.ick: |

Place first center on top of randomly chosen datapoint.
Place second center on datapoint that’s as far away as
possible from first center

Place j’th center on datapoint that’s as far away as possible
from the closest of Centers 1 through j-1




Common uses of K-means

e Often used as an exploratory data analysis
tool

* In one-dimension, a good way to quantize
real-valued variables into k non-uniform
buckets

e Coarse-graining of big data! (reducing the
effect of outliers)



Pros and Cons of K-means

Relatively efficient: O(tknm)

— n: # objects, k: # clusters, t: # iterations, m:
dimension of data; k, t << n.

Often terminate at a local optimum

Applicable only when mean is defined
— What about categorical data?

Need to specify the number of clusters
Unable to handle noisy data and outliers
unsuitable to discover non-convex clusters



K-medoids or PAM (partitioning around
medoids)

* Arbitrarily choose k objects as the initial medoids

e Until no change, do
—(Re)assign each object to the cluster to which the nearest medoid

—Randomly select a non-medoid object o’, compute the total cost, S, of
swapping medoid o with o’

—If S < 0 then swap o with o’ to form the new set of k medoids

. 7

. mean
medoid outlier




Pros and Cons of PAM

* PAM is more robust than k-means in the presence of
noise and outliers

Medoids are less influenced by outliers

 PAM is efficient for small data sets but does not scale
well for large data sets

O(kn?) for each iteration



Building on top of k-means

* K-lines clustering : centroid is not a
point but a line segment

* Soft or fuzzy k-means: Each point : ,*;@’
can belong to more than one "/
cluster r ool |

* K-means with trimming: points too
distant (>R) from the centroid do
not contribute at a given iteration
to define the new centroid position
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https://realpython.com/k-means-clustering-python/



