
K-means, the oldest clustering algorithm
MacQueen, 1967; Steinhaus, 1956; Loyd, 1957

Clustering

Fundamentals of AI



Let us introduce a simple notion: Voronoi cell
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated!
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K-means 
Start

Advance apologies: in 
Black and White this 
example will deteriorate

Example generated by 
Dan Pelleg’s super-duper 
fast K-means system:

Dan Pelleg and Andrew 
Moore. Accelerating Exact 
k-means Algorithms with 
Geometric Reasoning. 
Proc. Conference on 
Knowledge Discovery in 
Databases 1999, 
(KDD99) (available on 
www.autonlab.org/pap.html)
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K-means 
terminates
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K-means Questions

• What is it trying to optimize?

• Are we sure it will terminate?

• Are we sure it will find an optimal clustering?

• How should we start it?

• How could we automatically choose the number of centers?



What is it trying to optimize?

1-Mean
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What is it trying to optimize?

1-Mean 2-Mean
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Self-consistency, principal points

c2

c1
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K-means as data encoder*

Given..

•an encoder function: ENCODE : m  [1..k] 

•a decoder function: DECODE : [1..k] m

Define…

 



R

i
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2
)]([Distortion ENCODEDECODE xx

*This formulation is good for building a neural network!
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Distortion
Given..

•an encoder function: ENCODE : m  [1..k] 

•a decoder function: DECODE : [1..k] m

Define…

We may as well write


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The Minimal Distortion

What properties must centers c1 , c2 , … , ck have when 
distortion is minimized?
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The Minimal Distortion (1)

What properties must centers c1 , c2 , … , ck have when 
distortion is minimized?

(1) xi  must be encoded by its nearest center

….why?





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The Minimal Distortion (2)

What properties must centers c1 , c2 , … , ck have when 
distortion is minimized?

(2) The partial derivative of Distortion with respect to 
each center location must be zero.



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(2) The partial derivative of Distortion with respect to 
each center location must be zero.

minimum) a(for  0
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OwnedBy(cj ) = the set of 
records owned by Center cj .
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(2) The partial derivative of Distortion with respect to 
each center location must be zero.
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At the minimum distortion

What properties must centers c1 , c2 , … , ck have when distortion is 
minimized?

(1) xi  must be encoded by its nearest center

(2) Each Center must be at the centroid of points it owns.
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Improving a suboptimal configuration…

What properties can be changed for centers c1 , c2 , … , ck have when 
distortion is not minimized?

(1) Change encoding so that xi  is encoded by its nearest center

(2) Set each Center to the centroid of points it owns.

Alternate!  …And that’s K-means!

Easy to prove this procedure will terminate in a state at which 
neither (1) or (2) change the configuration. Why?
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Improving a suboptimal configuration…

What properties can be changed for centers c1 , c2 , … , ck have when 
distortion is not minimized?

(1) Change encoding so that xi  is encoded by its nearest center

(2) Set each Center to the centroid of points it owns.

There’s no point applying either operation twice in succession.

But it can be profitable to alternate.

…And that’s K-means!

Easy to prove this procedure will terminate in a state at which 
neither (1) or (2) change the configuration. Why?
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Will we find the optimal 
configuration?
• Not necessarily.

• Can you invent a configuration that has converged, but 
does not have the minimum distortion?
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Trying to find good optima

• Idea 1: Be careful about where you start

• Idea 2: Do many runs of k-means, each from a different 
random start configuration

• Many other ideas floating around.
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Trying to find good optima

• Idea 1: Be careful about where you start

• Idea 2: Do many runs of k-means, each from a different 
random start configuration

• Many other ideas floating around.
Neat trick:
Place first center on top of randomly chosen datapoint.
Place second center on datapoint that’s as far away as 
possible from first center

:
Place j’th center on datapoint that’s as far away as possible 
from the closest of Centers 1 through j-1

:
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Common uses of K-means

•Often used as an exploratory data analysis 
tool

• In one-dimension, a good way to quantize 
real-valued variables into k non-uniform 
buckets

•Coarse-graining of big data! (reducing the 
effect of outliers)





K-medoids or PAM (partitioning around 
medoids)

• Arbitrarily choose k objects as the initial medoids

• Until no change, do

–(Re)assign each object to the cluster to which the nearest medoid

–Randomly select a non-medoid object o’, compute the total cost, S, of 
swapping medoid o with o’

–If S < 0 then swap o with o’ to form the new set of k medoids



Pros and Cons of PAM

•PAM is more robust than k-means in the presence of 
noise and outliers 

Medoids are less influenced by outliers 

•PAM is efficient for small data sets but does not scale 
well for large data sets

O(kn2) for each iteration



Building on top of k-means

• K-lines clustering : centroid is not a 
point but a line segment

• Soft or fuzzy k-means: Each point 
can belong to more than one 
cluster

• K-means with trimming: points too 
distant (>R) from the centroid do 
not contribute at a given iteration 
to define the new centroid position



https://realpython.com/k-means-clustering-python/


