Fundamentals of Al
Clustering

Hierarchical clustering
First dendrogram : R. Ling, 1973




Hierarchical Clustering

« Group data objects into a tree of clusters
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Dendrogram
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» Show how to merge clusters hierarchically

 Decompose data objects into a multi-level
nested partitioning (a tree of clusters)

A clustering of the data objects: cutting the
dendrogram at the desired level

— Each connected component forms a cluster




xample of dendrogram:
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Heatmap

representation of data
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Dendrogram + Heatmap =
killer application in life sciences!™

*1n 1990-2010s, lost in popularity in the last years



Hierarchical clustering for studying cancer
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Agglomerative algorithm(s)

* Initially, each object is a cluster

 Step-by-step merging of the closest clusters, until all
objects form a single cluster

— One needs to define:

Distance metrics between data points
Distance metrics between groups of data points




Dissimilarity (‘distance’) between clusters
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Example: single linkage, Euclidean distance

1. Say “Every point is its
own cluster”
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Example: single linkage, Euclidean distance
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Example: single linkage, Euclidean distance

. Say "Every point is its

own cluster”

. Find “"most similar” pair
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. Merge it into a parent
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. Repeat



Pros and cons of hierarchical clustering

* |t’s nice that you get a hierarchy instead of an amorphous collection of
groups

* |If you want k groups, just cut the (k-1) longest links
* Clusters can have complex shapes
e Can work with any dissimilarity measure

* There’s no real statistical or information-theoretic foundation to this
* Do not scale well: O(n?) or even O(m?n?)

* Uses complete distance matrix — challenge with memory

* Problem with representation of the dendrogram (leaves order)

* Might be unstable



Problem of leaves ordering is ill-posed
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Hierarchical clustering and dendrograms: leaves order

(b) Eisen’s (a) Optimal

Biedl et al, 2001; Bar-Joseph et al., 2003



Hierarchical clustering and dendrograms: cluster instability

* Hierarchical clustering results can be very sensitive
to a random removal of a small percentage of points
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