

# Fundamentals of AI

## Clustering

# Density-based and graph-based clustering\*

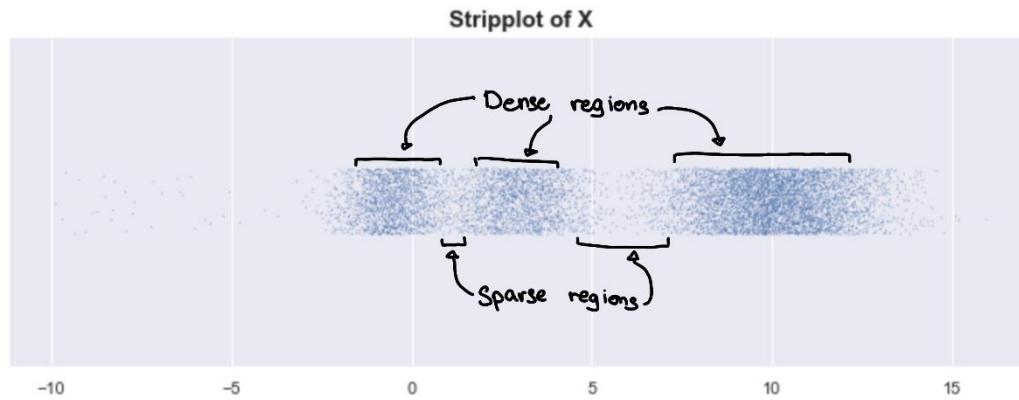
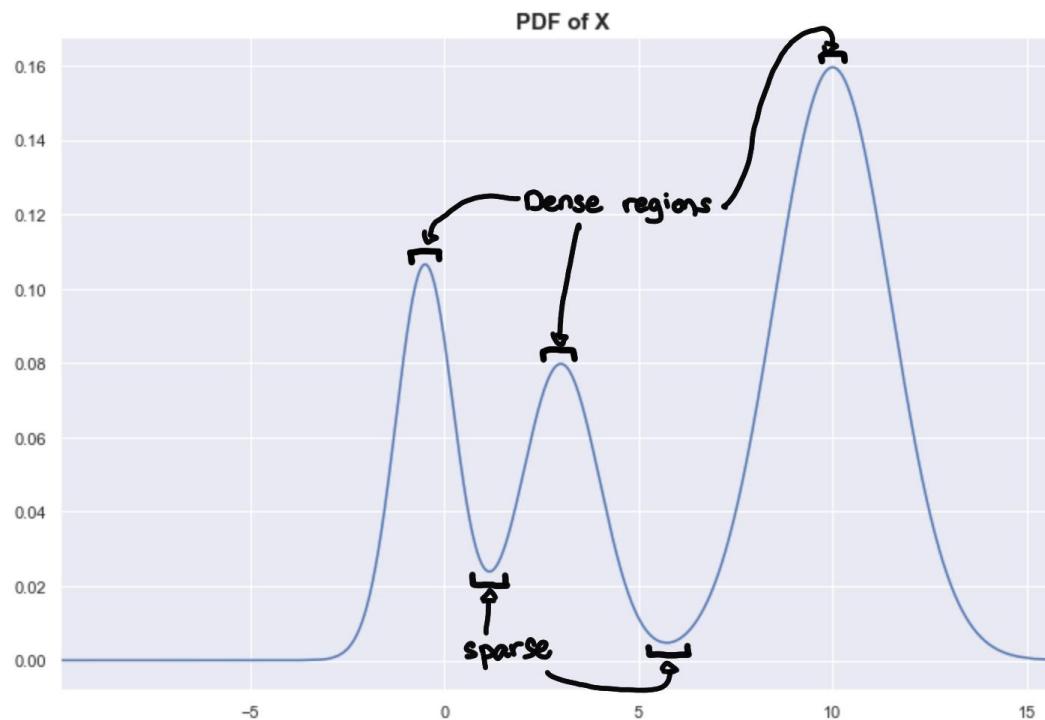
Some images in this lecture are used from: <https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html>

# Distance-based clustering and its limitations

- Hard to find clusters with irregular shapes
- Hard to specify the number of clusters
- Some points are ‘in between’ clusters (outliers or background noise)

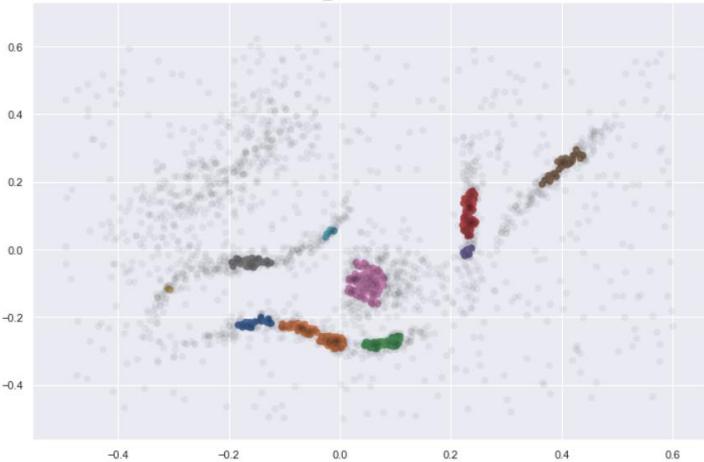
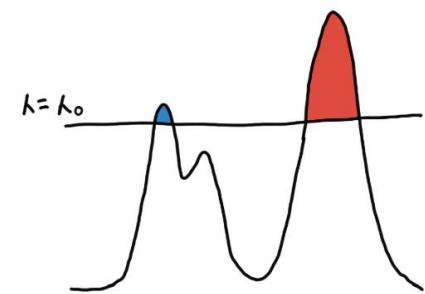


# New concept: cluster as a probability density peak

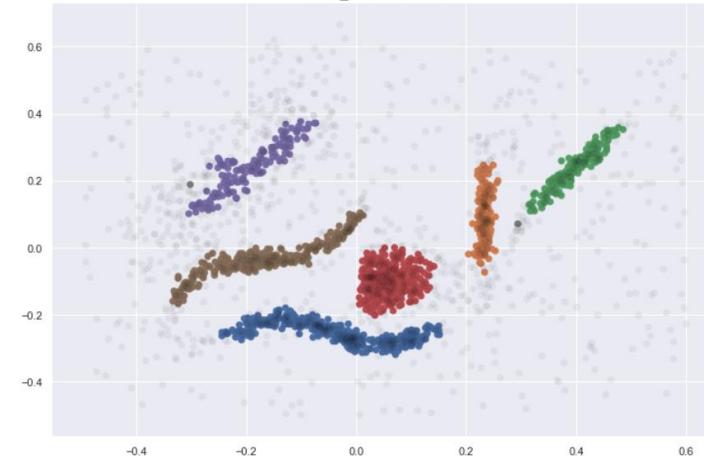
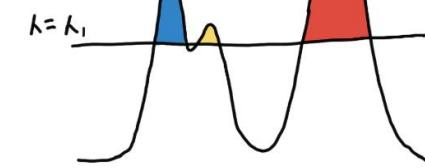


Cool, but how to define PDF in multi-dimensional space?  
Expensive and better to avoid at all

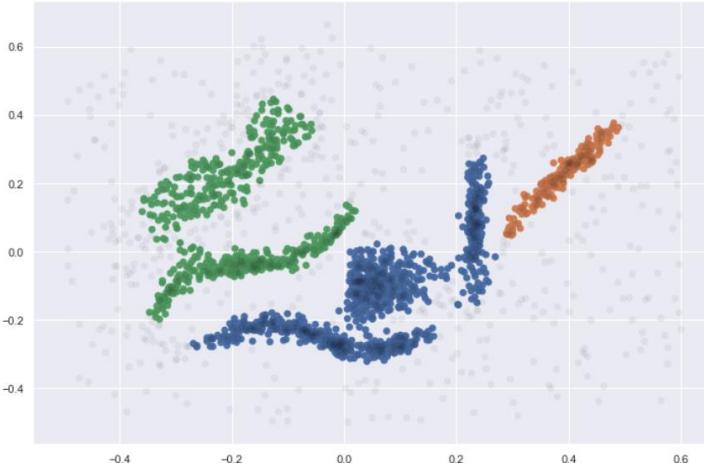
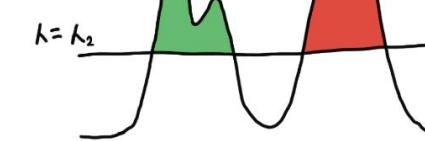
core\_distance  $\leq 0.015$



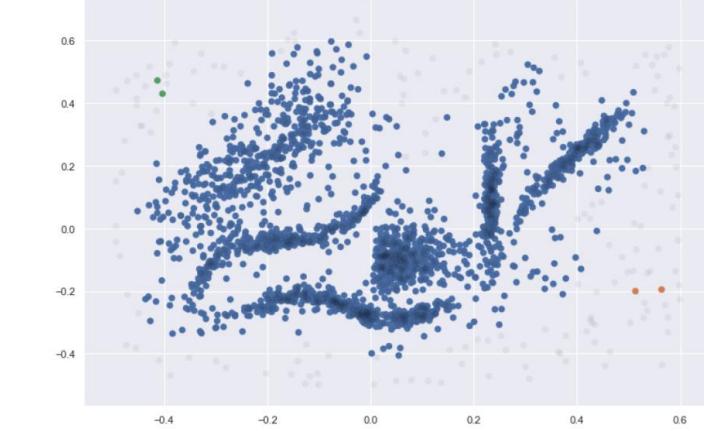
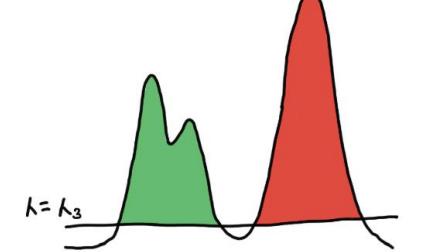
core\_distance  $\leq 0.030$



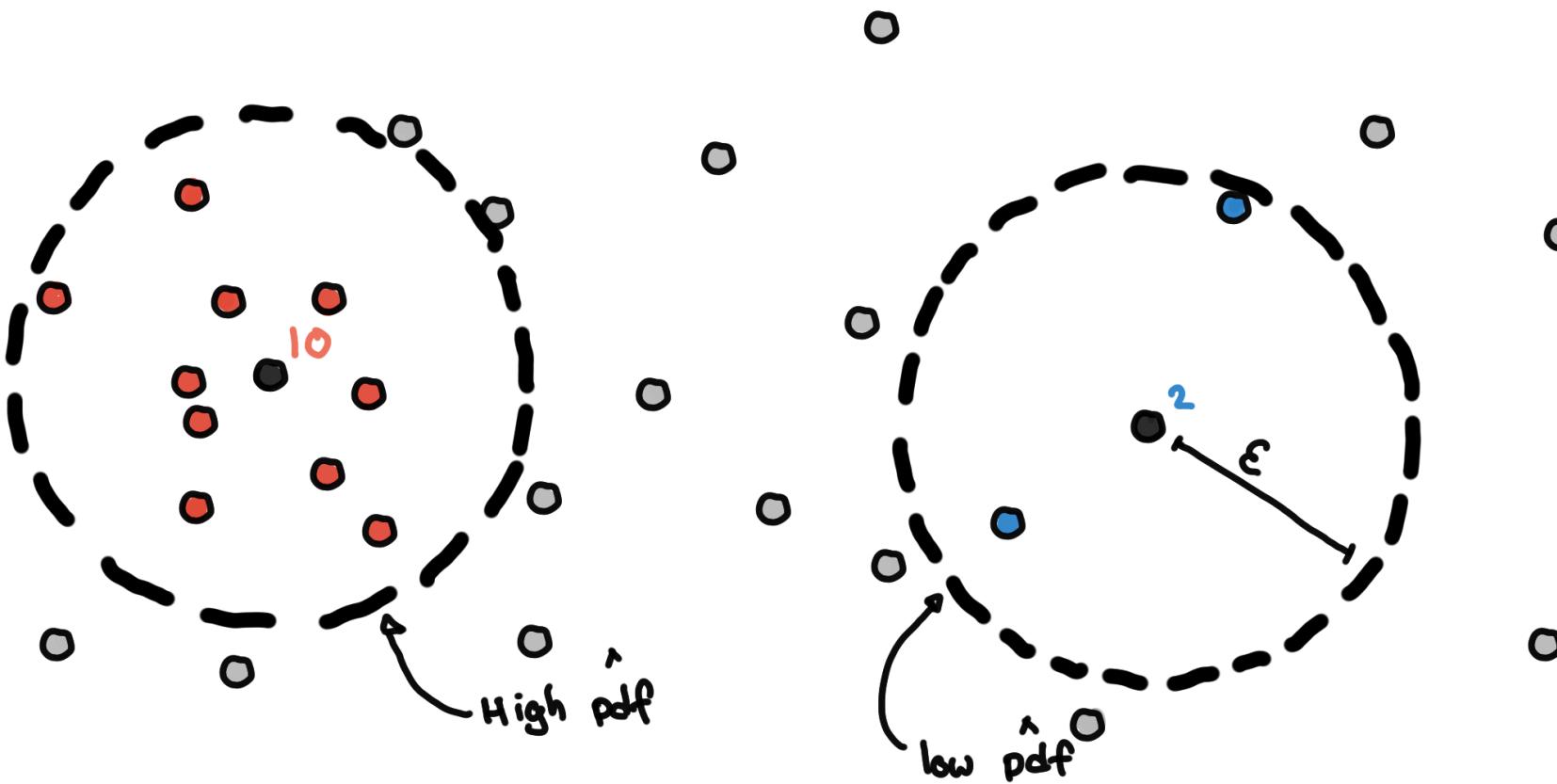
core\_distance  $\leq 0.040$



core\_distance  $\leq 0.100$



Trick: count neighbours within  $\varepsilon$ -radius

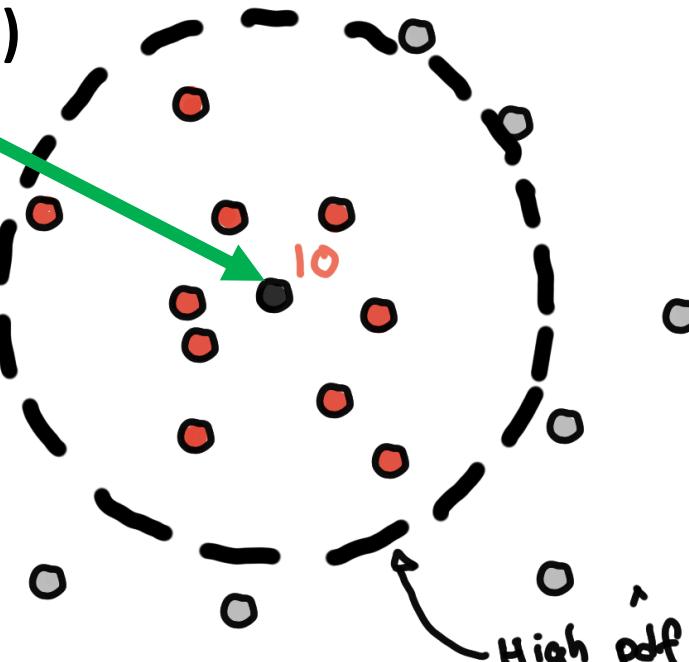
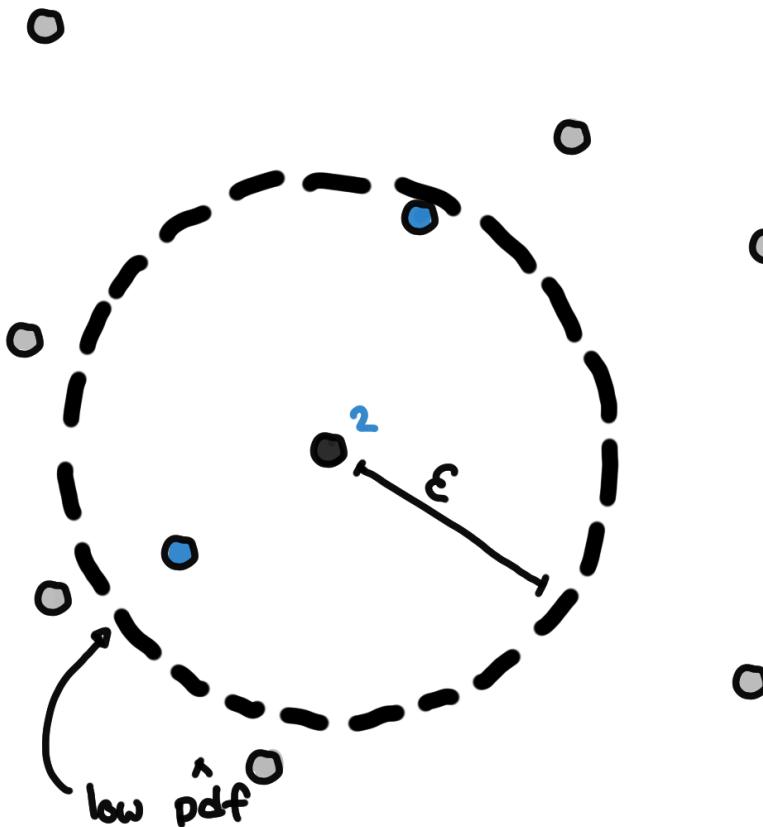


# DBSCAN (Ester et al, 1996)

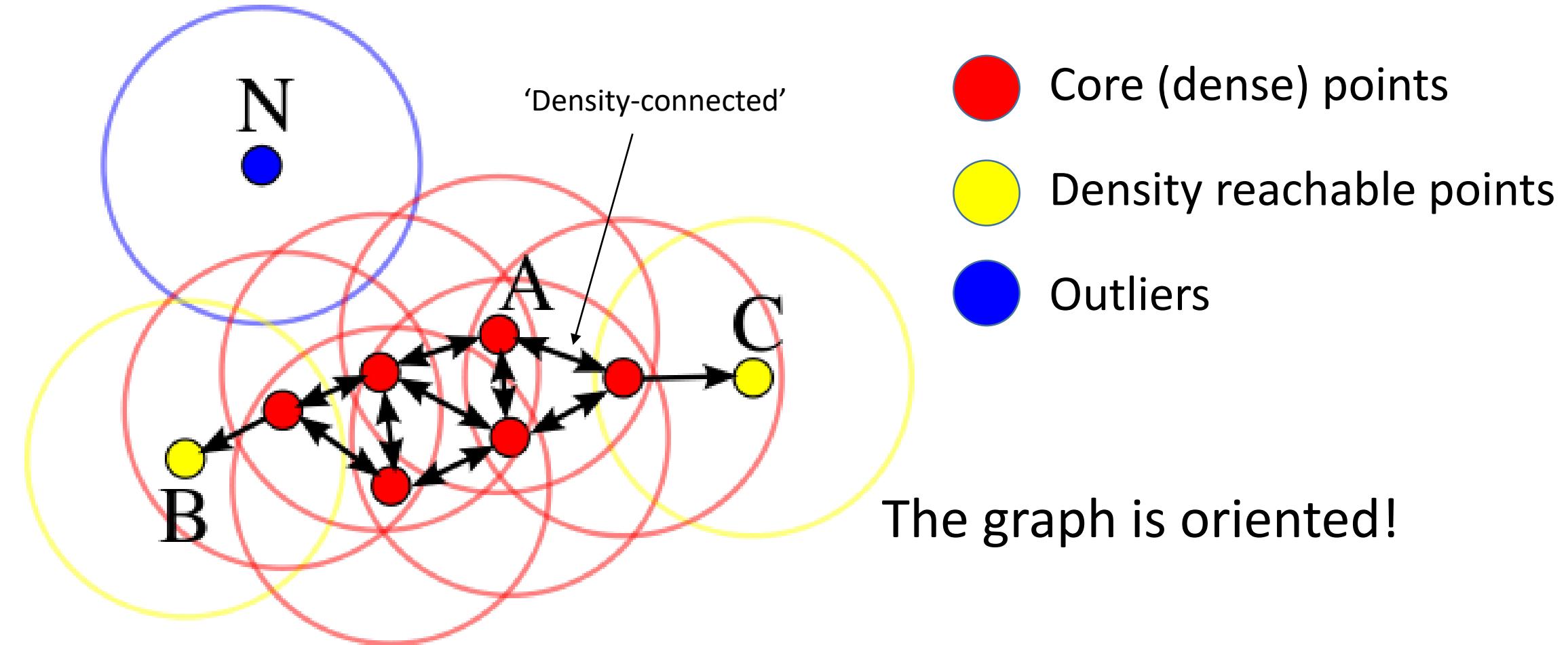
Parameters:  $\epsilon$  and minPts

Core point

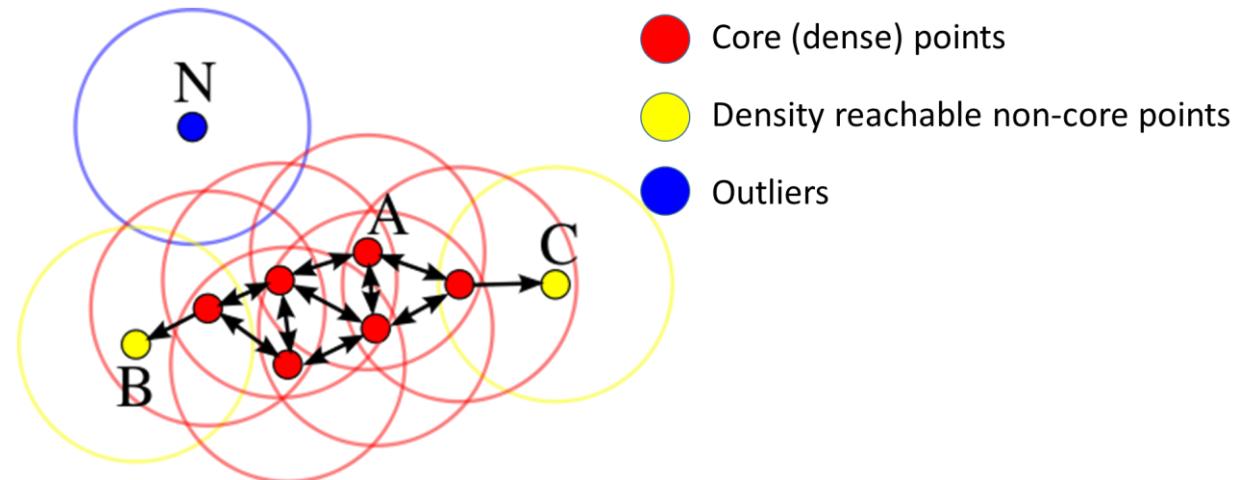
(e.g., minPts=5)



# DBSCAN: graph of core points and density-reachable (peripheral) points



# DBSCAN: graph of core points and density-reachable (peripheral) points



A cluster then satisfies two properties:

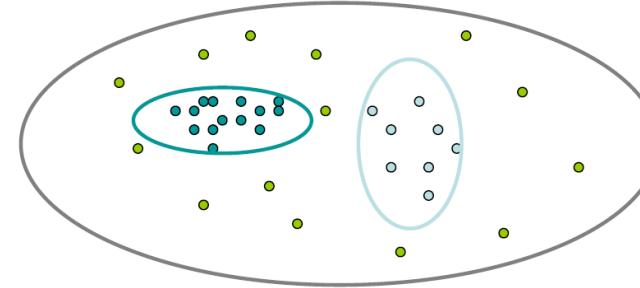
1. All points within the cluster are mutually density-connected.
2. If a point is density-reachable from some point of the cluster, it is part of the cluster as well.

# DBSCAN: the Algorithm

- Arbitrary select a point  $p$
- Retrieve all points density-reachable from  $p$  wrt  $\text{Eps}$  and  $\text{MinPts}$
- If  $p$  is a core point, a cluster is formed
- If  $p$  is a border point, no points are density-reachable from  $p$  and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

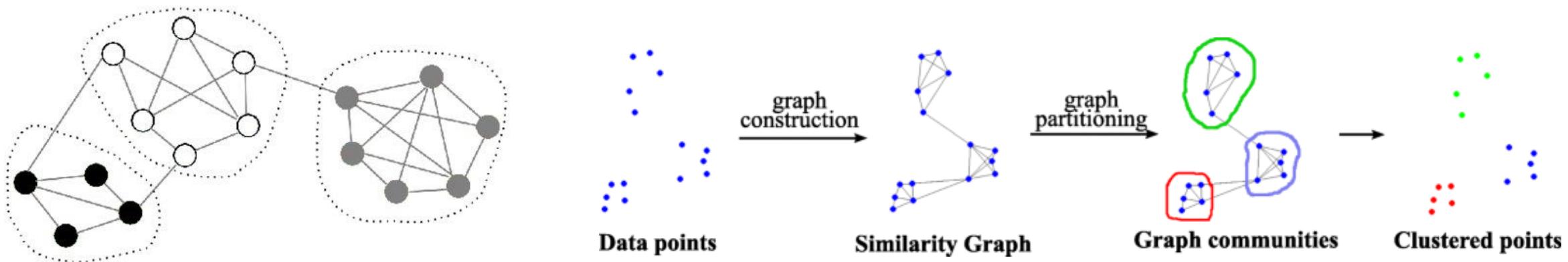
# Comments on DBSCAN

- Complexity is  $O(n \log n)$
- Unlike k-means and hierarchical, deal with the notion of noise
- Different clusters may have very different densities
- Very sensitive to the choice of  $\varepsilon$
- Concentration of measures will spoil everything in high intrinsic dimensionalities
- Extensions: OPTICS, HDBSCAN, GDBSCAN
- Scikit learn implementation (arbitrary  $L_p$  metrics, accelerated neighbor search)



# Graph-based clustering algorithms

- Cluster = tight community of the KNN graph



- The quality of communities is determined by **modularity**

# Various definitions of the modularities

- E.g., **Louvain modularity**

$$Q = \frac{1}{2m} \sum_{ij} \left[ A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j), \quad \text{In range } [-0.5; 1]$$

where

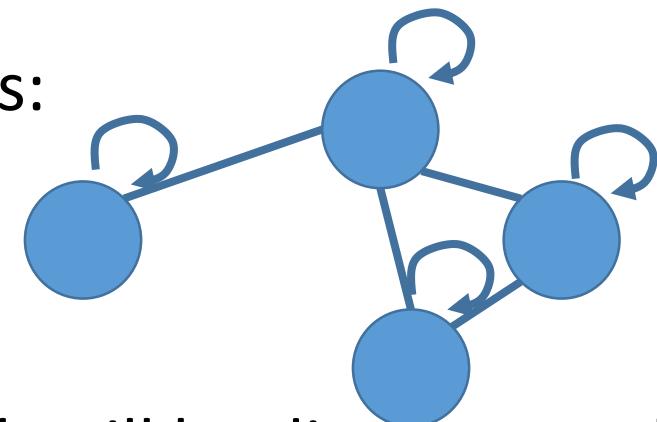
- $A_{ij}$  represents the edge weight between nodes  $i$  and  $j$ ;
- $k_i$  and  $k_j$  are the sum of the weights of the edges attached to nodes  $i$  and  $j$ , respectively;
- $m$  is the sum of all of the edge weights in the graph;
- $c_i$  and  $c_j$  are the communities of the nodes; and
- $\delta$  is Kronecker delta function ( $\delta(x, y) = 1$  if  $x = y$ , 0 otherwise).

# Louvain clustering algorithm (a greedy one)

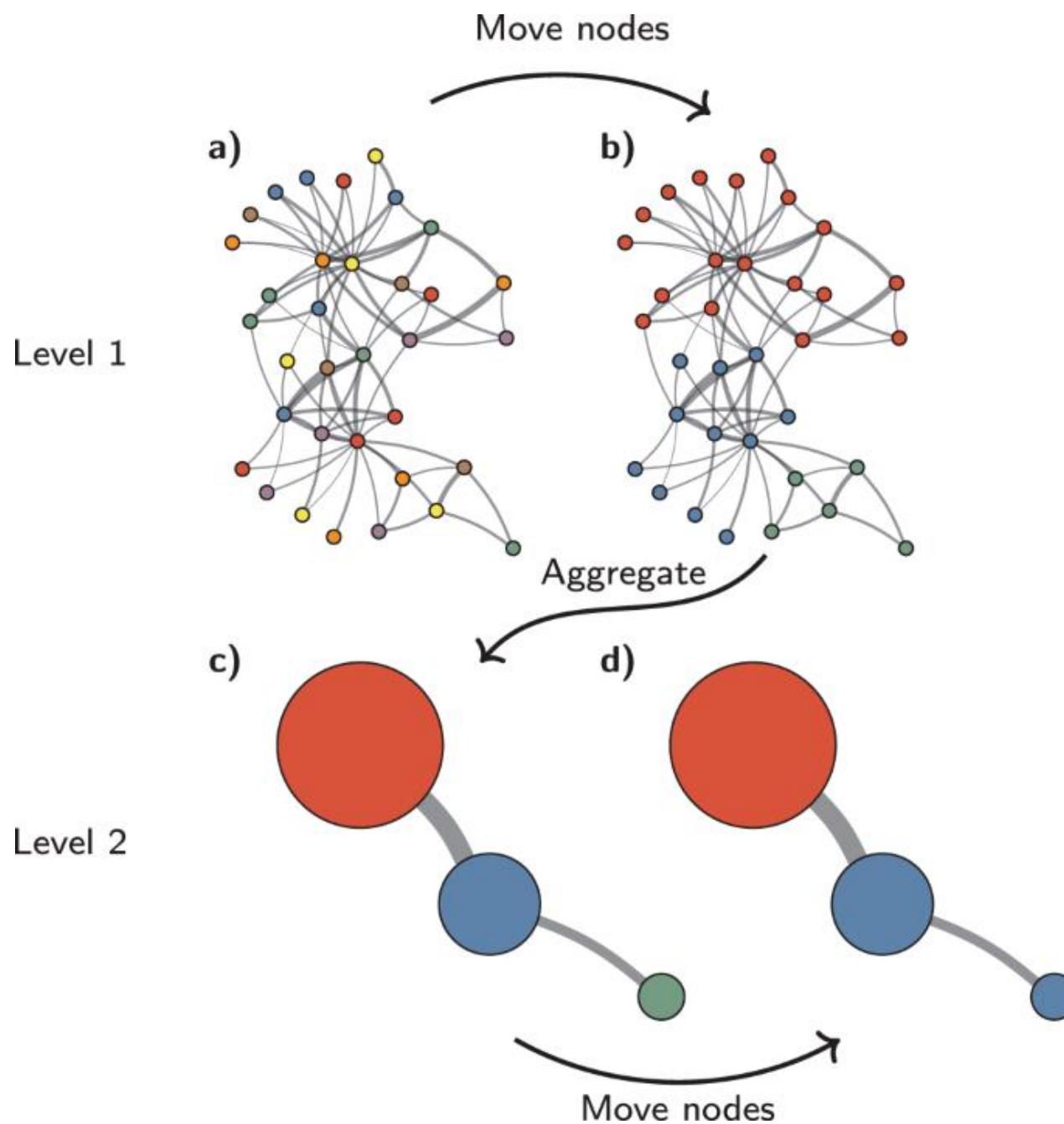
Base community search:

- At first, one node = one community
- We swap node  $i$  from its own community to the community of each of its neighbours
- For each such a swap, change in modularity is computed
- If no increase of modularity possible  $i$  remains in its own community

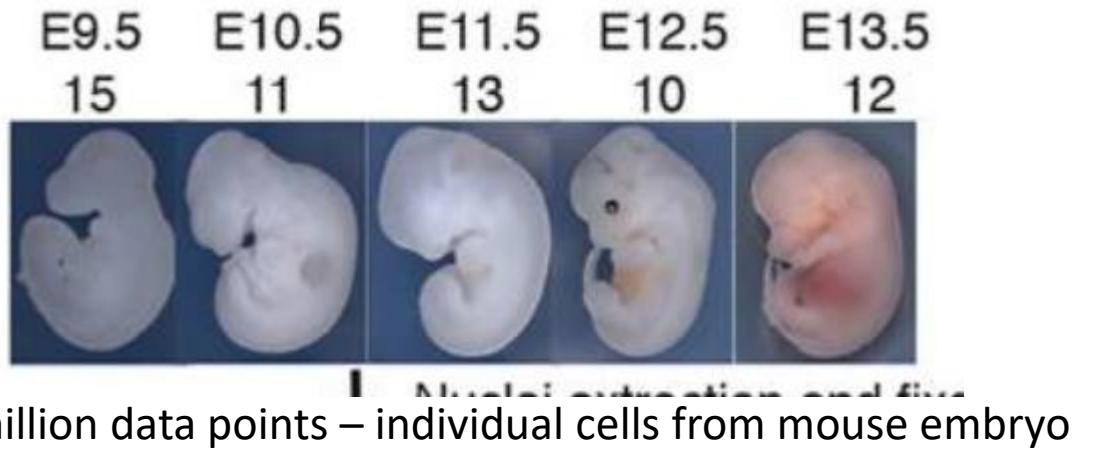
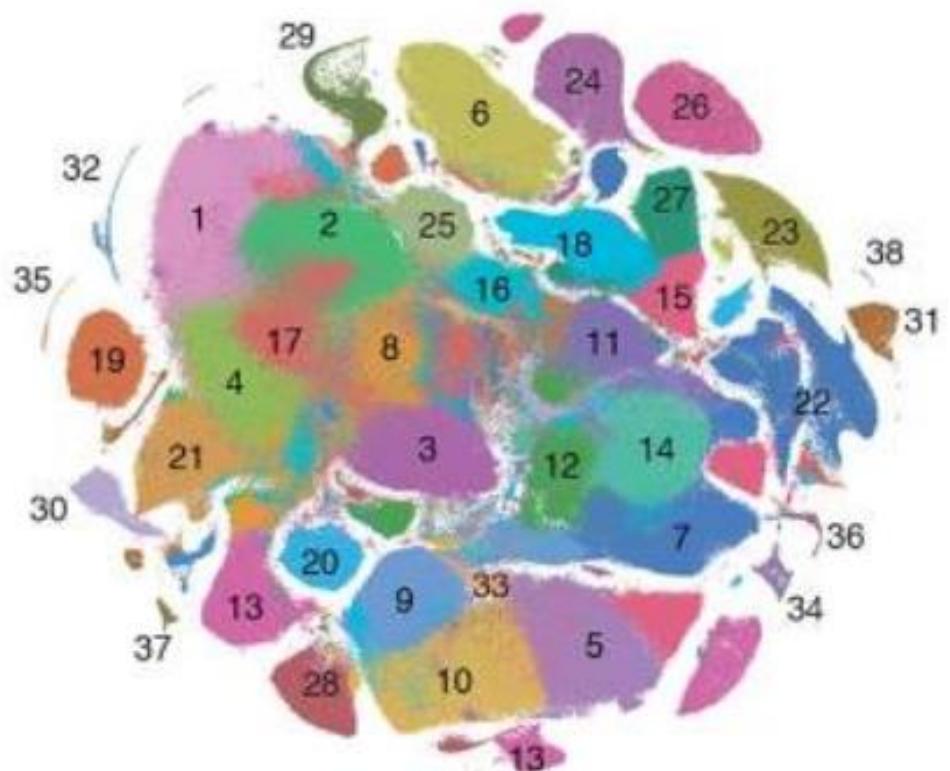
Finding communities in the graph of communities:



Cluster until one community remains or the graph will be disconnected



Graph-based  
clustering became  
new killer application  
in life sciences,  
replacing the  
hierarchical clustering



(from Cao et al, Nature, 2019)