Fundamentals of Al
Clustering

Density-based and graph-based
clustering™®

Some images in this lecture are used from: https://www.kdnuggets.com/2020/02/understanding-
density-based-clustering.html




Distance-based clustering and its limitations

* Hard to find clusters with irregular

shapes
* Hard to specify the number of bt L &
clusters m_,,fi,: ‘ ’
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* Some points are ‘in between’
clusters (outliers or background
noise)



New concept: cluster as a probability density
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Cool, but how to define PDF in
multi-dimensional space?

Expensive and better to avoid
at all
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Trick: count neighbours within g-radius
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DBSCAN (Ester et al, 1996)

Parameters: € and minPts
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DBSCAN: graph of core points and density-
reachable (peripherial) points
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The graph is oriented!



DBSCAN: graph of core points and density-
reachable (peripherial) points

A cluster then satisfies two
/ N \\ . Core (dense) points propertles
{, 0

w () Density reachable non-core points . C
® ouiier 1. All points within the cluster are
mutually density-connected.
2. If a point is density-reachable from
some point of the cluster, it Is part of

the cluster as well.




DBSCAN: the Algorithm

* Arbitrary select a point p
* Retrieve all points density-reachable from p wrt Eps and MinPts
* If p is a core point, a cluster is formed

* If pis a border point, no points are density-reachable from p and DBSCAN
visits the next point of the database

e Continue the process until all of the points have been processed



Comments on DBSCAN

e Complexity is O(n log n)

* Unlike k-means and hierarchical, deal with the notion of noise
* Different clusters may have very different densities
* Very sensitive to the choice of ¢

e Concentration of measures will spoil everything in high intrinsic
dimensionalities

* Extensions: OPTICS, HDBSCAN, GDBSCAN

* Scikit learn implementation (arbitrary Lp metrics, accelerated
neighbor search)



Graph-based clustering algorithms

* Cluster =tight community of the KNN graph
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* The quality of communities is determined by modularity



Various definitions of the modularities

* E.g., Louvain modularity
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where

e Az-j represents the edge weight between nodes 2 and 7;

e k; and k:j are the sum of the weights of the edges attached to nodes 7 and 3, respectively;
e is the sum of all of the edge weights in the graph;

e c; and c; are the communities of the nodes; and

e § is Kronecker delta function (6(x,y) = 1 if x = y, 0 otherwise).



Louvain clustering algorithm (a greedy one)

Base community search:

At first, one node = one community

* We swap node i from its own community to the community of each of
its neighbours

* For each such a swap, change in modularity is computed
* If no increase of modularity possible i remains in its own community

®

Finding communities in the graph of communities:

Cluster until one community remains or the graph will be disconnected



Move nodes

Level 1

Level 2
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Move nodes



Graph-based
clustering became
new killer application
in life sciences,
replacing the
hierarchical clustering
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2 million data points — individual cells from mouse embryo

(from Cao et al, Nature, 2019)



