Fundamentals of Al
Dimensionality reduction

Principal Component Analysis (PCA):

(really) central method for unsupervised machine
learning which is 120 years old

Pearson (1901): problem of choice of dependent and independent variables

330
3004

2701

e

&

=3
AN

RO Weight = a, + a, Height

" WEIGHT (POUNDS)
Iy
i=3

Height = b, + b; Weight

@
=3

7]
=3

a, # 1/b, 1!

5
o

%3
=3

55 5B &1 €4 67 70 73 78 79
HEIGHT (INCHES}

) [— N

Linear regression Principal component (best fit line) =
1=
S(y —y)*=a minimum

> (" being the ordinate of the theoretical line at the point
o z which corresponds to), had we wanted to determine the
GCJ best-fitting line in the usual manner.
=] © T WP
c e
) A
o
b O >
O

@) Latent - T

variable
X Y - . Lo 67
X—Y Pearson K. (1901)" .
On lines and planes of closest fit to /

systems of points in space
Independent X X Philosophical Magazine 2:559-572 3

Principal line and principal plane

Principal (mean) line

Mean point K-Means
o O
o 9/ & P
(O
Q O
o \V/ZZ= ©
O ~ O
/IS
e/ / ®
O 7/ /&) O
g
S/ o
®
A e
d

u 2
i=1

PCA as data visualization method,
based on dimension reduction

Two-dimensional PCA (best fit 2D plane)

PCA plots of transcriptomic datasets

n samples

p genes

n samples

Vv

\%

| PC1

0 Grade?2 °

[] Grade 3
[_] Grade 4 sample Space gene space

Identification of molecular mechanisms,

Classification, diagnosis, prognosis
Interpretation

PCA as simple ‘continuous’ linear autoencoder

Given..

ean encoder function: ENCODE : RP > ueR
ea decoder function: DECODE : u —> RP

. the data is centered : X
assume e aata IS centered . inzo

=1

eassume linearity: DECODE(u) = uv,, v, €RP Is unit length vector, (v,, v,) =1
N

Distortion = » (x, — DECODE[ENCODE(X;)])’
=1

Let us minimize the distortion (just as we did in case of k-means)!

Given DECODE(), let us find optimal linear
ENCODE() for a point X

DECODE(u;) = DECODE(ENCODE(x))) = u; v,

N N
Distortion = » (X, — DECODE[ENCODE(X;)])* =Y (X; —u;V,)
i=1 =1

; Distortion = —2v, (x, —u,v,) =0 X; — datapoint
U.

alised vector
U, = (Xi ’ Vl)

Orthogonal (closest) projection!
Exercise: prove that it is the closest
point on the line

Given ENCODE(), let us find optimal DECODE()

N N

Distortion = > (x; — DECODE[ENCODE(X;)])" = ¥ (X; —U;V,)’
’ 1=1 . i=1
— Distortion =-2) u;(x; —u;v,) =0
avl i=1
N N
dux, —v, > u’ =0
=1 =1
N
> ux,
v, ==

>u;

=1

1) Given DECODE(), let us find optimal ENCODE()
2) Given ENCODE(), let us find optimal DECODE()

3) Iterate until convergence!
4) At each iteration the Distortion not increasing

Algorithm for finding the optimal linear
autoencoder

1)
2)

3)

4)

Choose random v,

Normalize V1<—L
v,

Compute u. = (X;,V,)
N

Compute — Ui

_
Vi ="

2. U

=1
Go to 2, iterate till convergence

Simple and fast iterative
algorithm for finding the first
principal component (aka
the best line approximating
the data point cloud)

How to find next principal component?

1) Subtract the contribution of the first component

X <= X; = (X, Vp)V,

2) Repeat the algorithm for finding the first component, call it v,

3) Same for the 319, 4t | .. mth components

Principal Components and Singular Value
Decomposition

* The best rank-one matrix approximation

X; & ui(l)vl = (Xi , V1)V1

xl = u®y]

* The best rank-m matrix approximation
Xi = (X, V) V; + (X, Vo)V, o4 (X, Vi)V,

17 m
x) = uPv) +uPv) L ru™My) = POV 1+ e MpMy]

N N

(Vv) =0, 5%t o -3 (WOF | SO f ~Lk =L

(v,,v,)=1

Can we do it in one shot, without iterations?

N N

Distortion = > (x; —~ DECODE[ENCODE(x;)])" = ¥ (X, —u;V,)’
i=1 1=1

U = (X, Vy)

Quadratic form, non-negative definite, global minimum if

_ _ N , /notdegenerated!
Distortion = »_ (x; — (X;, V,)V,)’ =

1=1

:Z(Xi’xi)_ZZ(Xi’W)Z +Z(Xiivl)2 :Z(Xi’xi)_Z(Xi’vl)z

the maximum variance of the

N N . .
: : : 2 v, must be the direction of
Distortion — min > (%, V)P =D u,” — max !
- - orthogonal projections!

Solving the maximum variance direction
problem

N
D> (%, v,)? > max; v, ="?
=1

ZN: (X, v1)* = ZN:[ZIO: Xij"lj] = ZN:L Zp: Xijvljxikvlkj =

i1\ jo1 i1\ jkt
D N

= Vlj(z X Xii)Vlk = N(v,;,C(X)v,),
” i1

1

i
N

where C(X)—empirical covariance matrix : C(X), = %Z X Xik
i=1

Properties of empirical covariance matrix

1 N
C(X)jk — NZ Xj Xk
=1
1. C(X)Issymmetric: C(X); = C(X),;
2.C(X)Is non - negative definite : (v,C(X)v) > 0.

Indeed, (v, C(X)v) =1/N ZN: (X:,v)*> =0

Hence, eigenvalues of C(X) are non - negative real numbers,
A=A, 20420

Principal components are eigenvectors
of empirical covariance matrix, proof

1 N
C(X)jk — NZ Xij X
=1
Eigenvalues of C(X)are non - negative real numbers, 4, > 4, >..A; >0;
€,,€,,..€, are the correspondent orthonormal eigenvectors.

P P
Wearelooking for v, => e, &;=(v,,), Y & =1
i=1 i=1

CX)v, = iglic(x)ei :Zp: 48,

P P
(v, C(X)v,) = > &i4 — max under condition Y &,* =1
= =]

Let first eigenvalues be different 4, > 4, > ...

Inthiscase, ¢/ =1¢,=0(>1), v,==e,

We’ve just learnt: two ways to compute
principal components

* Iterative SVD algorithm — simple and fast

 Computing the eigenvectors of the covariance matrix p x p — can be
slow, especially for large p

* Let us have a look in MATLAB help:

[...] = pca(..., "PARAM1',vall, 'PARAM2',val2, ...) specifies optional
parameter name/value pairs to control the computation and handling of
special data types. Parameters are:

'Algorithm' - Algorithm that peca uses to perform the principal

component analysis. Choices are:

"svd' — Singular Value Decomposition of X (the default).

'eig' - Eigenvalue Decomposition of the covariance matrix. It
is faster than SVD when N is greater than P, but less
accurate because the condition number of the covariance
is the square of the condition number of X.

Attention, in sklearn, PCA can be non-
deterministic!

sklearn.decomposition.PCA

class sklearn.decomposition. PCA(n_components=None, *, copy=True, whiten=False, svd_solver="auto', tol=0.0,
(terated_power="auto', random_state=None) [source]
Principal component analysis (PCA).

Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The
input data is centered but not scaled for each feature before applying the SVD.

It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009, depending
on the shape of the input data and the number of components to extract.

‘Impossible” PCA plots
- A
00249 © O Aquf &5H-SII5Y
Group | 8&9 a
0.00 - P Q2
@ SINB12
_0.02 @SK-N-AS
§ CHP-212@
—0.04 4 SK-N-SH® hNCC
SH-EP@] rept
ﬁ @)
—0.06 H GIMEN O
Group Il hNCC
GICAN rep2
| | | I I | |
-0.024 -0.020 -0.016 -0.012
PC1
A PDX @ ALKmut
O Cell line @ ALKwt

O MNAALKmut @ MYC-amp ALKwt

O MNA ALKwt

O hNCC

‘Impossible’” PCA plots

U — Object projections

P m V — Coordinate ‘loadings’
—— ~ N
_ - _ P
e N
X ~ N U [V } } m
Using loadings for data
m visualization is incorrect!
N Because they do not
—— ~ = N reflect the distances in R™
I i | i | 7 -\~ N
1 XT ~ p U [V] } m

How many principal components one can
compute?

*|f p < N then one can compute p components

*If p > N then one can compute at maximum N-1
components (this is the maximum rank of the
empirical covariance matrix)

e Exercise: demonstrate this fact in Python

How many principal components to retain?

* Scree plot
Not brilliant
Not bad choice

/ Pretty good

IIIIIIIIIIIIIIIIIIII

12 3 456 7 8 91011121314151617181920
Components

* |If eigenvalues are o
normalized to unity sum,

Elgenvaiues
N
1

then the y-axis is called
‘the fraction of variance 2 -
explained (FVE)’ 14

How many principal components to retain?

e Kaiser rule

Scree Plot

3.5

\ Mean of all eigenvalues

o

0 —

Eigenvalue
1.5 2.5

-

0.5

O—0 -

O—0—0p__
— T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12

Component Number

How many principal components to retain?

* Broken-stick model

* bs(j,p) is the expected
(mean) length of the
jth longest segment of
a unit length stick
randomly broken in

p segments

Proportion of Wariance

0.6

0.5

0.4

0.3

01

Broken Stick Method for Retaining Principal Components

— — — Broken-Stick Rula
Froportion of Variance

Mumber of Components

How many principal components to retain?

« Condition number-based* SScrEE Plot

7\' /
max 49

3-

M
A

Elge mvalue

7\‘max/k
k<10

=

—a
M
o
=
n
i
|
oJ o
e
—a
L
—a
—a
—a
M
—a
o

Component Number

*Least dependent on the number of redundant features

osdNEnENw®
o=HOTESEEE
1 Rl I Lo
QSN E9mEr
e ed> e~
< D - O O e 0 e - e
S 09 O 0N 09 O O 0D 0D Oh o
2 Q=T QT

PC 32PC 64PC

digits

1700
handwritten
32x32 pixels

R1024

Four definitions of PCA

* Classical: approximate the data point cloud by linear manifold of
small dimension

* Textbook: Find such a linear subspace in which the variance of
orthogonally projected data points is maximal

* Find such a linear subspace in which the sum of pairwise
distances between orthogonally projected data points is maximal

Geometrical
approach

* For a given probability distribution, find such an orthogonal
transformation of the coordinate system that correlations
between new coordinates will become zero

Probabilistic
approach

Case of REALLY BIG DATA

e Case of N>>p, p ¥< 10000 : incrementally compute the covariance
matrix

e Case p>> N > 10000 : subsampling or probabilistic approaches such
as Probabilistic PCA or Random SVD

e Use on-line learning for PCA (e.g., neural networks!)
* Case of sparse data : Sparse PCA

* Incremental principal component analysis (IPCA) is typically used as a
replacement for principal component analysis (PCA) when the dataset
to be decomposed is too large to fit in memory

Much more about PCA...

* PCA with data point weights...
* Robust PCA (e.g., PCA using L1 metrics)

* PCA for data with missing values without pre-imputation or filtering
(alternating least squares matrix factorization)

* Eigen-decomposition of the correlation matrix (scaled PCA)
* Performing PCA on a correlation matrix

* Generalized Singular Value Decomposition

* Common Principal Component Analysis

* Tensorial PCA

* Supervised PCA

* Kernel PCA

