
Principal Component Analysis (PCA): 
(really) central method for unsupervised machine 
learning which is 120 years old

Dimensionality reduction

Fundamentals of AI



Pearson (1901): problem of choice of dependent and independent variables

Pearson K.  (1901)

On lines and planes of closest fit to 

systems of points in space

Philosophical Magazine 2:559-572
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X → Y YX

Latent

variable

Weight = a0 + a1 Height

Height = b0 + b1 Weight

a1    1/b1  !!!



Principal line and principal plane
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PCA as data visualization method, 
based on dimension reduction

Rp
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PCA plot

Two-dimensional PCA  (best fit 2D plane)



PCA plots of transcriptomic datasets
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PCA as simple ‘continuous’ linear autoencoder
Given..

•an encoder function: ENCODE : Rp  uR

•a decoder function: DECODE : u  Rp

•assume the data is centered : 

•assume linearity: DECODE(u) = uv1 , v1 Rp is unit length vector, (v1, v1)  1
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Let us minimize the distortion (just as we did in case of k-means)!
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Given DECODE(), let us find optimal linear 
ENCODE() for a point xi

DECODE(ui) = DECODE(ENCODE(xi)) = ui v1
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Orthogonal (closest) projection!
Exercise: prove that it is the closest 
point on the line 



Given ENCODE(), let us find optimal DECODE() 
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1) Given DECODE(), let us find optimal ENCODE()

2) Given ENCODE(), let us find optimal DECODE()

3) Iterate until convergence!

4) At each iteration the Distortion not increasing



Algorithm for finding the optimal linear 
autoencoder

1) Choose random v1

2) Normalize 

3) Compute

4) Compute 

5) Go to 2, iterate till convergence
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Simple and fast iterative 
algorithm for finding the first 
principal component (aka 
the best line approximating 
the data point cloud)



How to find next principal component?

1) Subtract the contribution of the first component

2) Repeat the algorithm for finding the first component, call it

3) Same for the 3rd, 4th ,…, mth components 
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Principal Components and Singular Value 
Decomposition 
• The best rank-one matrix approximation  

• The best rank-m matrix approximation  
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Can we do it in one shot, without iterations?
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v1 must be the direction of 
the maximum variance of the 
orthogonal projections!

Quadratic form, non-negative definite, global minimum if 
not degenerated! 



Solving the maximum variance direction 
problem
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Properties of empirical covariance matrix
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Principal components are eigenvectors
of empirical covariance matrix, proof
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We’ve just learnt: two ways to compute 
principal components
• Iterative SVD algorithm – simple and fast

• Computing the eigenvectors of the covariance matrix p x p – can be 
slow, especially for large p

• Let us have a look in MATLAB help:



Attention, in sklearn, PCA can be non-
deterministic!



‘Impossible’ PCA plots



‘Impossible’ PCA plots

Using loadings for data 
visualization is incorrect!
Because they do not 
reflect the distances in Rm

U – Object projections
V – Coordinate ‘loadings’



How many principal components one can 
compute?

• If p < N then one can compute p components

• If p ≥ N then one can compute at maximum N-1 
components (this is the maximum rank of the 
empirical covariance matrix)

• Exercise: demonstrate this fact in Python



How many principal components to retain?

• Scree plot

• If eigenvalues are

normalized to unity sum,

then the y-axis is called

‘the fraction of variance 

explained (FVE)’

Not bad choice

Not brilliant

Pretty good



How many principal components to retain?

• Kaiser rule

Mean of all eigenvalues 



How many principal components to retain?

• Broken-stick model

• bs(j,p) is the expected

(mean) length of the

jth longest segment of 

a unit length stick 

randomly broken in 

p segments

bs(j,7)



How many principal components to retain?

• Condition number-based*

*Least dependent on the number of redundant features

max

max/k

k≤10



Mean

1700 
handwritten 

digits
32x32 pixels

R1024

Digit 1PC    2PC    5PC   16PC  32PC   64PC



Four definitions of PCA

• Classical: approximate the data point cloud by linear manifold of  
small dimension

• Textbook: Find such a linear subspace in which the variance of 
orthogonally projected data points is maximal

• Find such a linear subspace in which the sum of pairwise 
distances between orthogonally projected data points is maximal

• For a given probability distribution, find such an orthogonal 
transformation of the coordinate system that correlations 
between new coordinates will become zero
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Case of REALLY BIG DATA

• Case of N >> p, p ~< 10000 : incrementally compute the covariance 
matrix

• Case p >> N > 10000 : subsampling or probabilistic approaches such 
as Probabilistic PCA or Random SVD

• Use on-line learning for PCA (e.g., neural networks!)

• Case of sparse data : Sparse PCA

• Incremental principal component analysis (IPCA) is typically used as a 
replacement for principal component analysis (PCA) when the dataset 
to be decomposed is too large to fit in memory



Much more about PCA…
• PCA with data point weights…
• Robust PCA (e.g., PCA using L1 metrics)
• PCA for data with missing values without pre-imputation or filtering 

(alternating least squares matrix factorization )
• Eigen-decomposition of the correlation matrix (scaled PCA)
• Performing PCA on a correlation matrix
• Generalized Singular Value Decomposition
• Common Principal Component Analysis
• Tensorial PCA
• Supervised PCA
• Kernel PCA


