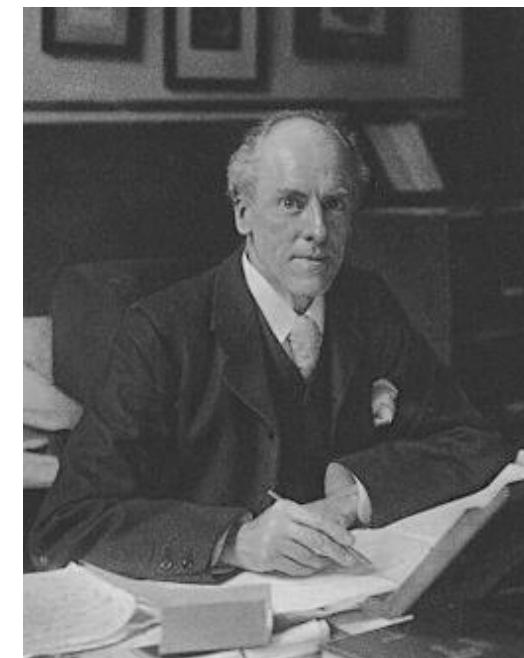


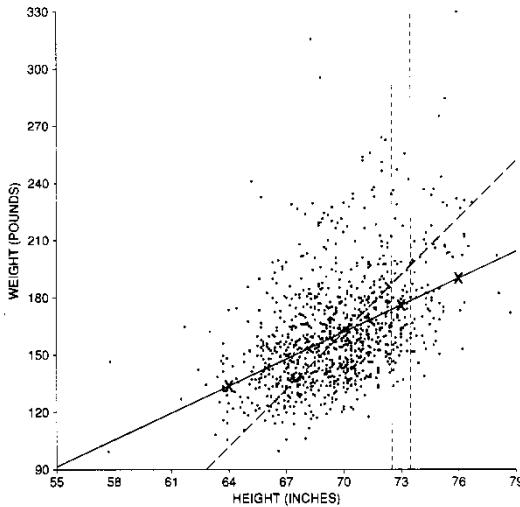
Fundamentals of AI

Dimensionality reduction

Principal Component Analysis (PCA):
(really) central method for unsupervised machine learning which is 120 years old



Pearson (1901): problem of choice of dependent and independent variables

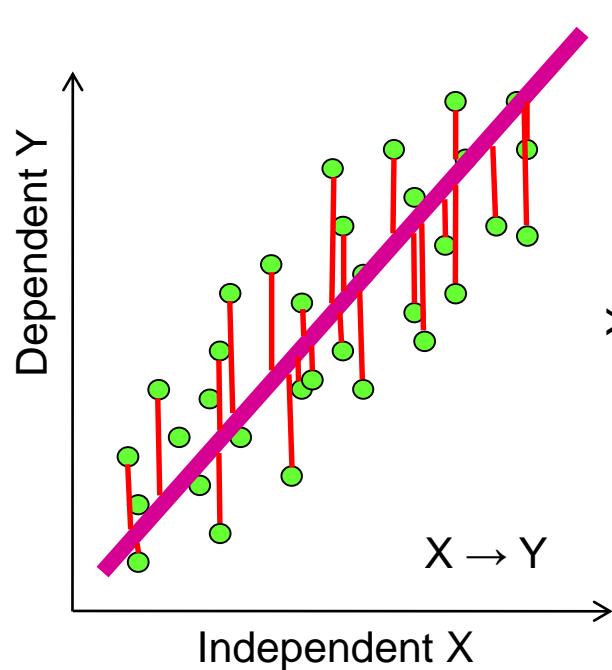


Linear regression

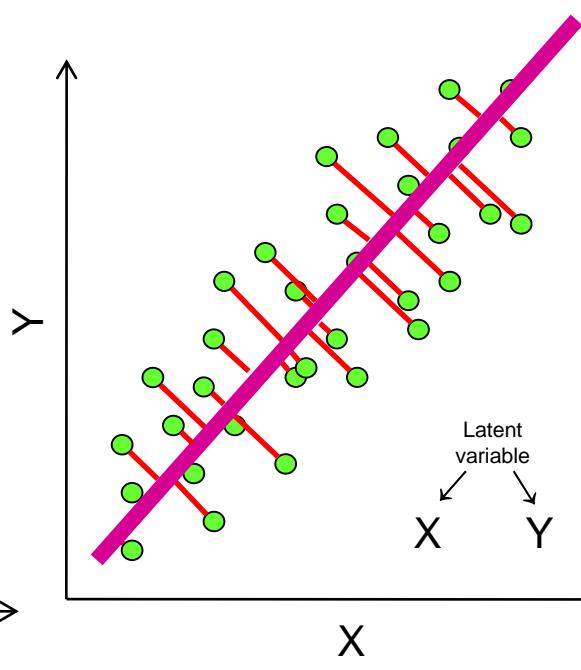
$$\text{Weight} = a_0 + a_1 \text{ Height}$$

$$\text{Height} = b_0 + b_1 \text{ Weight}$$

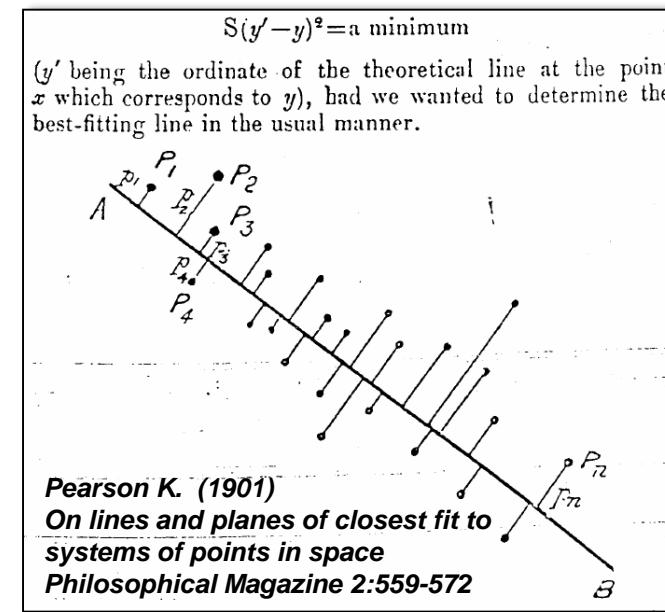
$$a_1 \neq 1/b_1 !!!$$



Principal component (best fit line)

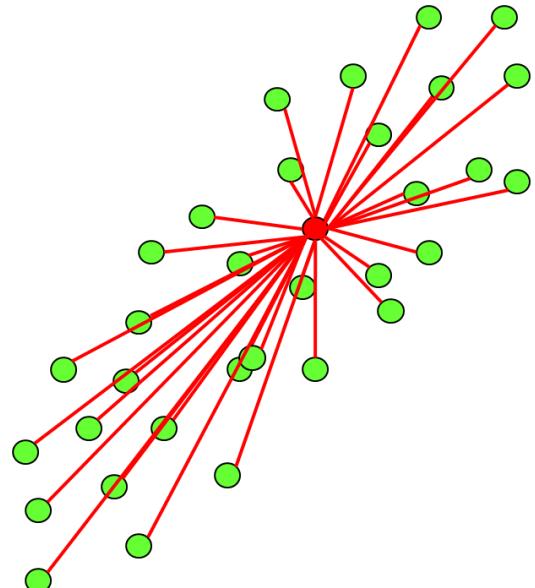


$$\sum_{i=1}^m \| \text{red line} \|^2 \rightarrow \min$$

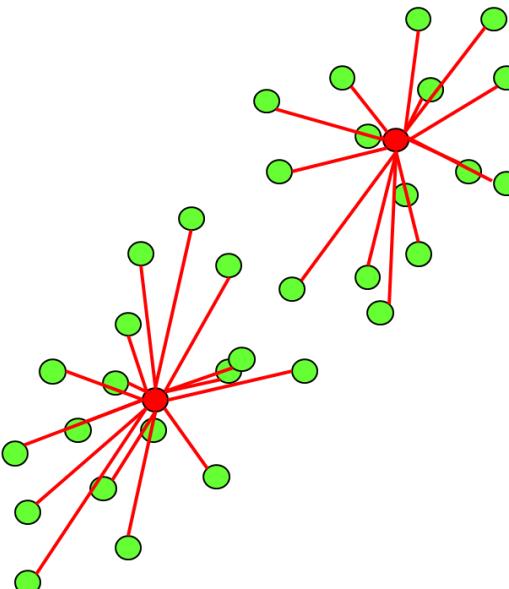


Principal line and principal plane

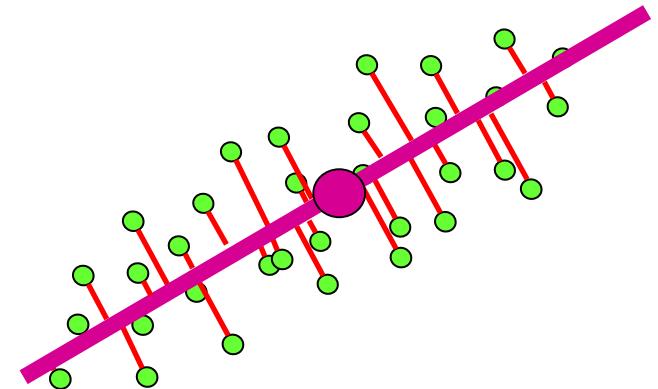
Mean point



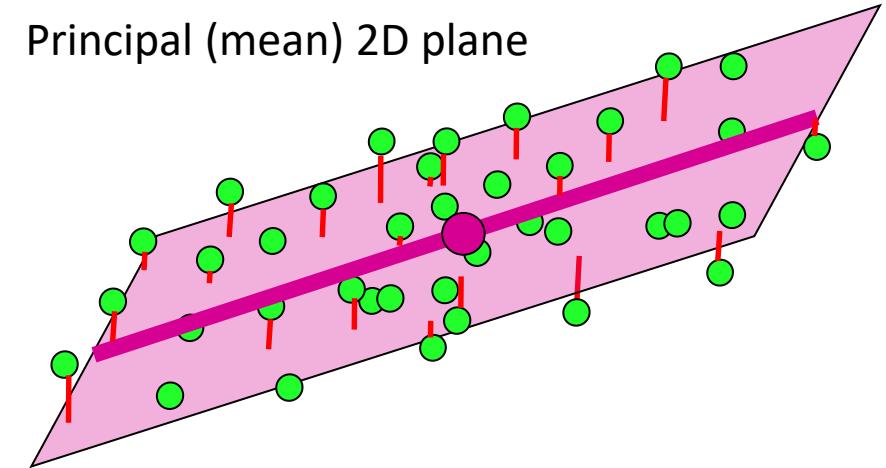
K-Means



Principal (mean) line

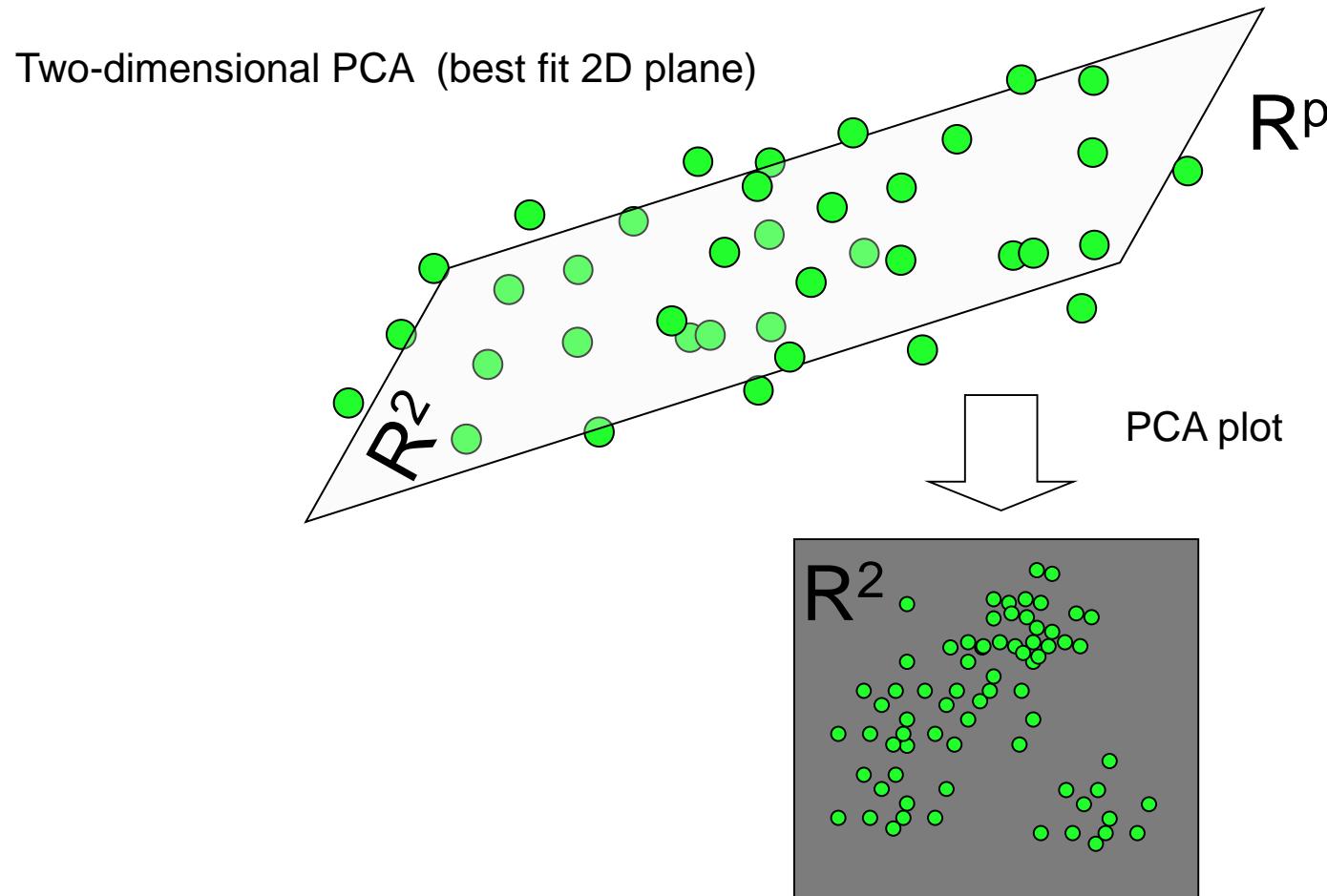


Principal (mean) 2D plane

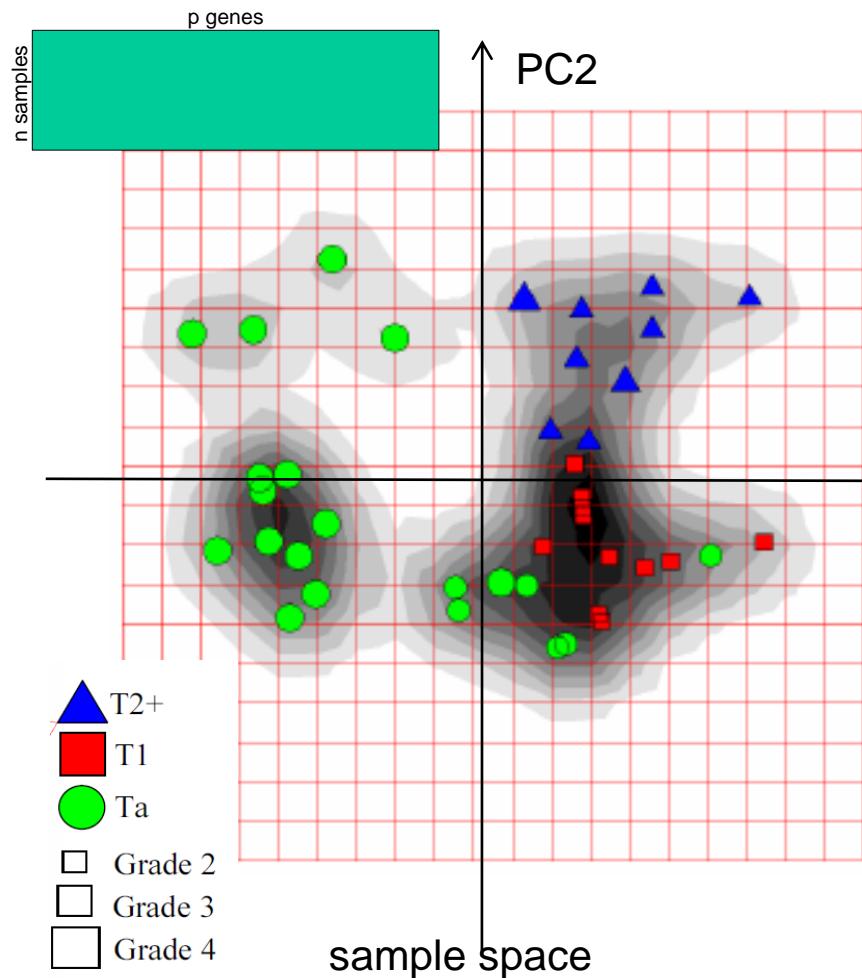


$$\sum_{i=1}^m \| \text{---} \|^2 \rightarrow \min$$

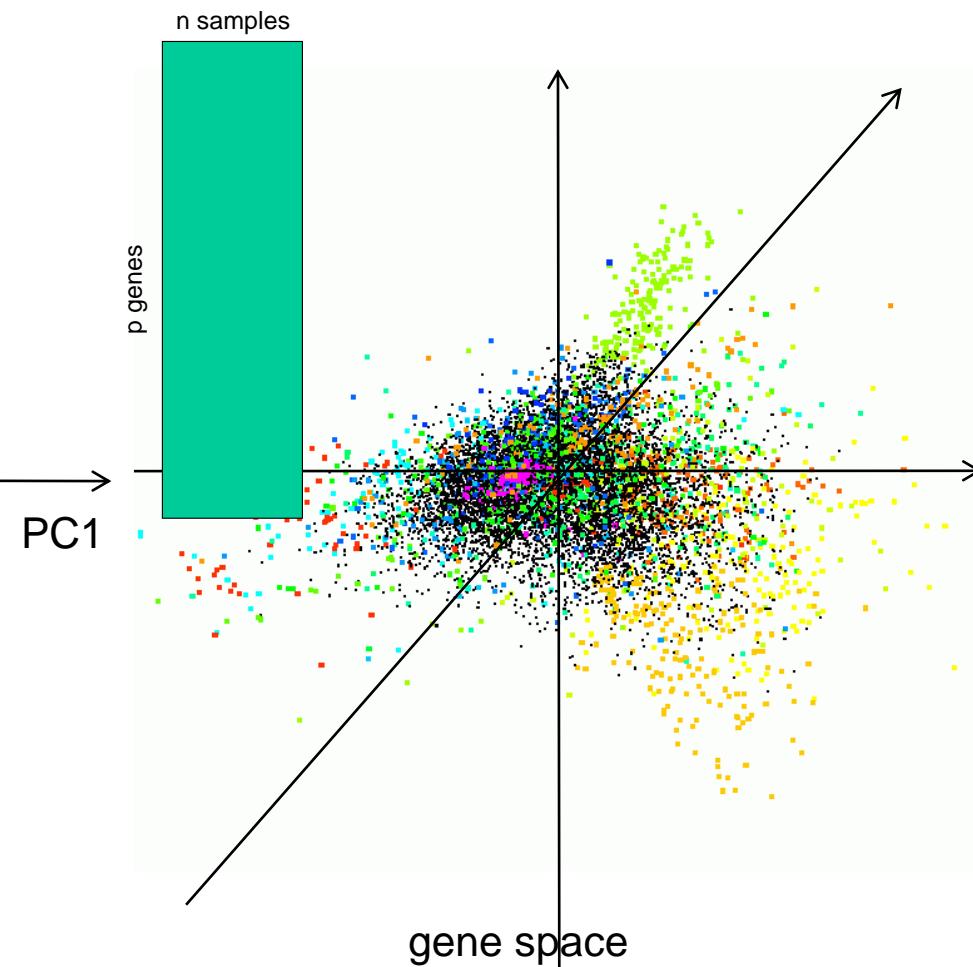
PCA as data visualization method,
based on dimension reduction



PCA plots of transcriptomic datasets



Classification, diagnosis, prognosis



***Identification of molecular mechanisms,
Interpretation***

PCA as simple ‘continuous’ linear autoencoder

Given..

- an encoder function: $\text{ENCODE} : \mathbb{R}^p \rightarrow u \in \mathbb{R}$
- a decoder function: $\text{DECODE} : u \rightarrow \mathbb{R}^p$
- assume the data is centered : $\sum_{i=1}^N \mathbf{x}_i = 0$
- assume linearity: $\text{DECODE}(u) = u\mathbf{v}_1$, $\mathbf{v}_1 \in \mathbb{R}^p$ is unit length vector, $(\mathbf{v}_1, \mathbf{v}_1) = 1$

$$\text{Distortion} = \sum_{i=1}^N (\mathbf{x}_i - \text{DECODE}[\text{ENCODE}(\mathbf{x}_i)])^2$$

Let us minimize the distortion (just as we did in case of k-means)!

Given DECODE(), let us find optimal linear ENCODE() for a point \mathbf{x}_i

$$\text{DECODE}(u_i) = \text{DECODE}(\text{ENCODE}(\mathbf{x}_i)) = u_i \mathbf{v}_1$$

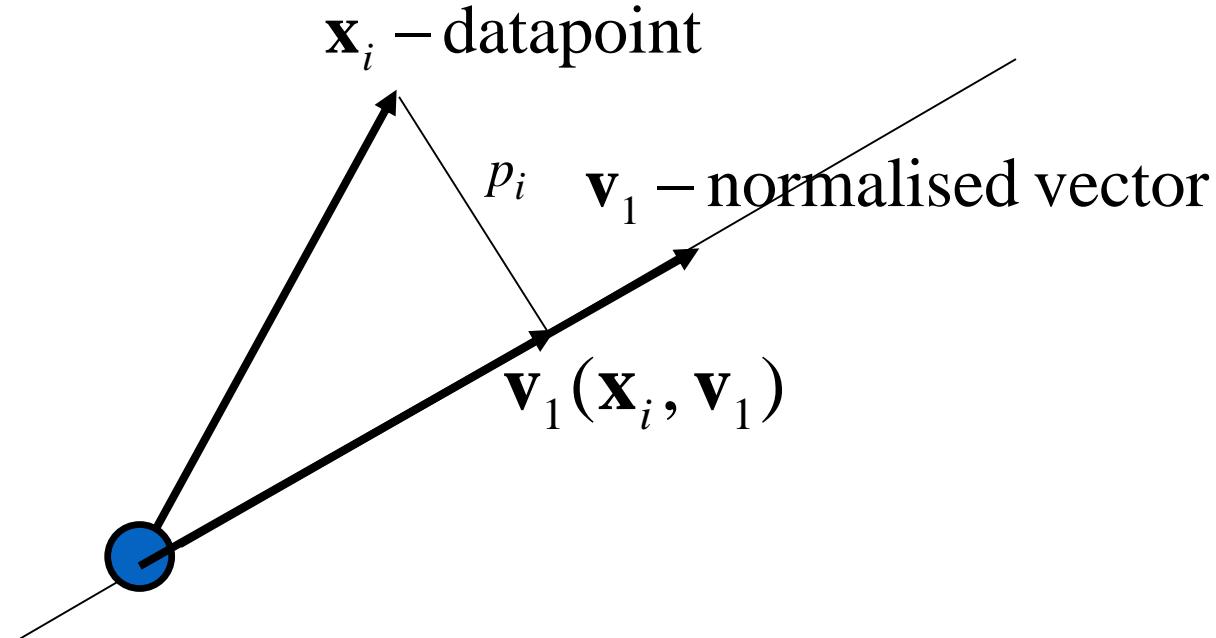
$$\text{Distortion} = \sum_{i=1}^N (\mathbf{x}_i - \text{DECODE}[\text{ENCODE}(\mathbf{x}_i)])^2 = \sum_{i=1}^N (\mathbf{x}_i - u_i \mathbf{v}_1)^2$$

$$\frac{\partial}{\partial u_i} \text{Distortion} = -2\mathbf{v}_1(\mathbf{x}_i - u_i \mathbf{v}_1) = 0$$

$$u_i = (\mathbf{x}_i, \mathbf{v}_1)$$

Orthogonal (closest) projection!

Exercise: prove that it is the closest point on the line



Given ENCODE(), let us find optimal DECODE()

$$\text{Distortion} = \sum_{i=1}^N (\mathbf{x}_i - \text{DECODE}[\text{ENCODE}(\mathbf{x}_i)])^2 = \sum_{i=1}^N (\mathbf{x}_i - u_i \mathbf{v}_1)^2$$

$$\frac{\partial}{\partial \mathbf{v}_1} \text{Distortion} = -2 \sum_{i=1}^N u_i (\mathbf{x}_i - u_i \mathbf{v}_1) = 0$$

$$\sum_{i=1}^N u_i \mathbf{x}_i - \mathbf{v}_1 \sum_{i=1}^N u_i^2 = 0$$

$$\mathbf{v}_1 = \frac{\sum_{i=1}^N u_i \mathbf{x}_i}{\sum_{i=1}^N u_i^2}$$

- 1) Given DECODE(), let us find optimal ENCODE()
- 2) Given ENCODE(), let us find optimal DECODE()
- 3) Iterate until convergence!
- 4) At each iteration the Distortion not increasing

Algorithm for finding the optimal linear autoencoder

1) Choose random \mathbf{v}_1

2) Normalize $\mathbf{v}_1 \leftarrow \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$

3) Compute $u_i = (\mathbf{x}_i, \mathbf{v}_1)$

4) Compute $\mathbf{v}_1 = \frac{\sum_{i=1}^N u_i \mathbf{x}_i}{\sum_{i=1}^N u_i^2}$

5) Go to 2, iterate till convergence

Simple and fast iterative algorithm for finding the first principal component (aka the best line approximating the data point cloud)

How to find next principal component?

- 1) Subtract the contribution of the first component

$$\mathbf{x}_i \leftarrow \mathbf{x}_i - (\mathbf{x}_i, \mathbf{v}_1) \mathbf{v}_1$$

- 2) Repeat the algorithm for finding the first component, call it \mathbf{v}_2
- 3) Same for the 3rd, 4th, ..., m th components

Principal Components and Singular Value Decomposition

- The best rank-one matrix approximation

$$\mathbf{x}_i \approx u_i^{(1)} \mathbf{v}_1 = (\mathbf{x}_i, \mathbf{v}_1) \mathbf{v}_1$$

$$x_i^j \approx u_i^{(1)} v_1^j$$

- The best rank- m matrix approximation

$$\mathbf{x}_i \approx (\mathbf{x}_i, \mathbf{v}_1) \mathbf{v}_1 + (\mathbf{x}_i, \mathbf{v}_2) \mathbf{v}_2 + \dots + (\mathbf{x}_i, \mathbf{v}_m) \mathbf{v}_m$$

$$x_i^j \approx u_i^{(1)} v_1^j + u_i^{(2)} v_2^j + \dots + u_i^{(m)} v_m^j = \sigma^{(1)} u_i^{(1)} v_1^j + \dots + \sigma^{(m)} u_i^{(m)} v_m^j$$

$$(\mathbf{v}_s, \mathbf{v}_t) = 0, s \neq t \quad \quad \quad \sigma^{(k)} = \sum_{i=1}^N (u_i^{(k)})^2 \quad , \quad \sum_{i=1}^N (v_i^{(k)})^2 = 1, k = 1 \dots m$$

$$(\mathbf{v}_s, \mathbf{v}_s) = 1$$

Can we do it in one shot, without iterations?

$$\text{Distortion} = \sum_{i=1}^N (\mathbf{x}_i - \text{DECODE}[\text{ENCODE}(\mathbf{x}_i)])^2 = \sum_{i=1}^N (\mathbf{x}_i - u_i \mathbf{v}_1)^2$$

$$u_i = (\mathbf{x}_i, \mathbf{v}_1)$$

$$\begin{aligned} \text{Distortion} &= \sum_{i=1}^N (\mathbf{x}_i - (\mathbf{x}_i, \mathbf{v}_1) \mathbf{v}_1)^2 = \\ &= \sum_{i=1}^N (\mathbf{x}_i, \mathbf{x}_i) - 2 \sum_{i=1}^N (\mathbf{x}_i, \mathbf{v}_1)^2 + \sum_{i=1}^N (\mathbf{x}_i, \mathbf{v}_1)^2 = \sum_{i=1}^N (\mathbf{x}_i, \mathbf{x}_i) - \sum_{i=1}^N (\mathbf{x}_i, \mathbf{v}_1)^2 \end{aligned}$$

Quadratic form, non-negative definite, global minimum if
not degenerated!

$$\text{Distortion} \rightarrow \min \quad \sum_{i=1}^N (\mathbf{x}_i, \mathbf{v}_1)^2 = \sum_{i=1}^N u_i^2 \rightarrow \max$$

\mathbf{v}_1 must be the direction of
the maximum variance of the
orthogonal projections!

Solving the maximum variance direction problem

$$\sum_{i=1}^N (\mathbf{x}_i, \mathbf{v}_1)^2 \rightarrow \max; \quad \mathbf{v}_1 = ?$$

$$\begin{aligned} \sum_{i=1}^N (\mathbf{x}_i, \mathbf{v}_1)^2 &= \sum_{i=1}^N \left(\sum_{j=1}^p x_{ij} v_{1j} \right)^2 = \sum_{i=1}^N \left(\sum_{j,k=1}^p x_{ij} v_{1j} x_{ik} v_{1k} \right) = \\ &= \sum_{j,k=1}^p v_{1j} \left(\sum_{i=1}^N x_{ij} x_{ik} \right) v_{1k} = N(\mathbf{v}_1, \mathbf{C}(\mathbf{X})\mathbf{v}_1), \end{aligned}$$

where $\mathbf{C}(\mathbf{X})$ – empirical covariance matrix : $\mathbf{C}(\mathbf{X})_{jk} = \frac{1}{N} \sum_{i=1}^N x_{ij} x_{ik}$

Properties of empirical covariance matrix

$$\mathbf{C}(\mathbf{X})_{jk} = \frac{1}{N} \sum_{i=1}^N x_{ij} x_{ik}$$

1. $\mathbf{C}(\mathbf{X})$ is symmetric: $\mathbf{C}(\mathbf{X})_{jk} = \mathbf{C}(\mathbf{X})_{kj}$;
2. $\mathbf{C}(\mathbf{X})$ is non - negative definite : $(\mathbf{v}, \mathbf{C}(\mathbf{X})\mathbf{v}) \geq 0$.

Indeed, $(\mathbf{v}, \mathbf{C}(\mathbf{X})\mathbf{v}) = 1/N \sum_{i=1}^N (\mathbf{X}_i, \mathbf{v})^2 \geq 0$

Hence, eigenvalues of $\mathbf{C}(\mathbf{X})$ are non - negative real numbers,

$$\lambda_1 \geq \lambda_2 \geq \dots \lambda_n \geq 0$$

Principal components are eigenvectors of empirical covariance matrix, proof

$$\mathbf{C}(\mathbf{X})_{jk} = \frac{1}{N} \sum_{i=1}^N x_{ij} x_{ik}$$

Eigenvalues of $\mathbf{C}(\mathbf{X})$ are non - negative real numbers, $\lambda_1 \geq \lambda_2 \geq \dots \lambda_p \geq 0$;

$\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_p$ are the correspondent orthonormal eigenvectors.

We are looking for $\mathbf{v}_1 = \sum_{i=1}^p \varepsilon_{1i} \mathbf{e}_i$, $\varepsilon_{1i} = (\mathbf{v}_1, \mathbf{e}_i)$, $\sum_{i=1}^p \varepsilon_{1i}^2 = 1$.

$$\mathbf{C}(\mathbf{X})\mathbf{v}_1 = \sum_{i=1}^p \varepsilon_{1i} \mathbf{C}(\mathbf{X})\mathbf{e}_i = \sum_{i=1}^p \varepsilon_{1i} \lambda_i \mathbf{e}_i;$$

$$(\mathbf{v}_1, \mathbf{C}(\mathbf{X})\mathbf{v}_1) = \sum_{i=1}^p \varepsilon_{1i}^2 \lambda_i \rightarrow \max \text{ under condition } \sum_{i=1}^p \varepsilon_{1i}^2 = 1.$$

Let first eigenvalues be different $\lambda_1 > \lambda_2 > \dots$

In this case, $\varepsilon_{11}^2 = 1$, $\varepsilon_{1i} = 0$ ($i > 1$), $\mathbf{v}_1 = \pm \mathbf{e}_1$

We've just learnt: two ways to compute principal components

- Iterative SVD algorithm – simple and fast
- Computing the eigenvectors of the covariance matrix $p \times p$ – can be slow, especially for large p
- Let us have a look in MATLAB help:

```
[...] = pca(..., 'PARAM1',val1, 'PARAM2',val2, ...) specifies optional parameter name/value pairs to control the computation and handling of special data types. Parameters are:  
  
'Algorithm' - Algorithm that pca uses to perform the principal component analysis. Choices are:  
    'svd'    - Singular Value Decomposition of X (the default).  
    'eig'    - Eigenvalue Decomposition of the covariance matrix. It is faster than SVD when N is greater than P, but less accurate because the condition number of the covariance is the square of the condition number of X.
```

Attention, in sklearn, PCA can be non-deterministic!

sklearn.decomposition.PCA

```
class sklearn.decomposition.PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', random_state=None)
```

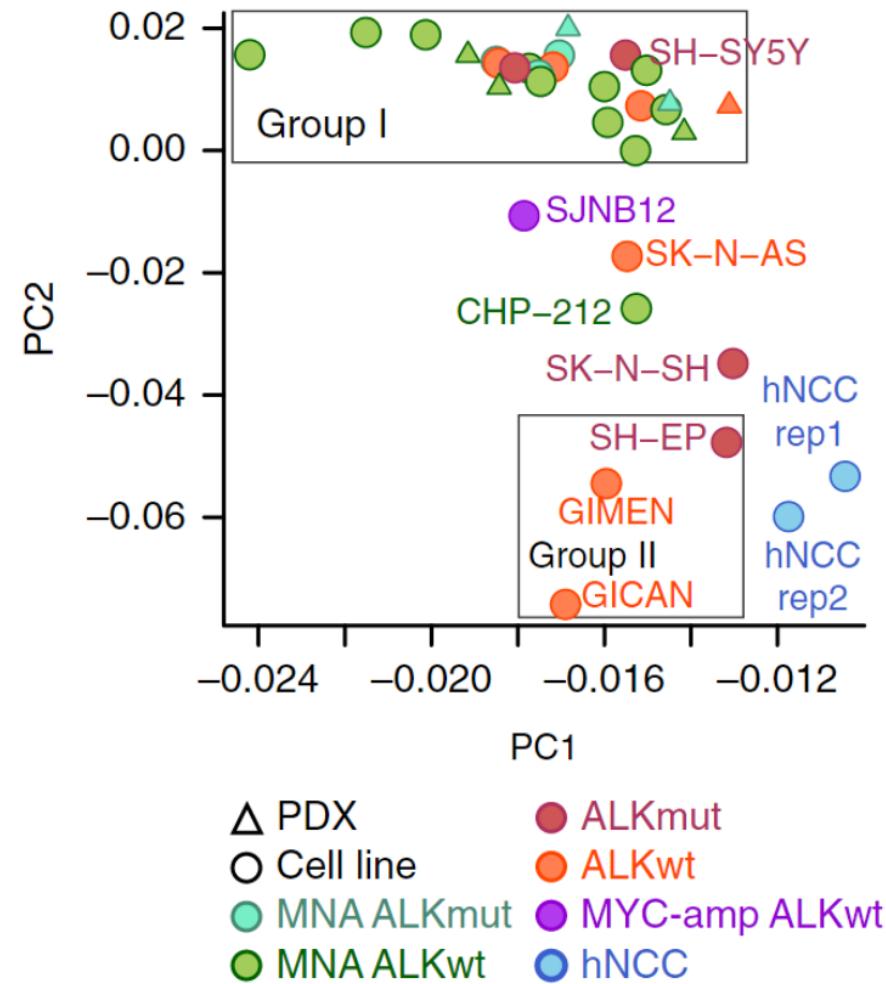
[\[source\]](#)

Principal component analysis (PCA).

Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD.

It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko et al. 2009, depending on the shape of the input data and the number of components to extract.

‘Impossible’ PCA plots



'Impossible' PCA plots

$$N \left\{ \begin{bmatrix} X \end{bmatrix} \right\} \overset{p}{\approx} N \left\{ \begin{bmatrix} U \end{bmatrix} \left[\begin{bmatrix} V \end{bmatrix} \right] \right\} m$$

U – Object projections
V – Coordinate ‘loadings’

$$p \left\{ \begin{bmatrix} X^T \end{bmatrix} \right\} \overset{N}{\approx} p \left\{ \begin{bmatrix} U \end{bmatrix} \left[\begin{bmatrix} V \end{bmatrix} \right] \right\} m$$

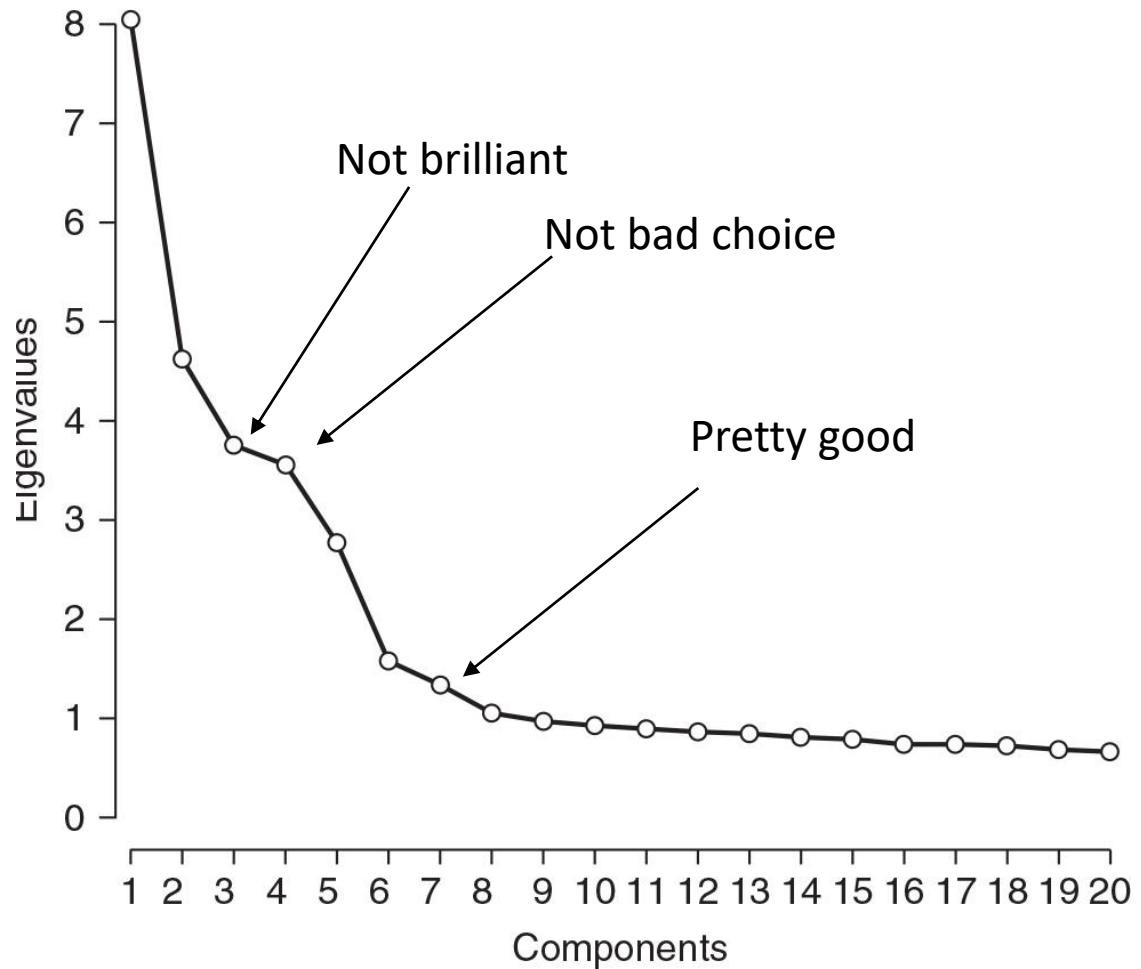
Using loadings for data visualization is incorrect!
Because they do not reflect the distances in R^m

How many principal components one can compute?

- If $p < N$ then one can compute p components
- If $p \geq N$ then one can compute at maximum $N-1$ components (this is the maximum rank of the empirical covariance matrix)
- *Exercise: demonstrate this fact in Python*

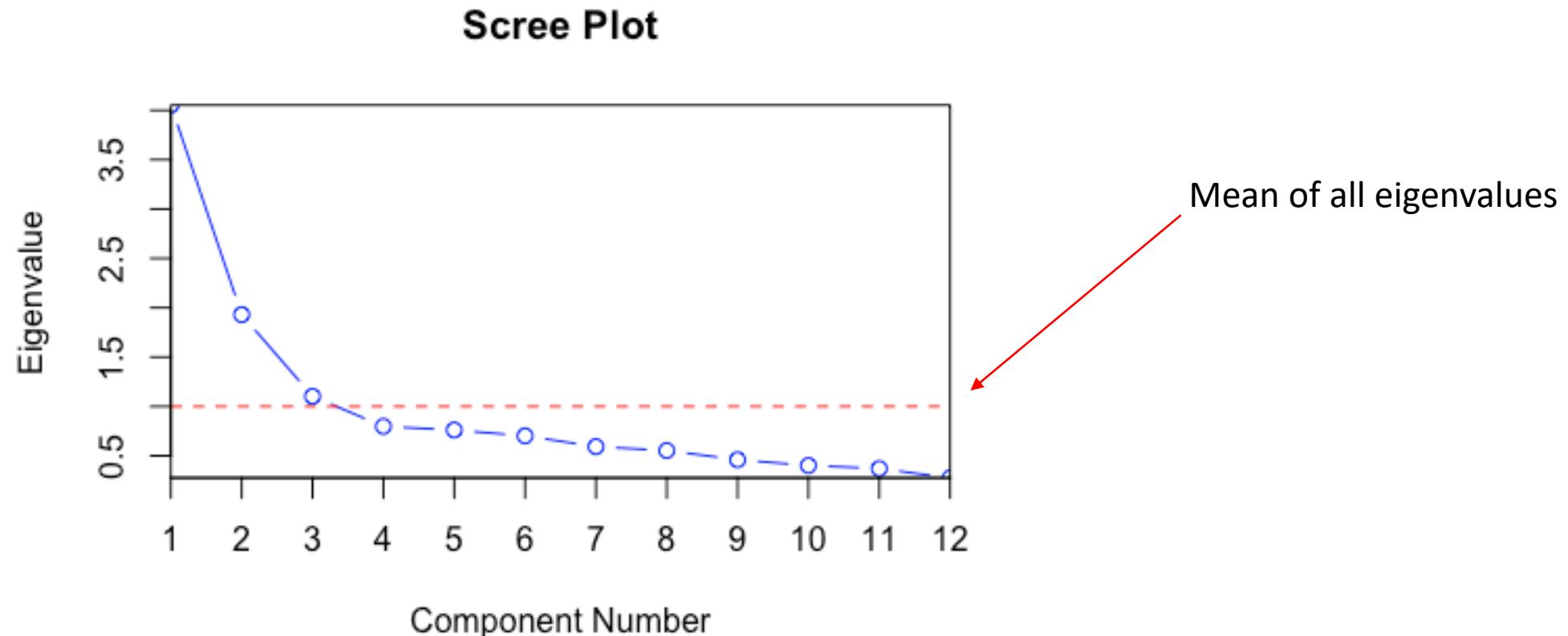
How many principal components to retain?

- Scree plot
- If eigenvalues are normalized to unity sum, then the y-axis is called ‘the fraction of variance explained (FVE)’



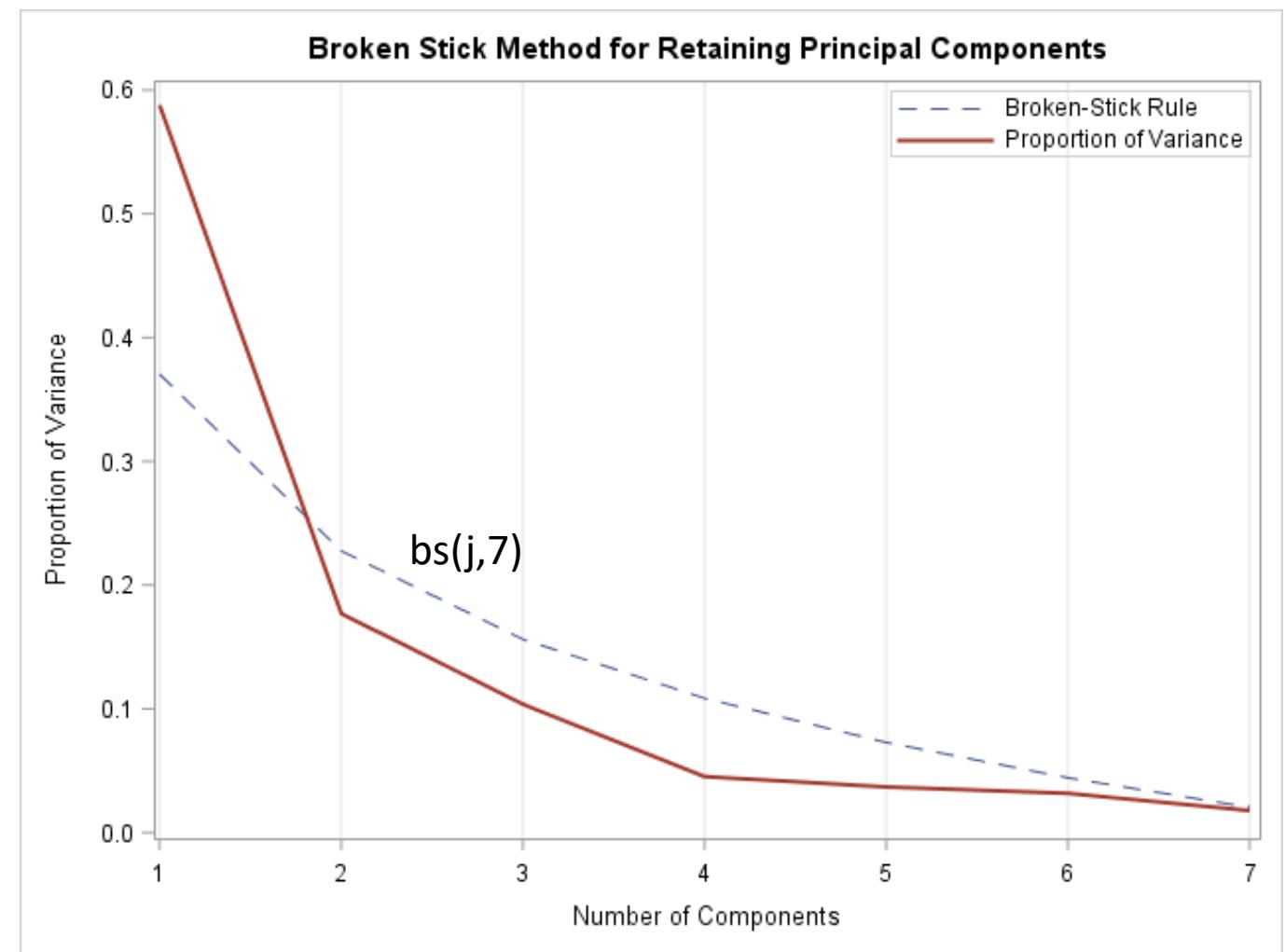
How many principal components to retain?

- Kaiser rule



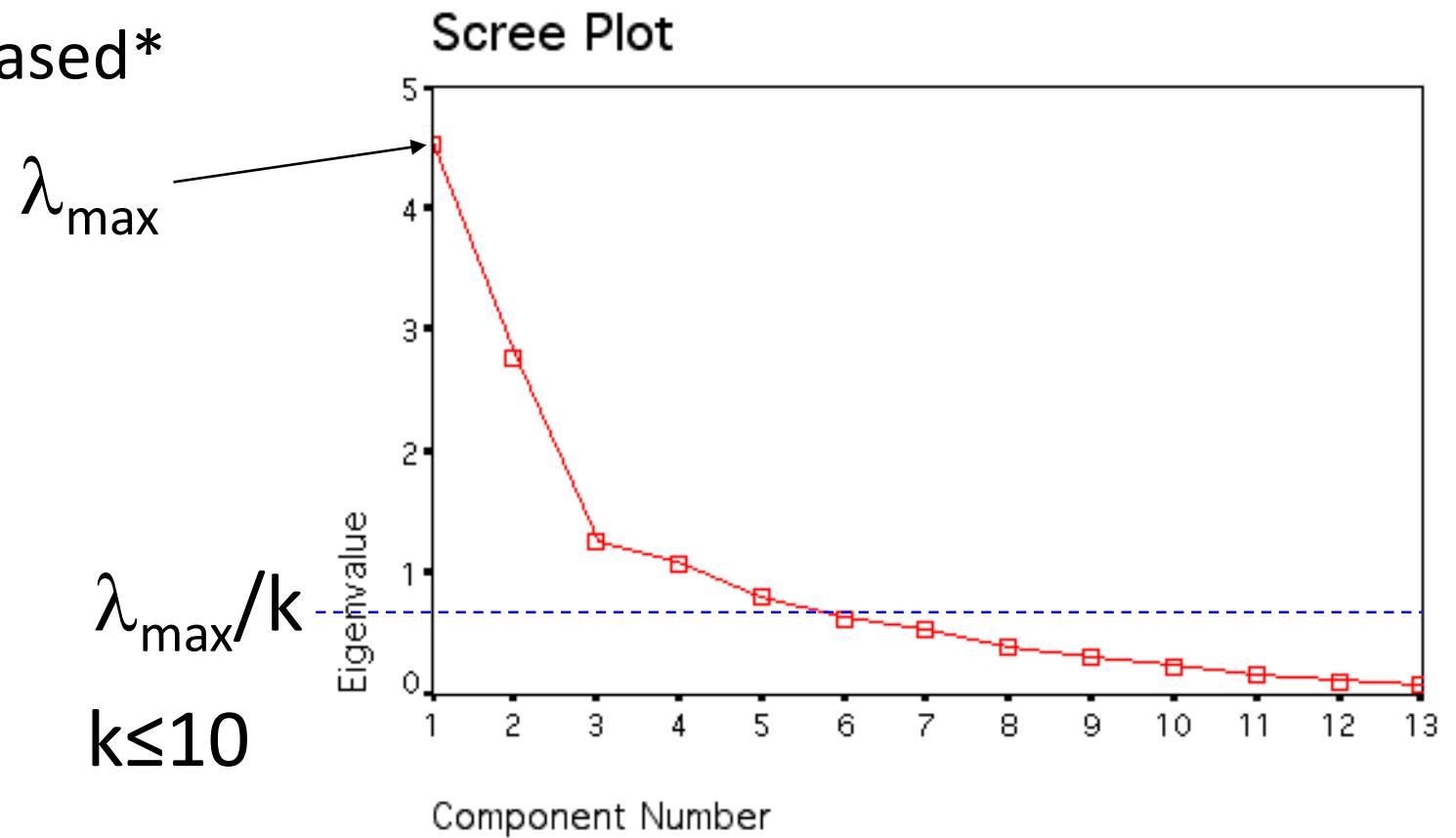
How many principal components to retain?

- Broken-stick model
- $bs(j,p)$ is the expected (mean) length of the j th longest segment of a unit length stick randomly broken in p segments



How many principal components to retain?

- Condition number-based*



*Least dependent on the number of redundant features

1700
handwritten
digits
32x32 pixels
 R^{1024}

Four definitions of PCA

- **Classical:** approximate the data point cloud by linear manifold of small dimension
- **Textbook:** Find such a linear subspace in which the variance of orthogonally projected data points is maximal
- Find such a linear subspace in which the sum of pairwise distances between orthogonally projected data points is maximal
- For a given probability distribution, find such an orthogonal transformation of the coordinate system that correlations between new coordinates will become zero

Geometrical approach

Probabilistic approach

Case of REALLY BIG DATA

- Case of $N \gg p$, $p \sim 10000$: incrementally compute the covariance matrix
- Case $p \gg N > 10000$: subsampling or probabilistic approaches such as Probabilistic PCA or Random SVD
- Use on-line learning for PCA (e.g., neural networks!)
- Case of sparse data : Sparse PCA
- Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory

Much more about PCA...

- PCA with data point weights...
- Robust PCA (e.g., PCA using L1 metrics)
- PCA for data with missing values without pre-imputation or filtering (alternating least squares matrix factorization)
- Eigen-decomposition of the correlation matrix (scaled PCA)
- Performing PCA on a correlation matrix
- Generalized Singular Value Decomposition
- Common Principal Component Analysis
- Tensorial PCA
- Supervised PCA
- Kernel PCA