
Principal Component Analysis (PCA):
(really) central method for unsupervised machine
learning which is 120 years old

Dimensionality reduction

Fundamentals of AI

Pearson (1901): problem of choice of dependent and independent variables

Pearson K. (1901)

On lines and planes of closest fit to

systems of points in space

Philosophical Magazine 2:559-572

D
e
p
e
n
d
e

n
t
Y

Independent X

Y

X

min
1

2




m

i
Linear regression Principal component (best fit line)

X → Y YX

Latent

variable

Weight = a0 + a1 Height

Height = b0 + b1 Weight

a1  1/b1 !!!

Principal line and principal plane

Mean point K-Means

Principal (mean) line

Principal (mean) 2D plane

min
1

2




m

i

PCA as data visualization method,
based on dimension reduction

Rp

R2

PCA plot

Two-dimensional PCA (best fit 2D plane)

PCA plots of transcriptomic datasets

PC1

PC2

sample space gene space

Classification, diagnosis, prognosis Identification of molecular mechanisms,

Interpretation
p
 g

e
n
e
s

n samples

n
 s

a
m

p
le

s

p genes

PCA as simple ‘continuous’ linear autoencoder
Given..

•an encoder function: ENCODE : Rp  uR

•a decoder function: DECODE : u  Rp

•assume the data is centered :

•assume linearity: DECODE(u) = uv1 , v1 Rp is unit length vector, (v1, v1)  1

)



N

i

ii

1

2
)]([Distortion ENCODEDECODE xx

Let us minimize the distortion (just as we did in case of k-means)!





N

i

i

1

0x

Given DECODE(), let us find optimal linear
ENCODE() for a point xi

DECODE(ui) = DECODE(ENCODE(xi)) = ui v1

) )



N

i

ii

N

i

ii u
1

2

1

1

2
)]([Distortion ENCODEDECODE vxxx

0)(2Distortion 11 



vxv ii

i

u
u

),(1vxiiu 

 vectornormalised1 v

datapointix

),(11 vxv i

ip

Orthogonal (closest) projection!
Exercise: prove that it is the closest
point on the line

Given ENCODE(), let us find optimal DECODE()

) )



N

i

ii

N

i

ii u
1

2

1

1

2
)]([Distortion ENCODEDECODE vxxx

0)(2Distortion
1

1

1









N

i

iii uu vx
v

0
1 1

2

1  
 

N

i

N

i

iii uu vx








N

i

i

N

i

ii

u

u

1

2

1
1

x

v

1) Given DECODE(), let us find optimal ENCODE()

2) Given ENCODE(), let us find optimal DECODE()

3) Iterate until convergence!

4) At each iteration the Distortion not increasing

Algorithm for finding the optimal linear
autoencoder

1) Choose random v1

2) Normalize

3) Compute

4) Compute

5) Go to 2, iterate till convergence

),(1vxiiu 

1

1
1

v

v
v 








N

i

i

N

i

ii

u

u

1

2

1
1

x

v

Simple and fast iterative
algorithm for finding the first
principal component (aka
the best line approximating
the data point cloud)

How to find next principal component?

1) Subtract the contribution of the first component

2) Repeat the algorithm for finding the first component, call it

3) Same for the 3rd, 4th ,…, mth components

11),(vvxxx iii 

2v

Principal Components and Singular Value
Decomposition
• The best rank-one matrix approximation

• The best rank-m matrix approximation

j

i

j

i

iii

vux

u

1

)1(

111

)1(),(



 vvxvx

) )

1),(

...1,1,,0),(

......

),(...),(),(

1

2)(

1

2)()(

)()(

1

)1()1()(

2

)2(

1

)1(

2211












ss

N

i

k

i

N

i

k

i

k

ts

j

m

m

i

mj

i

j

m

m

i

j

i

j

i

j

i

mmiiii

mkuts

vvvuvuvux

vv

vv

vvxvvxvvxx





Can we do it in one shot, without iterations?

) )



N

i

ii

N

i

ii u
1

2

1

1

2
)]([Distortion ENCODEDECODE vxxx

),(1vxiiu 

)  


N

i

ii

1

2

11),(Distortion vvxx

minDistortion 

  
  


N

i

N

i

iii

N

i

i

N

i

N

i

iii

1 1

2

1

1

2

1

1 1

2

1),(),(),(),(2),(vxxxvxvxxx

max),(
1

2

1

2

1  


N

i

i

N

i

i uvx
v1 must be the direction of
the maximum variance of the
orthogonal projections!

Quadratic form, non-negative definite, global minimum if
not degenerated!

Solving the maximum variance direction
problem



 

  





 

  














































N

i

ikijjk

p

kj

k

N

i

ikijj

N

i

p

kj

kikjij

N

i

p

j

jij

N

i

i

N

i

i

xx
N

Nvxxv

vxvxvx

1

11

1,

1

1

1

1 1,

11

2

1 1

1

1

2

1

1

1

2

1

1
 :matrix covariance empirical where

),,(

),(

?max;),(

C(X)C(X)

C(X)vv

vx

vvx

Properties of empirical covariance matrix

0...

numbers, real negative-non are of seigenvalue Hence,

0),(/1),(Indeed,

.0),(:definite negative-non is .2

; :symmetric is .1

1

21

1

2

1



















n

N

i

i

kjjk

N

i

ikijjk

N

xx
N



C(X)

vXC(X)vv

C(X)vvC(X)

C(X)C(X)C(X)

C(X)

Principal components are eigenvectors
of empirical covariance matrix, proof

111

2

11

21

1

2

1

1

2

111

1

1

1

11

1

2

111

1

11

21

21

1

),1(0,1 case, In this

...different be seigenvaluefirst Let

.1condition under max),(

;

.1),,(,for looking are We

rs.eigenvecto lorthonormaent correspond theare ,...,

;0... numbers, real negative-non are of sEigenvalue

1

ev

C(X)vv

eC(X)eC(X)v

evev

eee

C(X)

C(X)































i

xx
N

i

p

i

i

p

i

ii

p

i

iii

p

i

ii

p

i

iii

p

i

ii

p

p

N

i

ikijjk













We’ve just learnt: two ways to compute
principal components
• Iterative SVD algorithm – simple and fast

• Computing the eigenvectors of the covariance matrix p x p – can be
slow, especially for large p

• Let us have a look in MATLAB help:

Attention, in sklearn, PCA can be non-
deterministic!

‘Impossible’ PCA plots

‘Impossible’ PCA plots

Using loadings for data
visualization is incorrect!
Because they do not
reflect the distances in Rm

U – Object projections
V – Coordinate ‘loadings’

How many principal components one can
compute?

• If p < N then one can compute p components

• If p ≥ N then one can compute at maximum N-1
components (this is the maximum rank of the
empirical covariance matrix)

• Exercise: demonstrate this fact in Python

How many principal components to retain?

• Scree plot

• If eigenvalues are

normalized to unity sum,

then the y-axis is called

‘the fraction of variance

explained (FVE)’

Not bad choice

Not brilliant

Pretty good

How many principal components to retain?

• Kaiser rule

Mean of all eigenvalues

How many principal components to retain?

• Broken-stick model

• bs(j,p) is the expected

(mean) length of the

jth longest segment of

a unit length stick

randomly broken in

p segments

bs(j,7)

How many principal components to retain?

• Condition number-based*

*Least dependent on the number of redundant features

max

max/k

k≤10

Mean

1700
handwritten

digits
32x32 pixels

R1024

Digit 1PC 2PC 5PC 16PC 32PC 64PC

Four definitions of PCA

• Classical: approximate the data point cloud by linear manifold of
small dimension

• Textbook: Find such a linear subspace in which the variance of
orthogonally projected data points is maximal

• Find such a linear subspace in which the sum of pairwise
distances between orthogonally projected data points is maximal

• For a given probability distribution, find such an orthogonal
transformation of the coordinate system that correlations
between new coordinates will become zero

G
eo

m
et

ri
ca

l
ap

p
ro

ac
h

P
ro

b
ab

ili
st

ic
ap

p
ro

ac
h

Case of REALLY BIG DATA

• Case of N >> p, p ~< 10000 : incrementally compute the covariance
matrix

• Case p >> N > 10000 : subsampling or probabilistic approaches such
as Probabilistic PCA or Random SVD

• Use on-line learning for PCA (e.g., neural networks!)

• Case of sparse data : Sparse PCA

• Incremental principal component analysis (IPCA) is typically used as a
replacement for principal component analysis (PCA) when the dataset
to be decomposed is too large to fit in memory

Much more about PCA…
• PCA with data point weights…
• Robust PCA (e.g., PCA using L1 metrics)
• PCA for data with missing values without pre-imputation or filtering

(alternating least squares matrix factorization)
• Eigen-decomposition of the correlation matrix (scaled PCA)
• Performing PCA on a correlation matrix
• Generalized Singular Value Decomposition
• Common Principal Component Analysis
• Tensorial PCA
• Supervised PCA
• Kernel PCA

