Fundamentals of Al
Dimensionality reduction

Linear methods of dimred:
Independent Component Analysis (ICA)
Non-negative Matrix Factorization (NMF)
Factor analysis (FA)




Independent Component Analysis (ICA)



Data whitening:
when PCA can not be applied

» Select m first principal components

* Compute principal components X = UV

* Normalize U - U’ such that U'U’"=|

* U’ —is new whitened dataset

* It’s empirical covariance is unity, all eigenvalues equal 1

* PCA can not be applied to U anymore

* But higher moments of U are not zero if U is not Gaussian!

e Can we use them?

X2

u2':

“white” data

z Ulh




In other words...

* Imagine that we reduced the dimensionality of the
data point cloud to m components by PCA

* Any rotation of this subspace won’t change the total
amount variance explained by the reduced R™

* Can we choose an orthogonal rotation of axes such
that the axes would reflect something more
informative than variance?



Cocktail party problem: ‘blind source separation’
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Separated

Mixtures
Sources

Can be solved if sources are statistically independent!

Check https://www.di.ens.fr/~fbach/kernel-ica/sound-demos.htm



https://www.di.ens.fr/~fbach/kernel-ica/sound-demos.htm

Linear data transformation

S = WX, W is orthonormal matrix (rotation), WWT' = |

Probability Density Function of X is p(X) = p(Xy, X9, .., Xi)

Imagine that for new variables S, we can factorize p(Sy, S,,..., Sp) = P1(S1) P2(S,)- .. Pm(Si)
In this case we say that s, S,,..., S, are independent!

But how to find such W that S would be as independent as possible?



But how to find such W in S=WX that S would
be as independent as possible?

where ;) = _ fpx(f) log p, (€)de - €ntropy! (measure of ‘disorder’)

Can be solved using InfoMax algorithm suggested by Bell and Sejnowski in
1995

However, today another approach, fastICA, is more popular



FastICA principle

Entropy is maximal for the standard (with unit variance) Gaussian
distribution

Negentropy is a information-based measure
J(x) = H(Xgauss) = H(x) o ")

of deviation from ‘Gaussianity’

Some calculations for the mutual information, assuming that the data is
whitened and the matrix W is orthogonal, gives:

I(S]_1 821---1Sm) — COnSt—ZJ (SI)
i=1

Minimizing mutual information = maximizing non-Gaussianity of signals!



FastICA principle

* Negentropy is difficult to estimate from finite datasets (without
knowing PDF), one needs to approximate

* One of the approximations is through using kurtosis (normalized
fourth moment of data distribution)'

JO) = SEOY + oo kurt(y)®

e Aapo Hyvarinen suggested more general form.

J() < [E{G(»)} — E{G(v)}]*

where G() is some non-quadratic function and v is a standardized
normal distribution



FastICA algorithm

. Center the data to make its mean zero.

. Whiten the data to give z. g(y) = tanh(y)

. Choose an initial (e.g., random) vector w of unit norm. g(y) =y exp(-yz/Z)
(wT (y) =y’

. Let w « E{zg(w'z)} — E{¢'(w'2z)}w aty

. Letw « w/||w]|.

. If not converged, go back to step 4.

In order to find other components, deflation approach



Mixtures

Example of ICA work

InfoMax super

InfoMax sub

FastICA

Extracted component 1

Extracted component 2

Extracted component 3




Ambiguities of ICA

*\We can not determine the variances (energies)
of the independent components

*\We can not determine the order of the
independent components

* However, we can apply bootstrap and estimate
the component’s stability



lcasso stabilization of independent
com ponents Clustering quality
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Non-negative matrix factorization (NMF)



Non-negative matrix factorization

* Group of algorithms solving the problem X = WH

W X
YV H — —

x[ }-.—

where W and H contain only non-negative values




Non-negative matrix factorization: geometric
view

Principal Component Independent Component Non-negative Matrix
Analysis Analysis Factorization
PCA ICA NMF
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Learning the parts of objects by non-negative
matrix factorization (Lee and Seung, Nature, 1999)

K-MEANS
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Most popular algorithm: Lee and Seung's
update rule

We solve the problem |X - WH|? - min, subject to W20, H=0

initialize: W and H non negative.

Then update the values in W and H by computing the following, with n as an index of the iteration.

WV,
R A N
' (W*)FW"H"); j Iterative application of
and > non-negative least square
P (V(I-I”“)T)[i’j] regression
[4,7] 5]

[2,] (Wn Hn—l—l (Hn—l—l )T)[EJ]
Until W and H are stable.



Non-negative matrix factorization as a
clustering method

|1 X — WHH2 — min, subjecttoW = 0,H > 0

Theorem: if H is orthogonal (HH' is diagonal)
then the solution to the problem is given by K-means

clustering of columns in X. W are cluster centroids in this case.

Remark: if H is only approximately orthogonal (frequently
the case), the clustering property still holds

Exercise: Prove this theorem*

*hint: read http://ranger.uta.edu/~chqgding/papers/NMF-SDM2005.pdf



http://ranger.uta.edu/~chqding/papers/NMF-SDM2005.pdf

Most of the NMF applications are for
clustering

e Astronomy (astrophysical signals are
non-negative, e.g. spectra)

* Text mining (word frequencies are non-
negative)

* Bioinformatics (clustering gene o

expression and DNA methylation)
* Nuclear imaging (SPECT and PET & P
medical imaging) s £ L

oo motor

episodic  psn  verbal




Number of components in NMF

* Cophenetic correlation coefficient (measure of how faithfully a
dendrogram preserves the pairwise distances in R™)

Cophenetic correlation coelTicient
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Factor Analysis (FA)



FA: Probabilistic linear dimred technique

* The goal is to find latent random variables explaining the data as a linear
superposition of them

* We assume that the data is centered (mean of all variables equals to zero)
* x; are columns of the data matrix (variables), i=1...p

Ti =lpk1 + -+ lipF + €.

F,... F, are ‘latent factors’ (random variables)

We assume that the factors are uncorrelated : Cov(F) =/

We assume that the factors are centered (mean of F,; is zero)

We assume that the noise ¢ and factors are independent

Usually we assume that each F; has standartized Gaussian distribution



Matrix formulation

X = LF + €, subject to Cov(F)=I

Geometric image

Very similar to the
objective of PCA!
But F1 does not
have to ‘explain’
more variance
than F2

Unit circle



Rotation of factors
X = LF + &, subject to Cov(F)=I

Take an orthonormal matrix R (rotation matrix): RR"=I

X=LF+e=LRRTF+¢=LF +z¢,
Cov(F’)=I, F’is standardized Gaussian

We can rotate factors without changing the model!

We can rotate them to achieve sparsity or other desired
properties



Difference between FA and PCA: a confusing

discussion

For example, https://www.theanalysisfactor.com/the-fundamental-

difference-between-principal-component-analysis-and-factor-analysis/

e ‘PCA looks for a linear combination of variables’

* ‘Factor Analysis is a measurement model of a latent variable’
* “As you can probably guess, this fundamental difference has many,

many implications.”

PCA

FA



https://www.theanalysisfactor.com/the-fundamental-difference-between-principal-component-analysis-and-factor-analysis/

Difference between FA and PCA: a confusing
discussion

1) FA is a method from probabilistic approach to data mining, PCA is a
geometric method

2) PCA is one possibility to solve the problem of FA in some simple
cases

3) After application of PCA, the axes can be rotated to optimize
something

4) FA can be made more general than PCA (e.g., assume non-Gaussian
factors)

5) The noise model can be different in PCA and FA



N(e: 0;:W)  for FA
N(€;0;5621) for PPCA

(a) Factor Analysis

Example taken from : https://www.inf.ed.ac.uk/teaching/courses/pmr/17-18/assets/slides/slides10.pdf



https://www.inf.ed.ac.uk/teaching/courses/pmr/17-18/assets/slides/slides10.pdf

What you have to take

* Besides standard PCA, many other linear methods for dimensionality
reduction, also called matrix factorization methods

* |CA is usually a step after PCA application: remove Gaussian signal,
find rotation of coordinate axes maximizing non-Gaussianity

* NMF works as a clustering method with data matrices without
negative values

* FA is a wide family of probabilistic methods for dimensionality
reduction



