Fundamentals of Al
Dimensionality reduction

Multi-dimensional scaling (MDS):

example of projective approach to dimensionality
reduction




Projective vs Injective methods

Projective Injective*
ENCODE or PROJECT ENCODE or PROJECT
RP R™ m<<p RP R™ m<<p

—/

DECODE or INJECT
Variant 1: The projector is known for any yeRP

Variant 2: The projector is know only for yeX *we know where to find ANY point from R™ in R?



PCA, ICA, NMF, FA are injective methods

ENCODE or PROJECT

N\
RP R m<<p
—/

DECODE or INJECT



Multi-dimensional scaling is projective
method,

ENCODE or PROJECT

N\
RP R m<<p

DEC% ECT

Variant 2: The projector is know only for yeX



Input: a distance or dissimilarity matrix
From http://www.analytictech.com/networks/mds.htm
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http://www.analytictech.com/networks/mds.htm

Shepard Diagram

Shepard Diagram - Rank correlation: 78.85%
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Euclidian
(could be any distance matrix)

Plot in 2D by distance

A B C D
A O 16| 26| 24
B| 1.6 0| 25| 33
C| 26| 25 0] 1.7
D| 24| 33| 1.7 0

Variable 2
T Variable 3
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Data.ID | Varablel | Variable2 | Variable3
A 0.9 1.9 1.5
B 1.7 0.5 1.6
C 3 2 3.1
D 1.9 3.5 3
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When we compress our 3D image to 2D we cannot

accurately plot the true distances
E.g. the distances between AD and BC are too big in the image

The difference between the data point position in 2D (or #
of dimensions we consider with NMDS) and the distance
calculations (based on multivariate) is the STRESS we are trying

to optimize

Taken from https.//sites.ualberta.ca/~lkgray/uploads/7/3/6/2/7362679/slides-nmds.pdf



https://sites.ualberta.ca/~lkgray/uploads/7/3/6/2/7362679/slides-nmds.pdf

Three approaches

* Classical multidimensional scaling
* Metric multidimensional scaling (mMDS)
* Non-metric multidimensional scaling (nMDS)



Classical MDS aka Principal Coordinates Analysis (PCoA),
Torgerson Scaling or Torgerson—Gower

e Set up the squared proximity matrix D) = [dizj]

» Apply double centeringto D(®) : B=—-2JD®J | J=1T - %11’

* Determine the largest eigenvalues 4,,41,,..,4, and

corresponding eigenvectors €,..., €, of B
1

* Now, X = EmA%n, where E,, is the matrix of m eigenvectors and A is
the diagonal matrix of eigenvalues of B

Classical MDS minimizes strain defined as

s (b — (@iya) ) 2
> b2

Strainp (z1,Z2,...,ZN) = (



Classical MDS

Some explanations

* Double centering: transforming a rectangular matrix to
the one having mean values of rows equal to zero and
mean values of columns equal to zero

* Double centering is done by subtracting all row means
and column means and adding the global mean to
each element of the matrix

* Centering matrix ¢, =1, — +117 3x3
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Classical MDS

Some explanations

* Matrix B is the matrix of scalar products (Gramm
matrix)

* In Euclidean space it is connected with the matrix of
squared distances D(?) = [dizj] via double-centering

* Exercise: prove this or demonstrate in a program



Classical MDS
Some explanations

* Reminder: if we want to approximate a symmetric
non-negative matrix A by a matrix of rank m, we need
to compute m eigenvectors corresponding to the

largest eigenvalues, and then A = E,, A, (E,)7T

* Remark: any symmetric non-negative matrix has only
non-negative eigenvalues



Classical MDS
Difference and similarity with PCA

* PCA is based on computing the largest eigenvectors of the empirical
covariance matrix C = XXT

e C has dimension p x p, where p is the number of variables

 MDS is based on computing the largest eigenvectors of the Gramm
matrix B = XX

* B has dimension N x N, where N is the number of objects

* Eigenvalues A are the same

* This corresponds to the difference between right and left singular
vectors in SVD : X = UAV



Metric MDS minimizes Stress

2 1/2
> (dij — llzi — ;1) ) /
2

2ij &

Stressp (1, X2,...,TN) = (



Non-metric MDS deals with ranks of distances
instead of their values
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Non-metric fit, R2 = 0.964

Linear i, R2 = 0.621 Shepard Diagram Stress calculated from

residuals around monotone
regression line
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: . on monotonic line (increasing
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Observed Dissimilarity

From https://www.youtube.com/watch?v=KI49qI3XJKY



What do you have to take

* MIDS takes as input the complete distance matrix : bad
scalability

* MIDS finds position of points in R™ without offering
INJECT function (from any point in R™ to RP)

* Many variants of MDS, flexibility

* Many non-linear dimensionality reduction methods
are based on the principles of MDS (base example:
Kernel PCA)



