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Injective methods

Injection function f,

: - 7
Manifold appears explicitly ‘ fo : latent space — data space
o —
Manifold can be analysed independently on the late-nt Vdata
L

data (for example, can be colored to visualize space
any function in the data space)

Can be used to generate new data data space

[.32]

Classical methods are limited to m=1,2,3,4 2= |
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From https://marcocuturi.net/
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Self-organizing Map (SOM)

* Introduced by Teuvo Kohonen in 1982 as a

type of (unsupervised) artificial neural =Ty
network 2 1A S
. i . g .I..~T__; - t-4-4
* Sometimes considered as a clustering T:'_L'i_f 88
technique ~|HH:_%_;_1[_;_T
) ) ) 0 S s i g
* ‘Clusters’ are organized in a regular grid H ,' %» k) .
p" L - ®
* Main application — data visualization 2t '-’f""""

* Approximates principal manifold

 SOM is not an optimization-based method! (it
does not optimize any function)



Self-organizing Map (SOM) algorithm

1) Randomize the node weight vectors in a map
2) Randomly pick an input vector x;

3) Traverse each node in the map

* Use the Euclidean distance formula to find the similarity
between the input vector and the map's node's weight I

vector

* Track the node u that produces the smallest distance (this
node is the best matching unit, BMU)

u = arg min ||x; — W||
v

oO——0
o——0

4) Update the weight vectors of the nodes in the
neiF borhood of the BMU (including the BMU itself) by
pulling them closer to the input vector

Wy = Wy + ab(u,v) (x; — W)

5) Repeat from step 2 for certain number of iterations
(many!)



Wy « W, + ab(w,v) (x; — W)

a - learning rate (usually, gradually decreasing)
6 (u, v) — neighbourhood function on the grid (internal space)

O(u,v) = exp(—
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SOM clustering of DHS profiles.
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Hundreds of variants of SOMs

e Batch SOM
* Online SOM
* Growing SOM

Optimization-based generalizations of SOMs:
Generative Topographic Mapping (GTM) — probabilistic approach
Elastic Maps — spline-based approach
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cipal Curve: balance between regular
nerties and approximation accuracy

o ﬂ PCA




Principal curve as a non-linear ‘regression’

Hastie and Stuetzle: Principal Curves 503

Figure 1. (a) The linear regression line minimizes the sum of squared deviations in the response variable. (b) The principal-component line
minimizes the sum of squared deviations in all of the variables. (c) The smooth regression curve minimizes the sum of squared deviations in the
response variable, subject to smoothness constraints. (d) The principal curve minimizes the sum of squared deviations in all of the variables,
subject to smoothness constraints.



Hastie’s principal curves (1989)

* Notion of self-consistency

Self-Consistency: A Fundamental
Concept in Statistics

Thaddeus Tarpey and Bernard Flury

Abstract. The term “self-consistency” was introduced in 1989 by Hastie
and Stuetzle to describe the property that each point on a smooth curve
or surface is the mean of all points that project orthogonally onto it.
We generalize this concept to self-consistent random vectors: a random
vector Y is self-consistent for X if #[X|Y]| = Y almost surely. This al-
lows us to construct a unified theoretical basis for principal components,
principal curves and surfaces, principal points, principal variables, prin-
cipal modes of variation and other statistical methods. We provide some
general results on self-consistent random variables, give examples, show
relationships between the various methods, discuss a related notion of
self-consistent estimators and suggest directions for future research.

Let us denote some set of points Y = {y;} eRP
(can be infinite)

[X|y;] : all data points X for which y; is the
closest one among all possible yeY

If E[X]y;] = y; then y is self-consistent

e H e R
FIG. 6. £ = 5 self-consistent points of the bivariate normal

distribution from Figure 2, along with the partition of R? by
domains of attraction of the five points.

Self-consistent points = principal points
Self-consistent lines = principal components



Hastie and Stuetzle: Principal Curves

E[X|y]=y

Figure 3. Each point on a principal curve is the average of the points

that project there. Figure 13. Each point on a principal surface is the average of the

points that project there.

Self-consistency is enough to define the principal curve if we know PDF

In the case of data point cloud, we need to introduce data ‘smoothers’
(similar to KDE)



One-dimensional SOM

Wariance
Unexplaine

88s 23.23%
& ¢ @ SOM F.26%




astic principal curve (one-dimensional
astic map)

Positive
springs
Negative
springs




Definition of elastic energy
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Example of a principal curve

Zinovyev and Gorban, Non-linear quality of life index
https://arxiv.org/ftp/arxiv/papers/1008/1008.4063.pdf
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https://arxiv.org/ftp/arxiv/papers/1008/1008.4063.pdf

Principal Manifold

O Basal
|:| LumA
PC1 O LumB
" (ERBB2
O Normal

A Unclassified

] Group A

0 Group B What is Principal Manifold
4 "I:‘:f:sf__.. . ER— 1. Intuitively, a smooth manifold going through the middle of data cloud; formally, there exist several

consistent curves and surfaces; 2) Kegl's principal curves provide the minimal mean squared error
given the limited curve length; 3) Tibshirani’s principal curves maximize the likelihood of the additive
noise data model; 4) Gorban and Zinovyev elastic principal manifolds minimize a mean square
error functional regularized by addition of energy of manifold stretching and bending; 5) Smola’s
regularized principal manifolds minimize some form of a regularized quantization error functional;
and some other definitions. Learn more in: Principal Graphs and Manifolds

\ |:| ER+ definitions for the case of data distributions: 1) Hastie and Stuelze’s principal manifolds are self-

a)

https://www.igi-global.com/dictionary/principal-graphs-
manifolds/23373

b) ELMAP2D c) PCA2D




Visualize any multidimensional function
in any point of the low-dimensional intrinsic space!

max

Four dimensional space

F = F(x1,x2,x3,x4)

F(XLx2,x3,x4) = x1  F(X1,x2,x3,x4) =

il

F(xi,x2,x3,x4) =x3

L
s el e

F=-0.4x1+0.3x2-0.5x3-0.5x4

X2

F(x1,x2,x3,x4) = x4

F= x12+x22+x3%+x42



Example of complex function:

probability density function estimate




ing’ data

‘Branch

Looking for paths



‘Branching’ data

_Feature selection

_‘W""




‘Branching’ data

_Qutlier detection




‘Branching” data

guestions : how many ‘bifurcations’, where the beginning, what is the
right sequence?




Single cell data cartography of Planarian (Plass et al,
2018

longitudinal
incision

Fig. 39.17. Dugesia. Regeneration. A—Three individuals regenerate from an individual cut into
three parts; B—Formation of a heteromorph with three heads.
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‘Branching data’

PC2 %exp. var.:

True graph

17.48

0. 1S =
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PC1 %exp. var.: 43.22

From Albergante et al, Robust and
Scalable Learning of Complex Intrinsic Dataset
Geometry via EIPiGraph, Entropy, 2020



PCA

Modified LLE

f/
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LLE
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‘Branching’ data

distributions

True graph



Elastic principal graph (EIPiGraph)
Two tasks have to be solved simultaneously:

1) Find the right graph ‘topology’
2) Fit the graph of given ‘topology’ to the data

Let us start from the second



Elastic principal graph (EIPiGraph)
how to fit a graph to the data

" Datapeints We minimize the
e L LW’/«/% o ° Gra;::i::\c/i:s Mea n Squared
Pt 9 MM ghrings Distance to the
r,f ‘ s VWV Negative neareast graph node
/ iL . s (just like k-means)!
——" e V=X 0-E0)]

2

from harmonicity: R(1) R(0) R(2)

o R(3) -
Penalty on deviation ar R C
._A. U=y
i=l1

ROO-2 Y RO()

j=l.k




Elastic principal graph (EIPiGraph)
how to fit a graph to the data

» Data points

@ Graph nodes

* Splitting algorithm (Expectation-
Maximization-like, very similar to k-means)

1) Start with an initial guess for the node

.. Positive
"NYEY Vigprings
VWMV, Negative

springs

positions

2) Perform the nearest node search for all
data points [ Z AJEO 1)~ £9(0)°

3) Solve linear equations to minimize the - 1 :
quadratic form U =2 RO = 3 RO())

4) Repeat 2-3 until convergence



Elastic principal graph (EIPiGraph)
how to find the right graph structure

Principal tree grammar:

-9 Growing grammar

Tllzl\:, Add node to a node =——————> TO p0|ogica|
oo Bisectanedge = = = = >
f/ll3\\‘:§\\ Pruning grammar gram marS a nd

QOO ® Removealea fnode ——>

//1”4\\'\’\ I \‘\x Shrink internaledge = = = — > gradient—based

L PANN

oge ':“ OO0 & descent

\\ :H N in the discrete space
soede of graph structures

$ulh /4

110/0]|7




Elastic principal graph (EIPiGraph)

final algorithm

1

Seeding initial graph structure | |Generating and fitting candidate topologies Final graph structure

O Data point o o)
Graph node O
MWW Contractive spring
WA Repulsive spring

L uo1123)3s ain1anals [ewndo

Elastic principal graph

enerey = MSE + UE + UR 5 min Exploring structure space with topological graph grammars



Small demo

Java applet, can be downloaded from :
http://www.ihes.fr/~zinovyev/FundamentalsOfAl2020 lectures/applet/

|£|PCA master applet - o X
" GalaPT | Std.data | Std.data2 | Std.data3 |
" REM | RGEM | RPT | GalaSOM | GalaEM % 2 W IMINCTSIEVIO 4
~ Dataset " pcA | som | Gsom D e g
Self organized map Learning history v JLI‘—" _l\ SotCl
Nodes: total 0 on current step 0 Step #0 from0
Random init || PCA init | | Options || Learn || Delay(ms)| 100
Remove initialization | | Showerror || =[]



http://www.ihes.fr/~zinovyev/FundamentalsOfAI2020_lectures/applet/

