
Self-organizing maps (SOM)

Principal Curve

Principal manifold

Principal graphs

Manifold learning and non-linear dimred

Fundamentals of AI



Injective methods 

Manifold appears explicitly 

Manifold can be analysed independently on the 
data (for example, can be colored to visualize 
any function in the data space)

Can be used to generate new data

Classical methods are limited to m=1,2,3,4

From https://marcocuturi.net/

Injection function f

https://marcocuturi.net/


Self-organizing Map (SOM)

• Introduced by Teuvo Kohonen in 1982 as a 
type of (unsupervised) artificial neural 
network

• Sometimes considered as a clustering 
technique

• ‘Clusters’ are organized in a regular grid

• Main application – data visualization

• Approximates principal manifold

• SOM is not an optimization-based method! (it 
does not optimize any function)



Self-organizing Map (SOM) algorithm
1) Randomize the node weight vectors in a map

2) Randomly pick an input vector 𝑥𝑖
3) Traverse each node in the map

• Use the Euclidean distance formula to find the similarity 
between the input vector and the map's node's weight 
vector

• Track the node u that produces the smallest distance (this 
node is the best matching unit, BMU)

𝑢 = 𝑎𝑟𝑔min
𝑣

| 𝑥𝑖 −𝑊𝑣 |

4) Update the weight vectors of the nodes in the 
neighborhood of the BMU (including the BMU itself) by 
pulling them closer to the input vector

𝑊𝑣 ← 𝑊𝑣 + 𝛼𝜃(𝑢, 𝑣) (𝑥𝑖 −𝑊𝑣)

5) Repeat from step 2 for certain number of iterations 
(many!)



𝑊𝑣 ← 𝑊𝑣 + 𝛼𝜃(𝑢, 𝑣) (𝑥𝑖 −𝑊𝑣)

𝛼 - learning rate (usually, gradually decreasing)

𝜃 𝑢, 𝑣 − neighbourhood function on the grid (internal space)

𝜃

𝜃 𝑢, 𝑣 = exp(−
𝑑𝑢,𝑣
2

2𝜎2
)

𝑑𝑢,𝑣

u

v





SOM clustering of DHS profiles. 

Nathan C. Sheffield et al. Genome Res. 2013;23:777-788



SOM of Wikipedia articles SOM of the Fisher's Iris Flower Data Set



Hundreds of variants of SOMs

• Batch SOM

• Online SOM

• Growing SOM

• …

Optimization-based generalizations of SOMs:

Generative Topographic Mapping (GTM) – probabilistic approach 

Elastic Maps – spline-based approach



Principal Curve: balance between regular 
properties and approximation accuracy

PCA



Principal curve as a non-linear ‘regression’



Hastie’s principal curves (1989)
• Notion of self-consistency

PC1

PC2

Self-consistent points  = principal points
Self-consistent lines = principal components

Let us denote some set of points Y = {yi} Rp

(can be infinite)

[X|yi] : all data points X for which yi is the 
closest one among all possible yY

If E[X|yi] = yi then y is self-consistent



Self-consistency is enough to define the principal curve if we know PDF 

In the case of data point cloud, we need to introduce data ‘smoothers’ 
(similar to KDE)

E[X|y] = y

Y

Yyy

E[X|y] = y



One-dimensional SOM



Elastic principal curve (one-dimensional 
elastic map)

Data
points

Grid
nodes

U(Y)

U(E)
Positive

springs

Negative

springs

U(R)



Definition of elastic energy
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Example of a principal curve 
Zinovyev and Gorban, Non-linear quality of life index 
https://arxiv.org/ftp/arxiv/papers/1008/1008.4063.pdf

https://arxiv.org/ftp/arxiv/papers/1008/1008.4063.pdf


Principal Manifold

https://www.igi-global.com/dictionary/principal-graphs-
manifolds/23373



Visualize any multidimensional function 
in any point of the low-dimensional intrinsic space!

Four dimensional space

(x1
i, x2

i, x3
i, x4

i)

F = F(x1,x2,x3,x4)

F(x1,x2,x3,x4) = x1 F(x1,x2,x3,x4) = x2

min

max

F(x1,x2,x3,x4) = x3 F(x1,x2,x3,x4) = x4

F= x12+x22+x32+x42F= -0.4x1+0.3x2-0.5x3-0.5x4



Example of complex function: 
probability density function estimate



‘Branching’ data



‘Branching’ data



‘Branching’ data



‘Branching’ data
questions : how many ‘bifurcations’, where the beginning, what is the 
right sequence?



Single cell data cartography of Planarian (Plass et al, 
2018)



‘Branching data’

From Albergante et al, Robust and
Scalable Learning of Complex Intrinsic Dataset 
Geometry via ElPiGraph, Entropy, 2020



‘Branching’ data 
distributions



Elastic principal graph (ElPiGraph)

Two tasks have to be solved simultaneously:

1) Find the right graph ‘topology’

2) Fit the graph of given ‘topology’ to the data

Let us start from the second



Elastic principal graph (ElPiGraph)
how to fit a graph to the data

Penalty on 

total length:

Penalty on deviation

from harmonicity:

We minimize the 
Mean Squared 
Distance to the 
neareast graph node 
(just like k-means)! 



Elastic principal graph (ElPiGraph)
how to fit a graph to the data

• Splitting algorithm (Expectation-
Maximization-like, very similar to k-means)

1) Start with an initial guess for the node 
positions

2) Perform the nearest node search for all 
data points

3) Solve linear equations to minimize the 
quadratic form

4) Repeat 2-3 until convergence



Elastic principal graph (ElPiGraph)
how to find the right graph structure

Topological 
grammars and 
gradient-based 

descent 
in the discrete space 
of graph structures



Elastic principal graph (ElPiGraph)
final algorithm



Small demo
Java applet, can be downloaded from : 
http://www.ihes.fr/~zinovyev/FundamentalsOfAI2020_lectures/applet/

http://www.ihes.fr/~zinovyev/FundamentalsOfAI2020_lectures/applet/

