

Fundamentals of AI

Manifold learning and non-linear dimred

Self-organizing maps (SOM)

Principal Curve

Principal manifold

Principal graphs

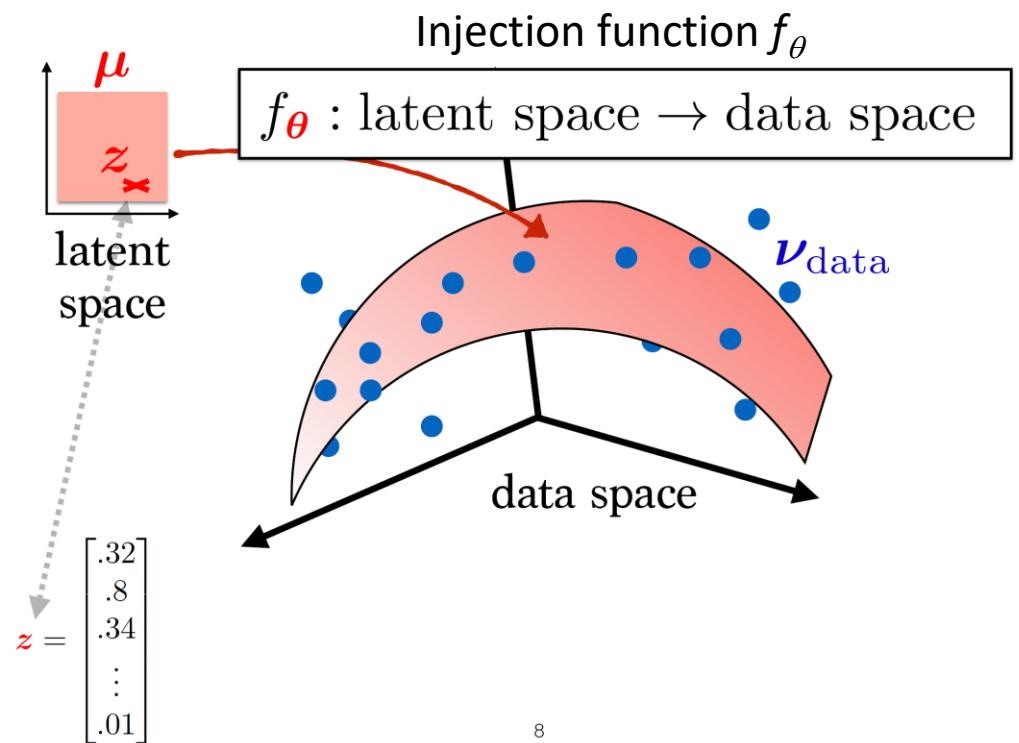
Injective methods

Manifold appears explicitly

Manifold can be analysed independently on the data (for example, can be colored to visualize any function in the data space)

Can be used to generate new data

Classical methods are limited to $m=1,2,3,4$

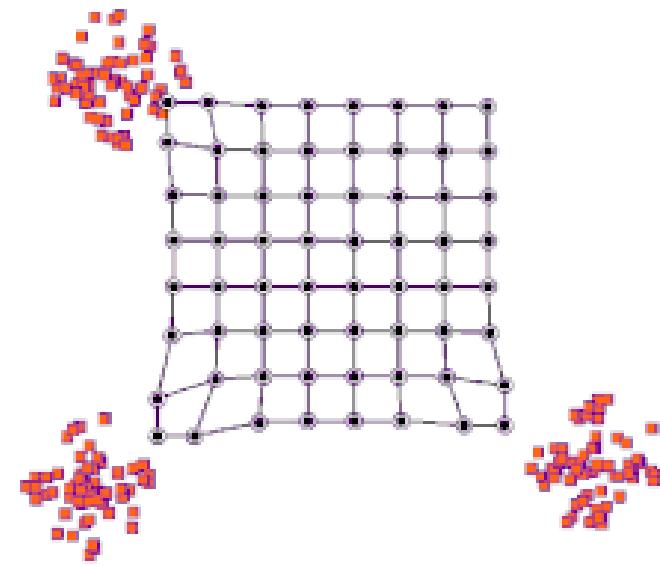


8

From <https://marcocuturi.net/>

Self-organizing Map (SOM)

- Introduced by Teuvo Kohonen in 1982 as a type of (unsupervised) artificial neural network
- Sometimes considered as a clustering technique
- ‘Clusters’ are organized in a regular grid
- Main application – data visualization
- Approximates principal manifold
- SOM is not an optimization-based method! (it does not optimize any function)



Self-organizing Map (SOM) algorithm

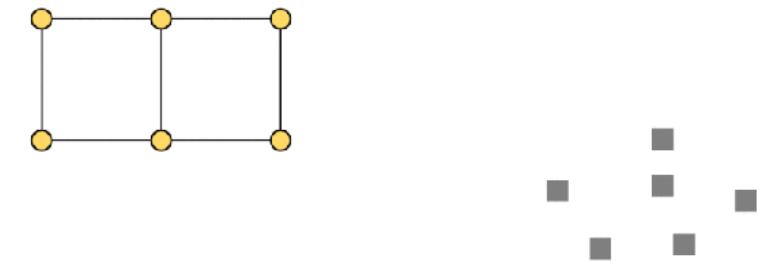
- 1) Randomize the node weight vectors in a map
- 2) Randomly pick an input vector x_i
- 3) Traverse each node in the map
 - Use the Euclidean distance formula to find the similarity between the input vector and the map's node's weight vector
 - Track the node u that produces the smallest distance (this node is the best matching unit, BMU)

$$u = \arg \min_v ||x_i - W_v||$$

- 4) Update the weight vectors of the nodes in the neighborhood of the BMU (including the BMU itself) by pulling them closer to the input vector

$$W_v \leftarrow W_v + \alpha \theta(u, v) (x_i - W_v)$$

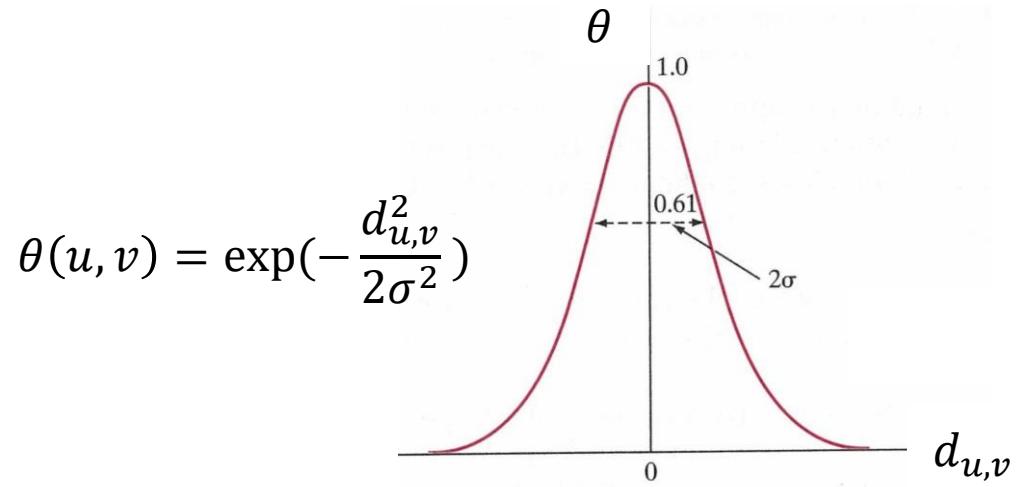
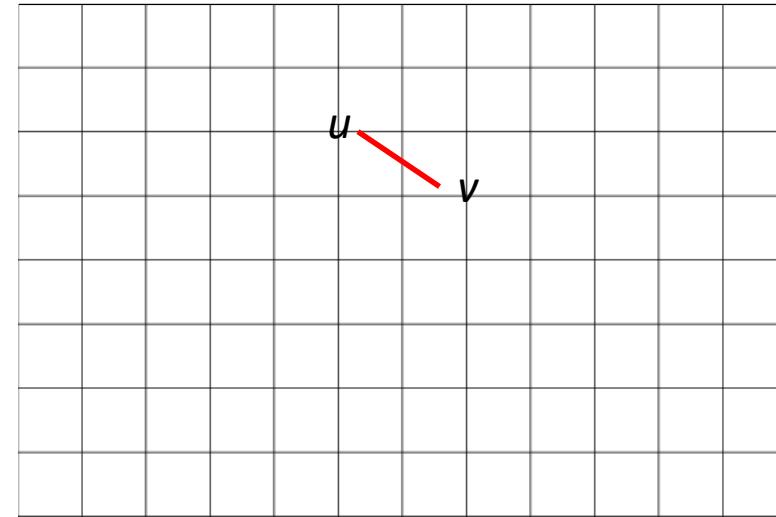
- 5) Repeat from step 2 for certain number of iterations (many!)



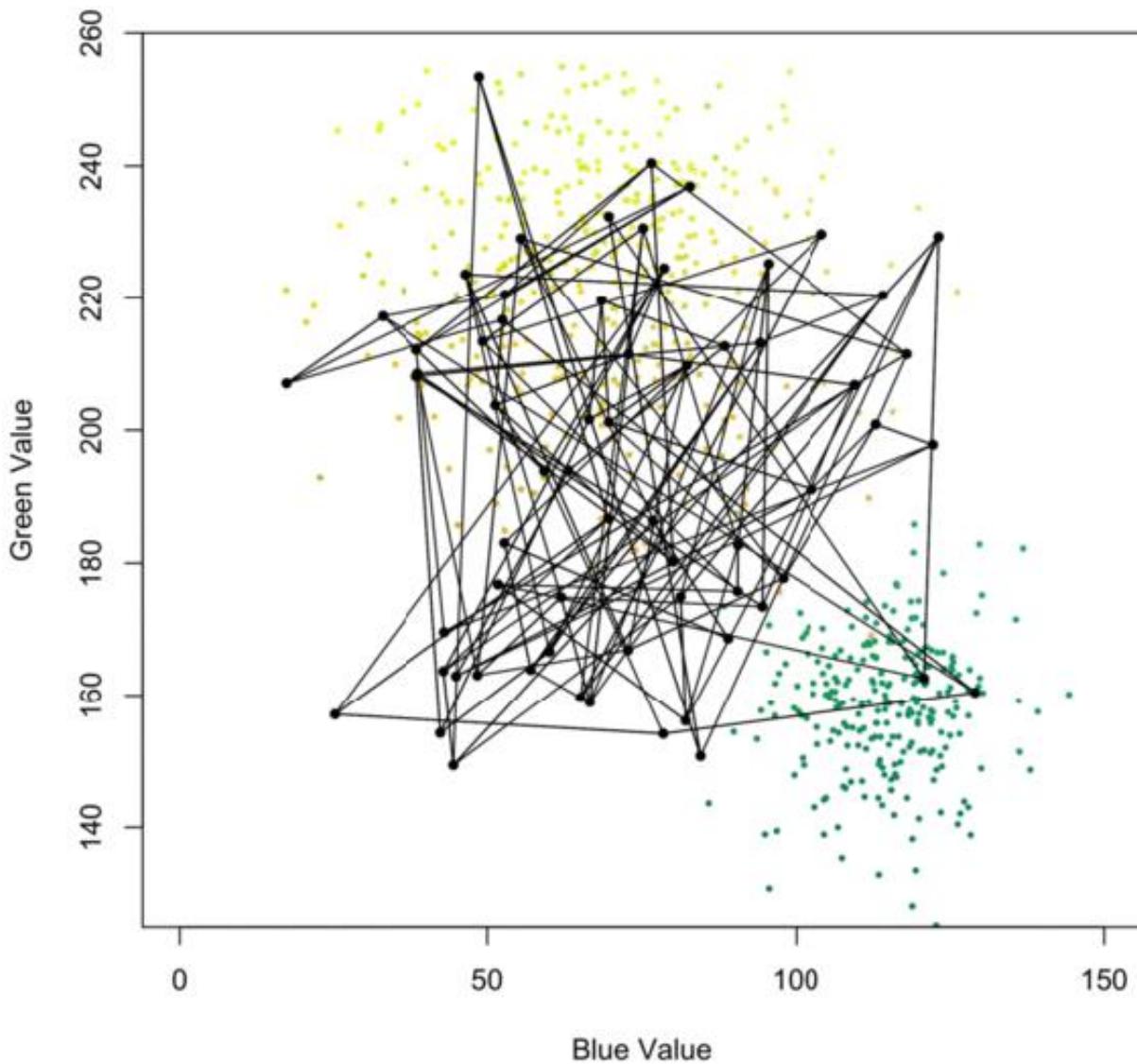
$$W_v \leftarrow W_v + \alpha \theta(u, v) (x_i - W_v)$$

α - learning rate (usually, gradually decreasing)

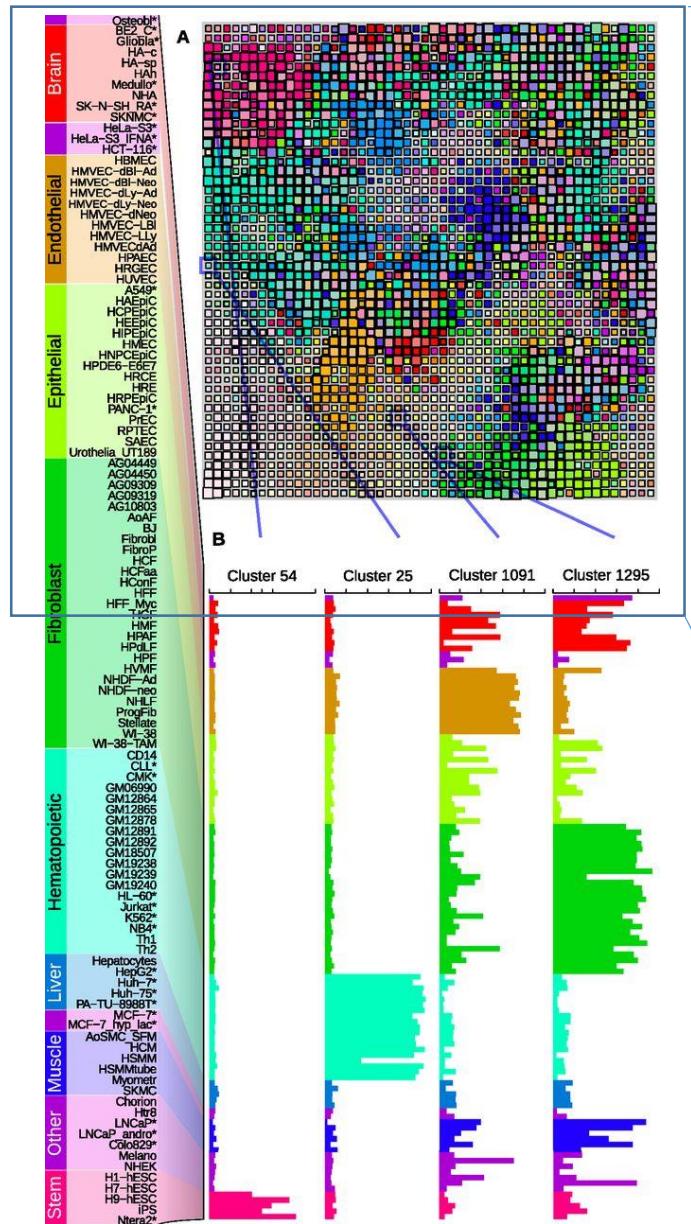
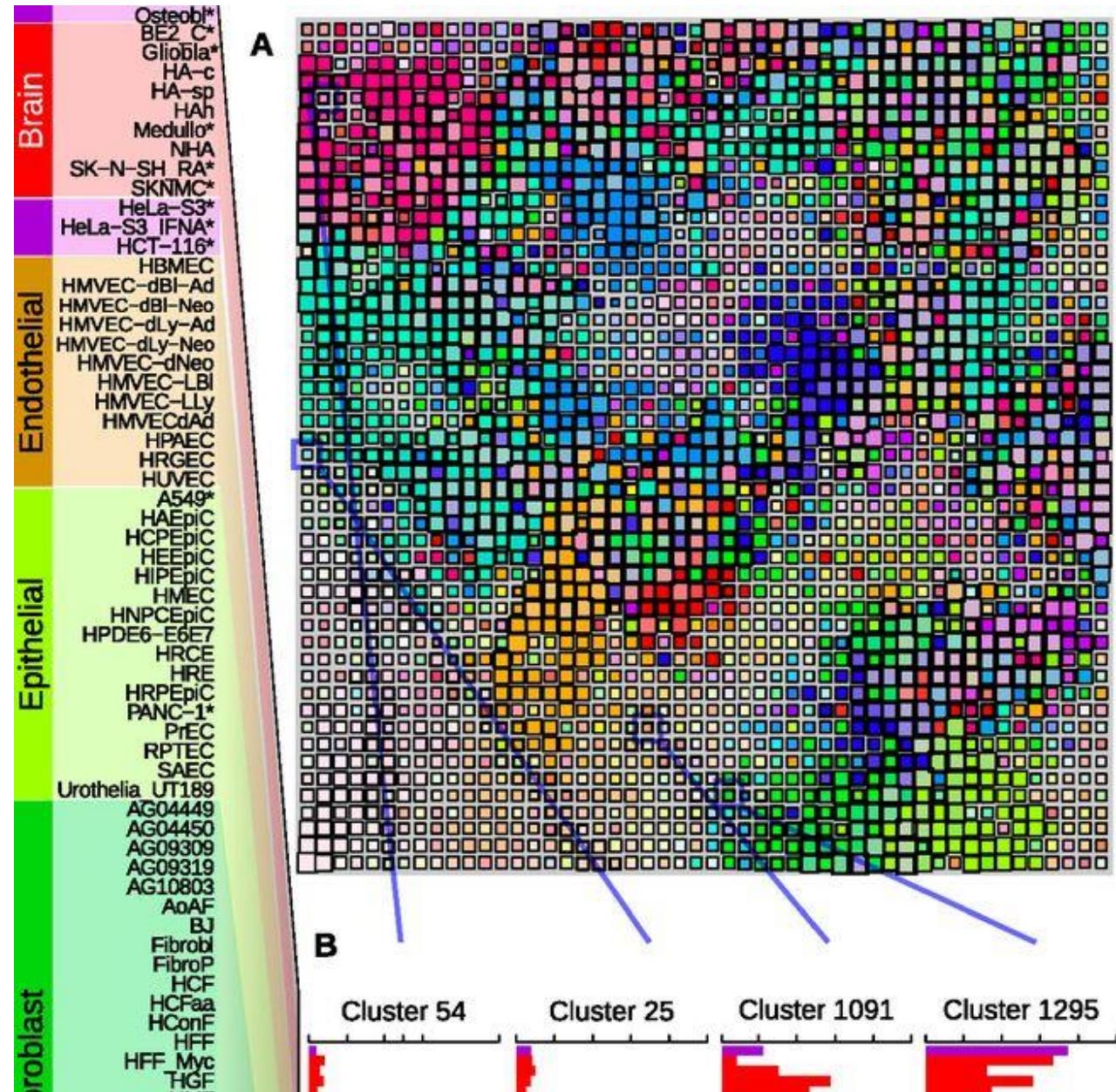
$\theta(u, v)$ – neighbourhood function on the grid (internal space)



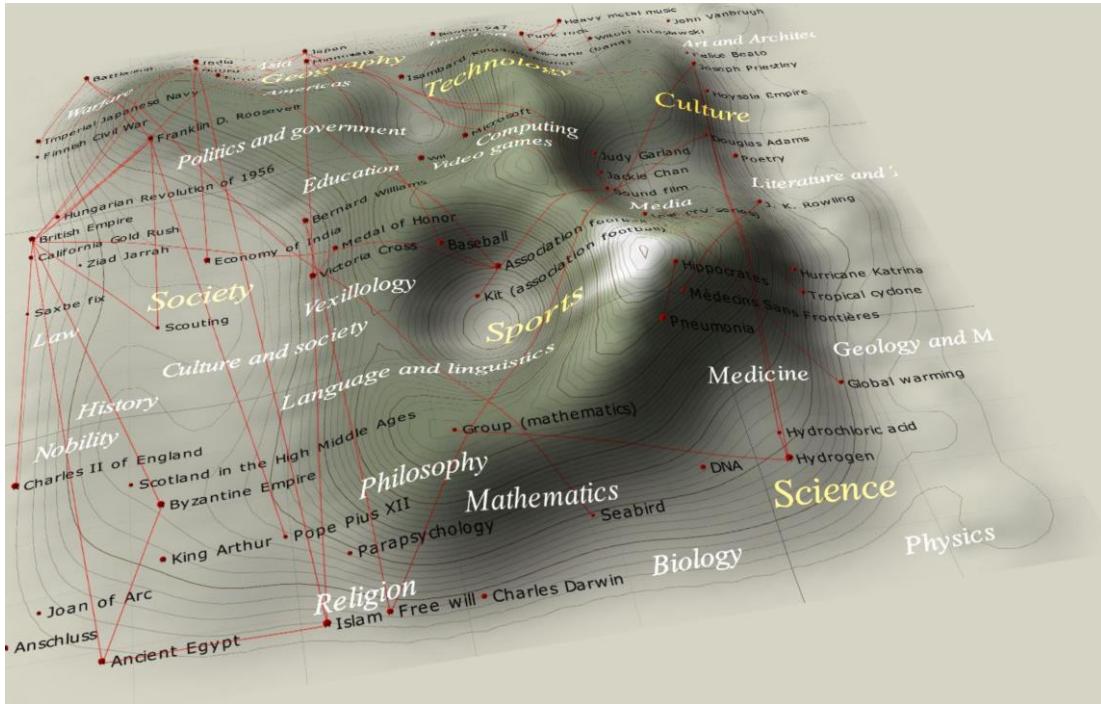
Iteration 1



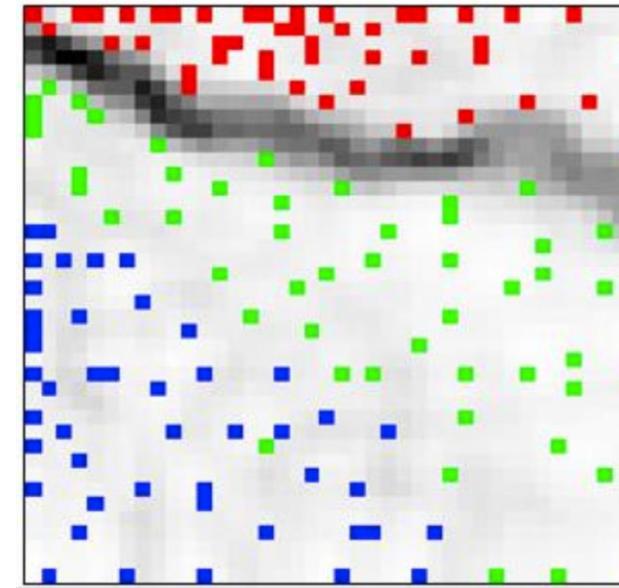
SOM clustering of DHS profiles.



SOM of Wikipedia articles



SOM of the Fisher's Iris Flower Data Set



Hundreds of variants of SOMs

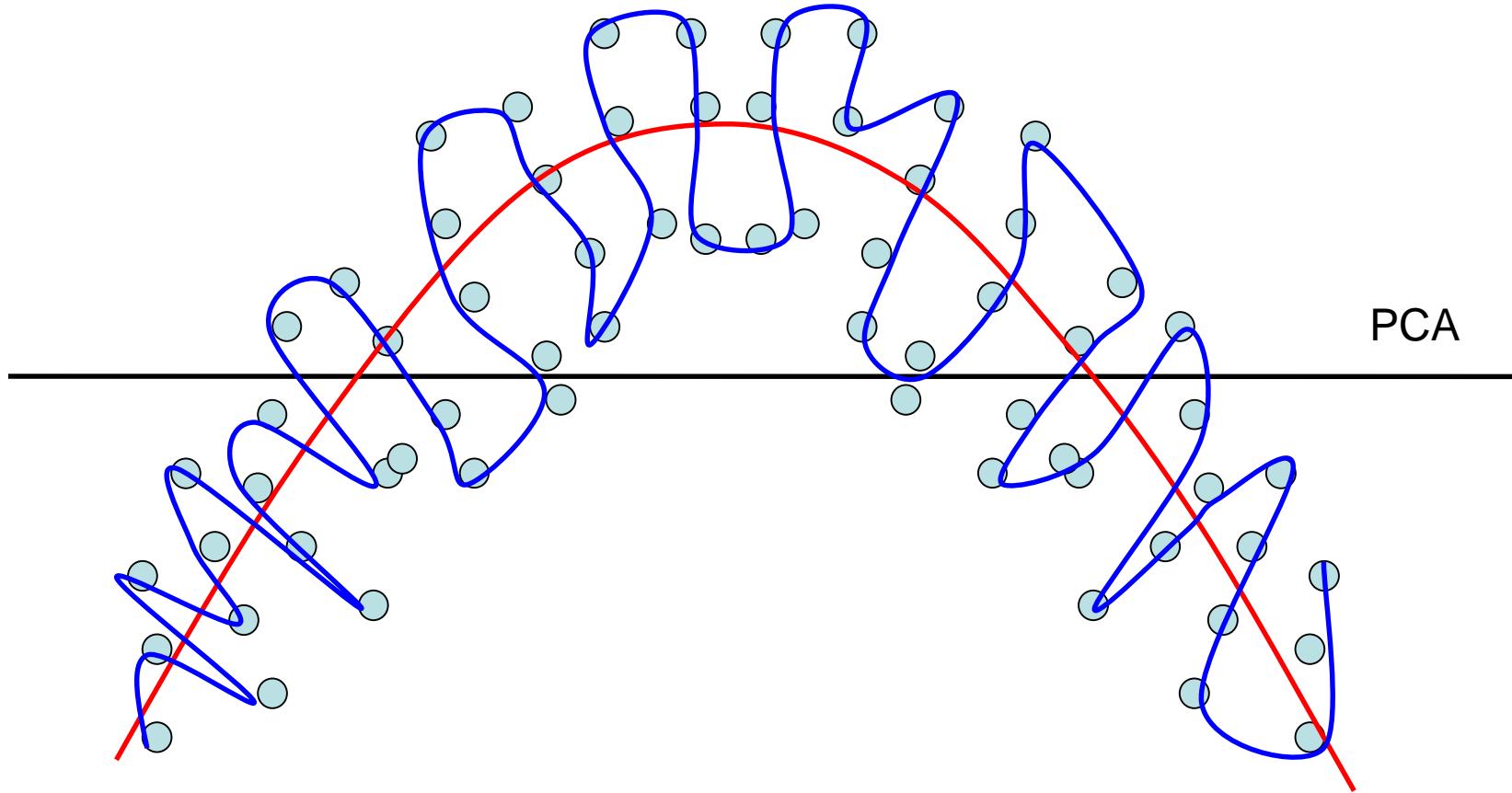
- Batch SOM
- Online SOM
- Growing SOM
- ...

Optimization-based generalizations of SOMs:

Generative Topographic Mapping (GTM) – probabilistic approach

Elastic Maps – spline-based approach

Principal Curve: balance between regular properties and approximation accuracy



Principal curve as a non-linear ‘regression’

Hastie and Stuetzle: Principal Curves

503

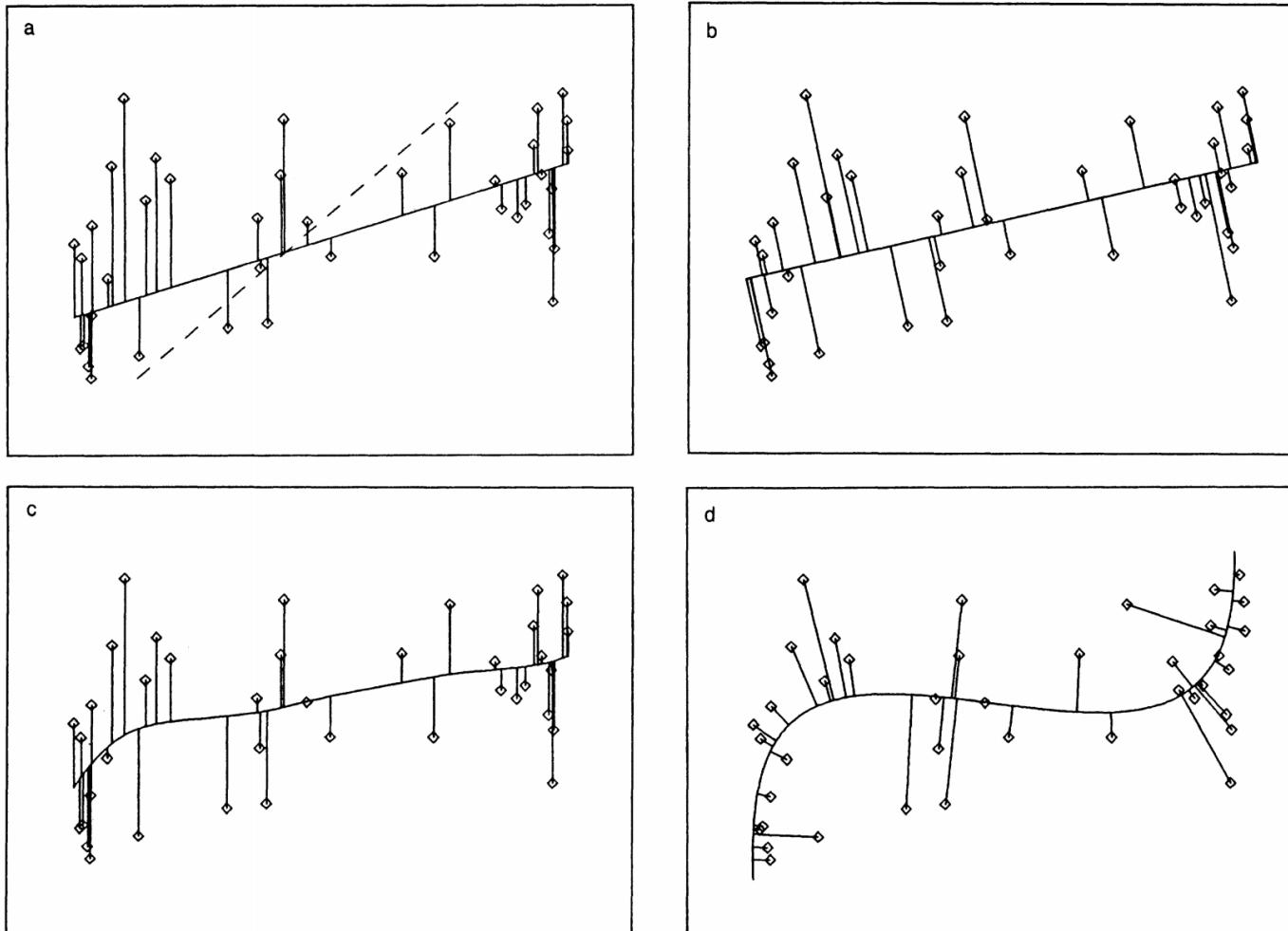
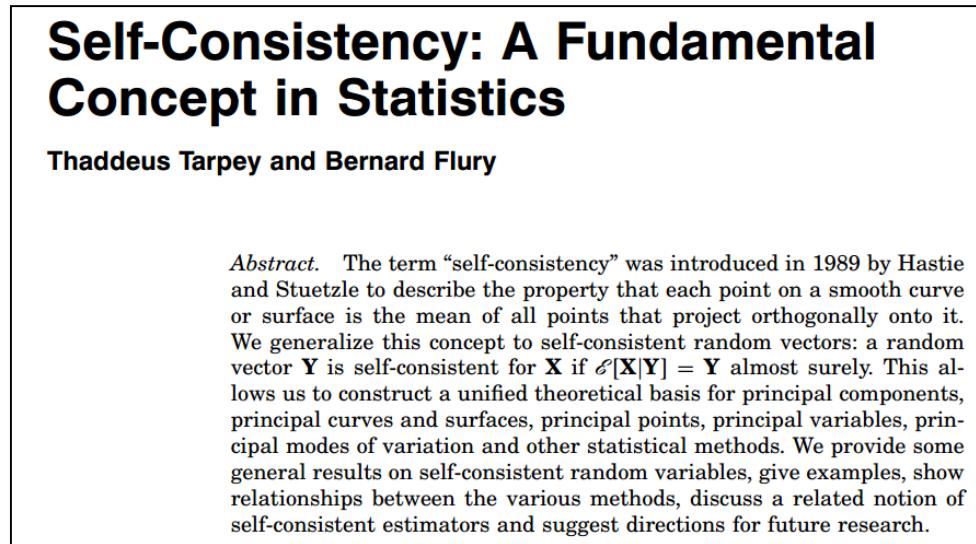


Figure 1. (a) The linear regression line minimizes the sum of squared deviations in the response variable. (b) The principal-component line minimizes the sum of squared deviations in all of the variables. (c) The smooth regression curve minimizes the sum of squared deviations in the response variable, subject to smoothness constraints. (d) The principal curve minimizes the sum of squared deviations in all of the variables, subject to smoothness constraints.

Hastie's principal curves (1989)

- Notion of self-consistency



Let us denote some set of points $\mathbf{Y} = \{\mathbf{y}_i\} \in \mathbb{R}^p$
(can be infinite)

$[\mathbf{X}|\mathbf{y}_i]$: all data points \mathbf{X} for which \mathbf{y}_i is the closest one among all possible $\mathbf{y} \in \mathbf{Y}$

If $E[\mathbf{X}|\mathbf{y}_i] = \mathbf{y}_i$ then \mathbf{y} is **self-consistent**

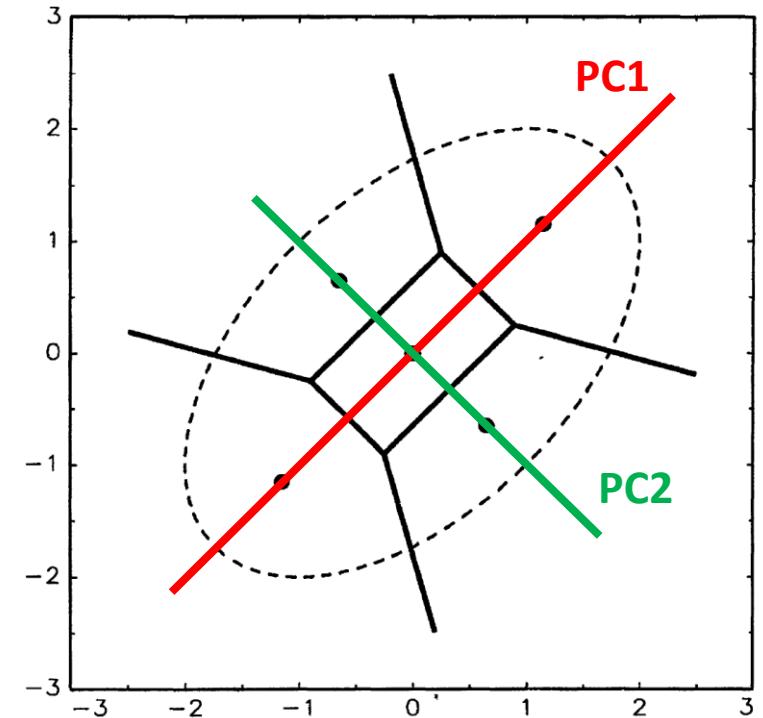


FIG. 6. $k = 5$ self-consistent points of the bivariate normal distribution from Figure 2, along with the partition of \mathbb{R}^2 by domains of attraction of the five points.

Self-consistent points = principal points
Self-consistent lines = principal components

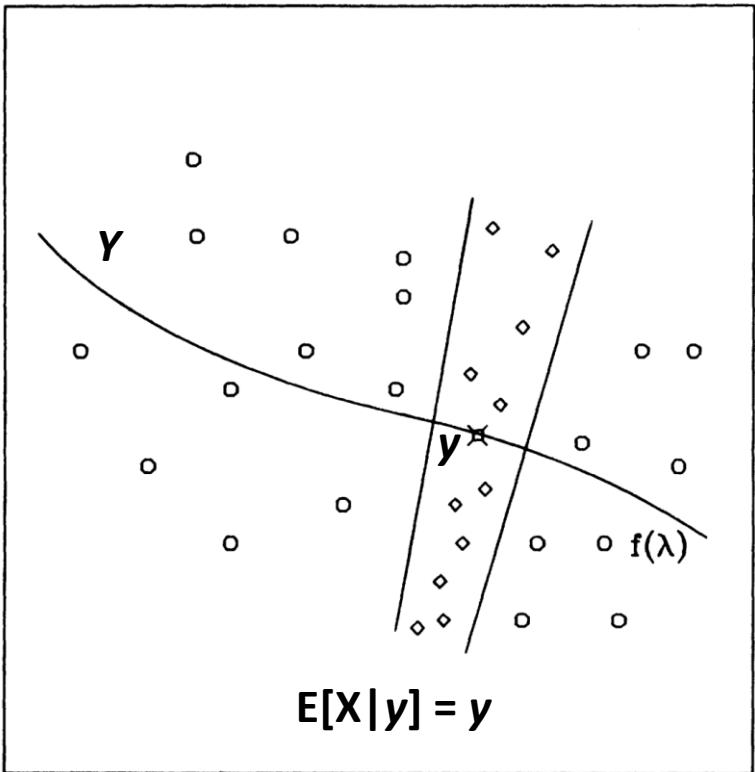


Figure 3. Each point on a principal curve is the average of the points that project there.

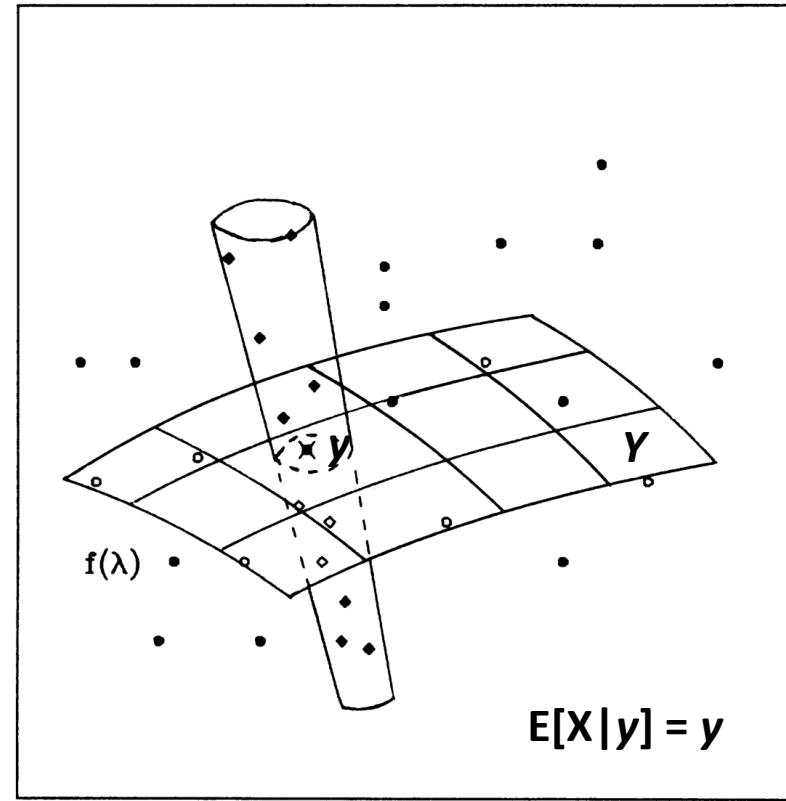
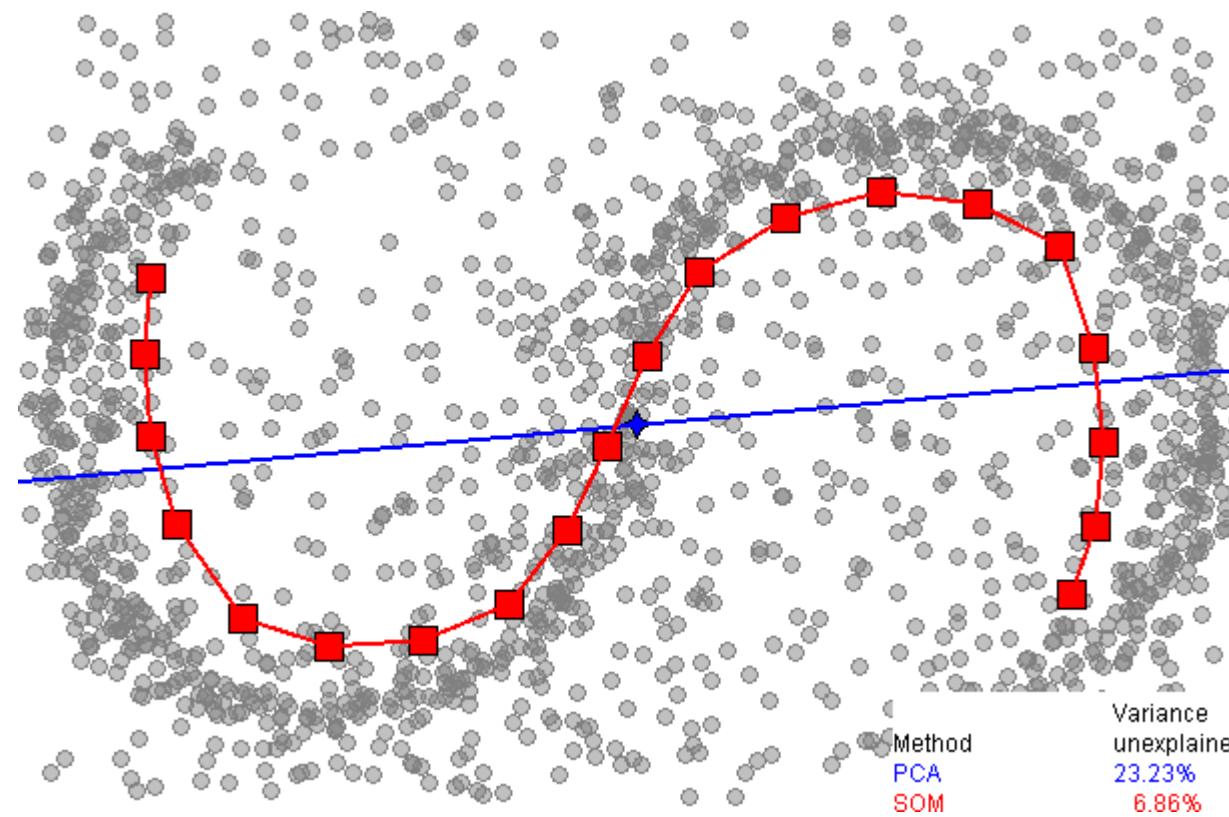


Figure 13. Each point on a principal surface is the average of the points that project there.

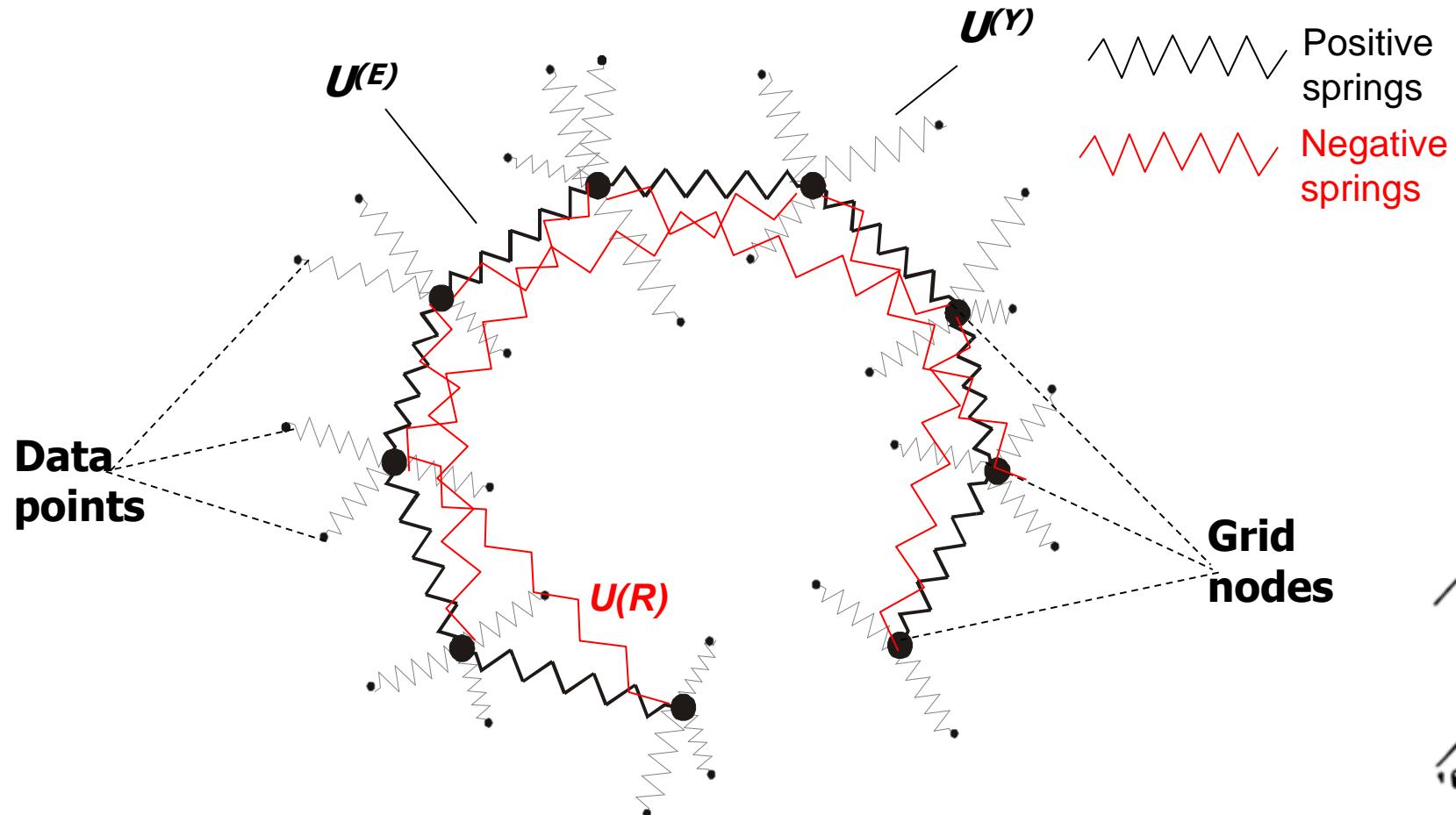
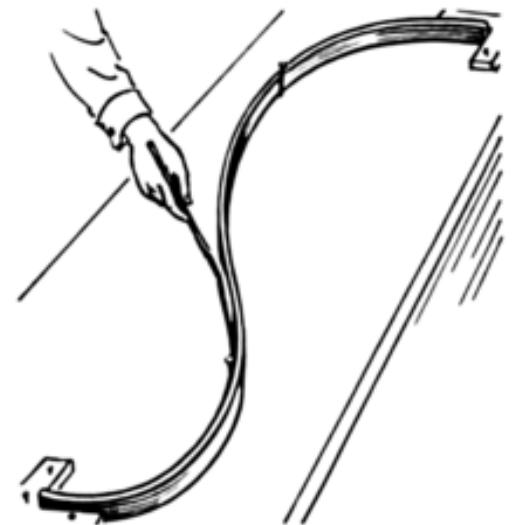
Self-consistency is enough to define the principal curve if we know PDF

In the case of data point cloud, we need to introduce data ‘smoothers’ (similar to KDE)

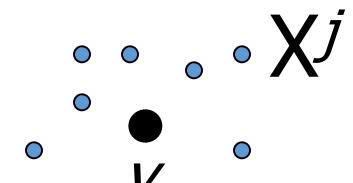
One-dimensional SOM



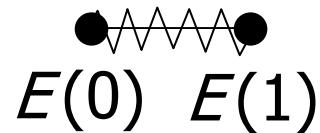
Elastic principal curve (one-dimensional elastic map)



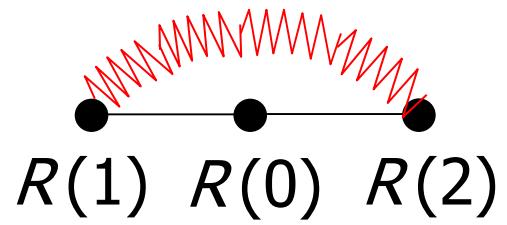
Definition of elastic energy



$$U^{(Y)} = \frac{1}{N} \sum_{i=1}^p \sum_{x^{(j)} \in K^{(i)}} \|X^j - y^{(i)}\|^2$$



$$U^{(E)} = \sum_{i=1}^s \lambda_i \|E^{(i)}(1) - E^{(i)}(0)\|^2$$



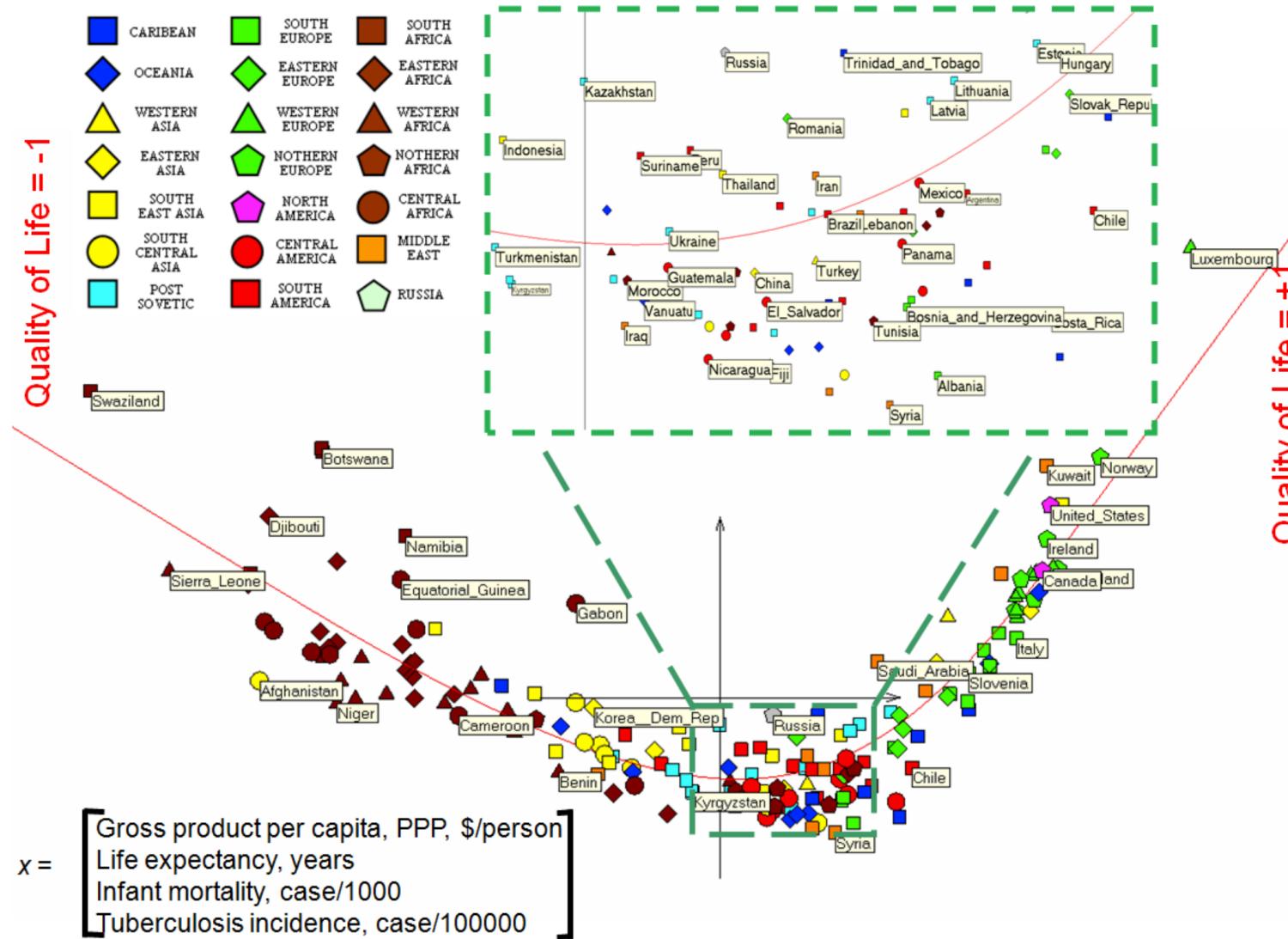
$$U^{(R)} = \sum_{i=1}^r \mu_i \left\| \frac{R^{(i)}(1) + R^{(i)}(2)}{2} - R^{(i)}(0) \right\|^2$$

$$U = U^{(Y)} + U^{(E)} + U^{(R)} \quad \lambda_i = \lambda_0, \quad \mu_i = \mu_0$$

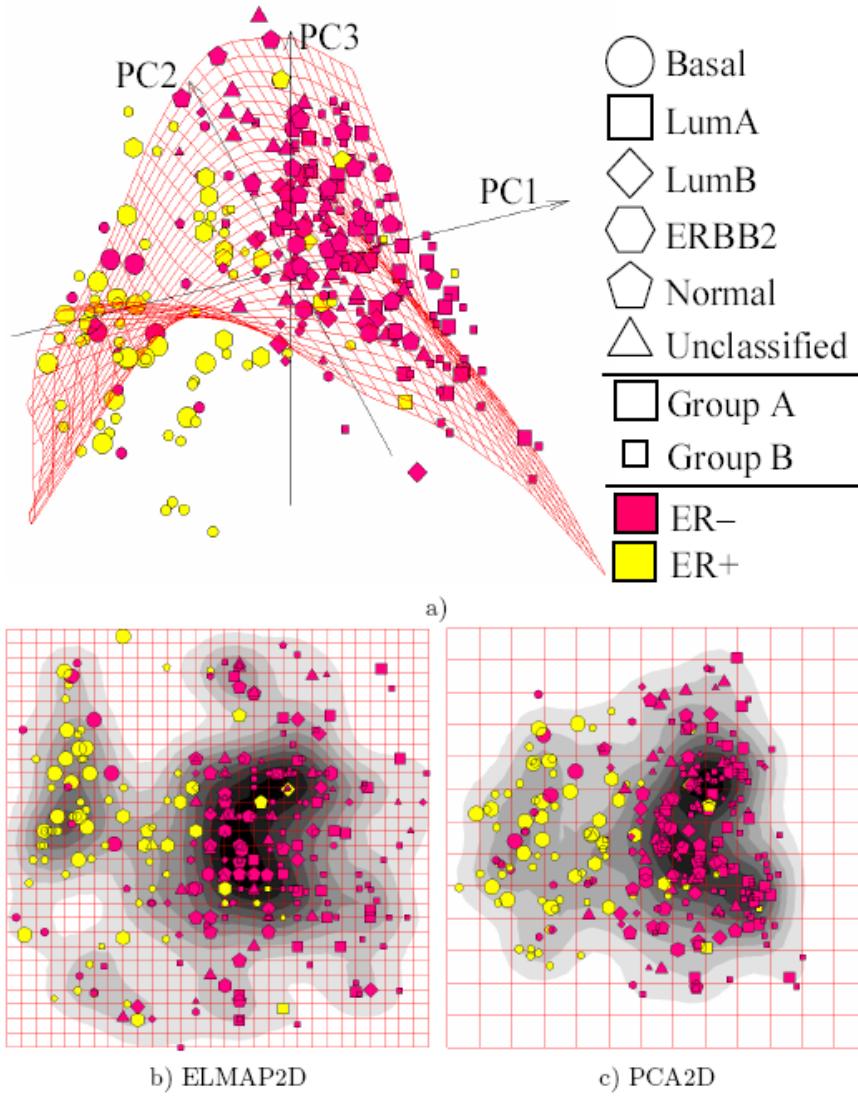
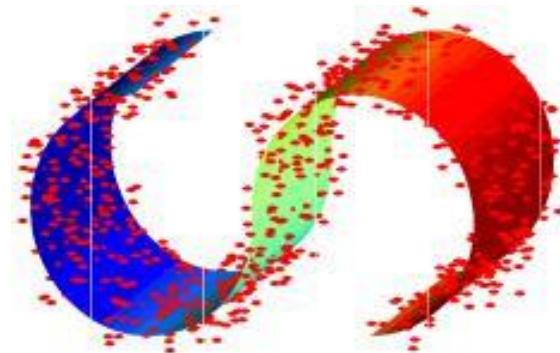
Example of a principal curve

Zinovyev and Gorban, Non-linear quality of life index

<https://arxiv.org/ftp/arxiv/papers/1008/1008.4063.pdf>



Principal Manifold



What is Principal Manifold

1. Intuitively, a smooth **manifold** going through the middle of data cloud; formally, there exist several definitions for the case of data distributions: 1) Hastie and Staelze's **principal manifolds** are self-consistent curves and surfaces; 2) Kegl's **principal** curves provide the minimal mean squared error given the limited curve length; 3) Tibshirani's **principal** curves maximize the likelihood of the additive noise data model; 4) Gorban and Zinov'yev elastic **principal manifolds** minimize a mean square error functional regularized by addition of energy of **manifold** stretching and bending; 5) Smola's regularized **principal manifolds** minimize some form of a regularized quantization error functional; and some other definitions. [Learn more in: Principal Graphs and Manifolds](#)

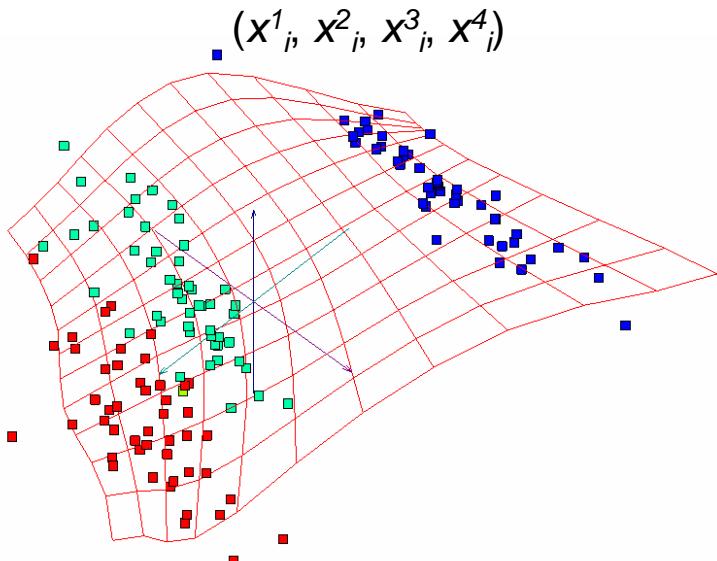
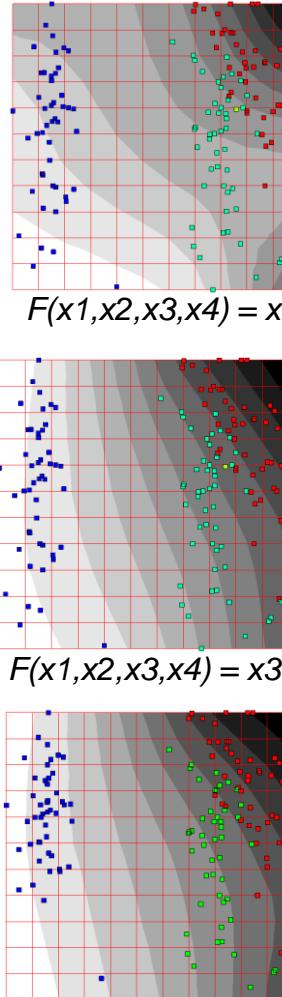
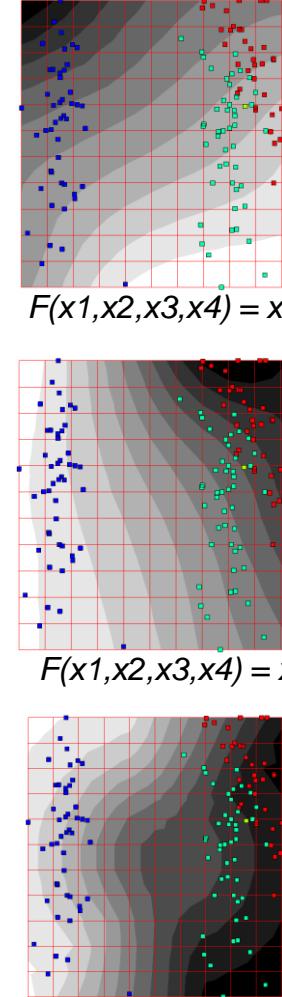
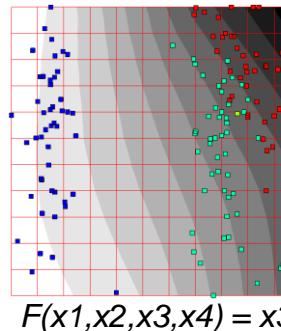
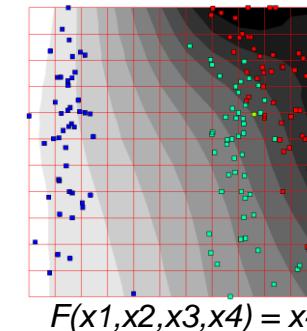
Principal manifolds are smooth curves or surfaces that pass through the middle of a data cloud. There are several formal definitions for this concept, depending on the type of data distribution:

- 1) Hastie and Staelze's **principal manifolds** are self-consistent curves and surfaces.
- 2) Kegl's **principal** curves provide the minimal mean squared error given the limited curve length.
- 3) Tibshirani's **principal** curves maximize the likelihood of the additive noise data model.
- 4) Gorban and Zinov'yev elastic **principal manifolds** minimize a mean square error functional regularized by addition of energy of **manifold** stretching and bending.
- 5) Smola's regularized **principal manifolds** minimize some form of a regularized quantization error functional.

<https://www.igi-global.com/dictionary/principal-graphs-manifolds/23373>

Visualize any multidimensional function *in any point of the low-dimensional intrinsic space!*

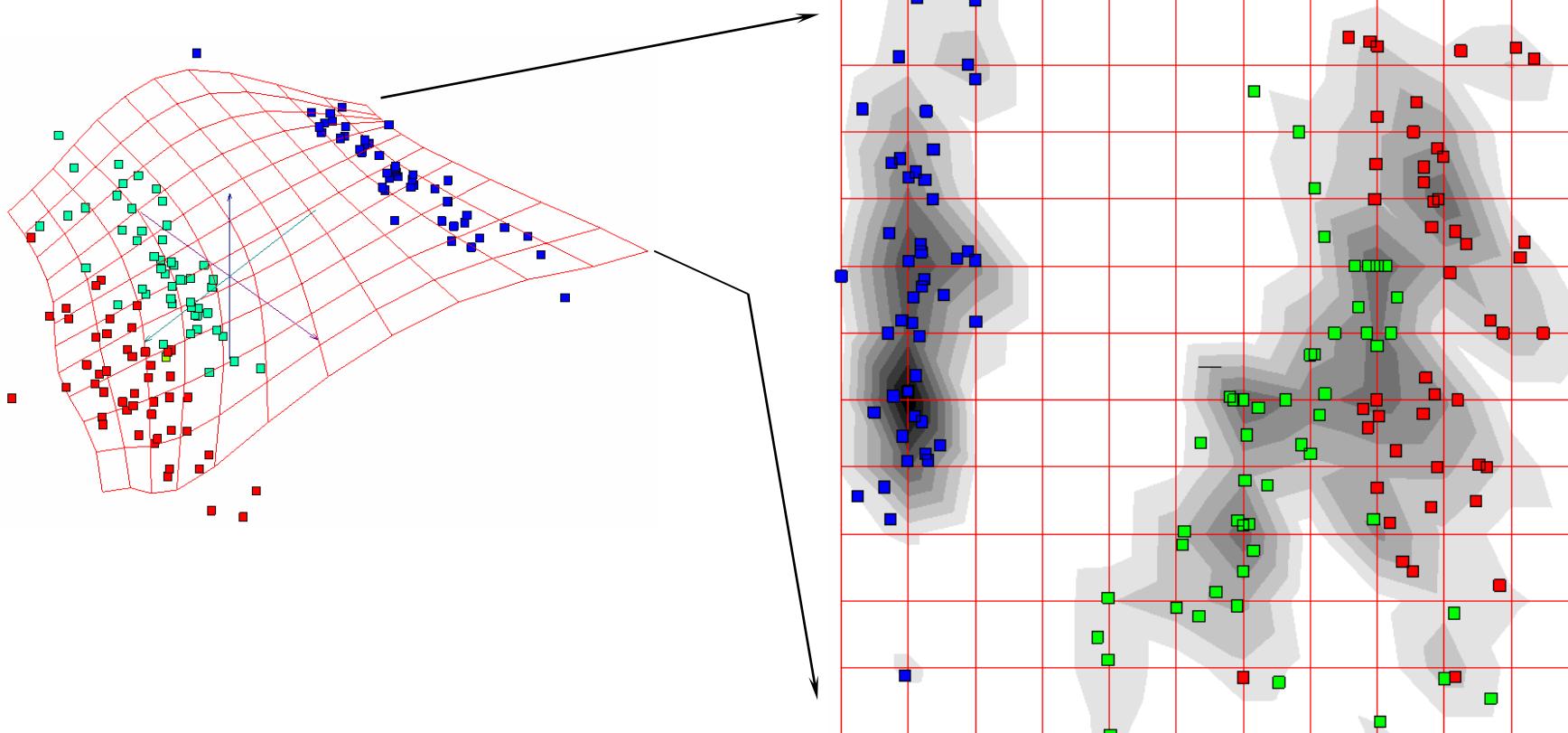
Four dimensional space



$$F = -0.4x_1 + 0.3x_2 - 0.5x_3 - 0.5x_4$$

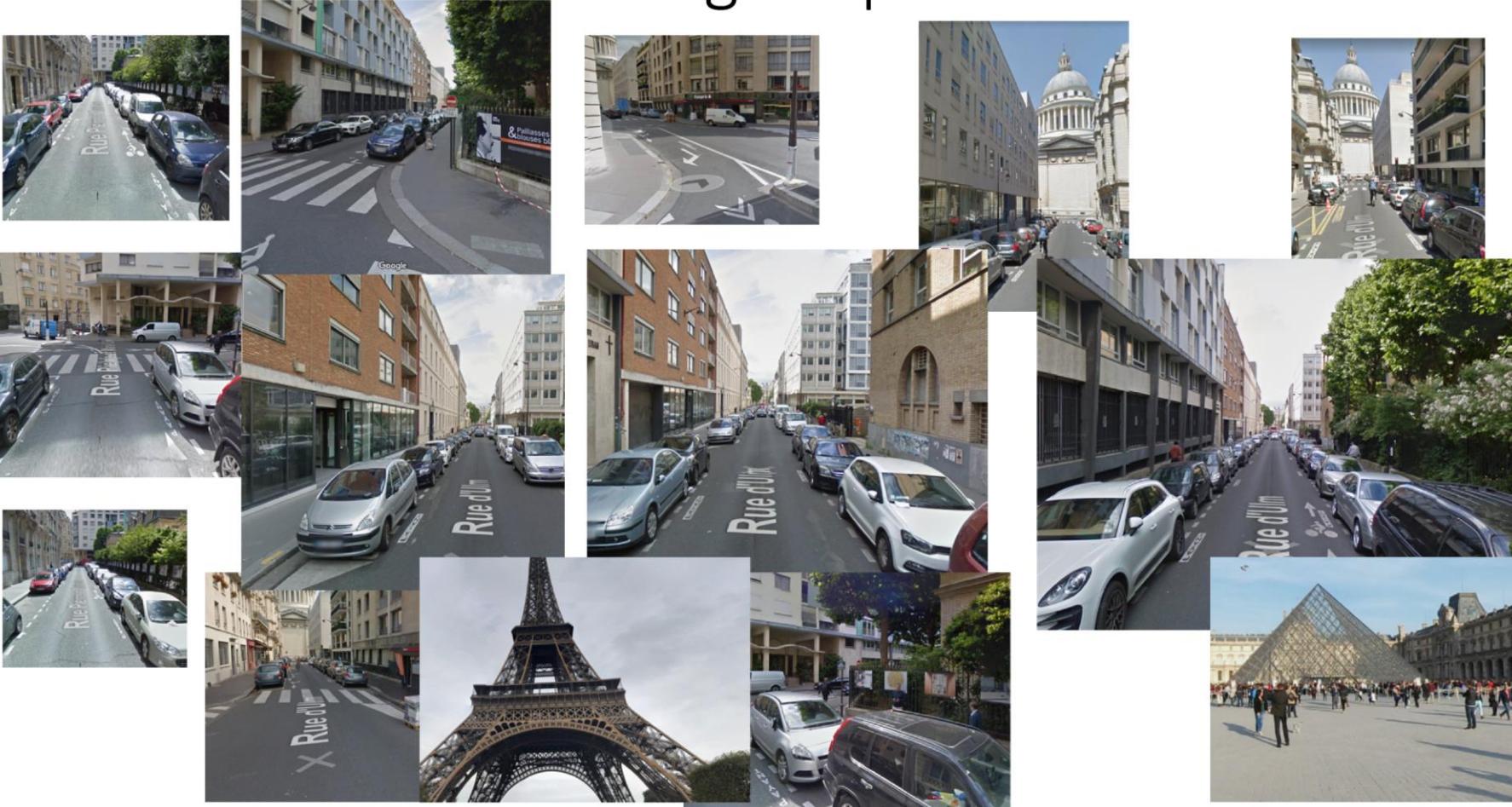
$$F = x_1^2 + x_2^2 + x_3^2 + x_4^2$$

Example of complex function: probability density function estimate



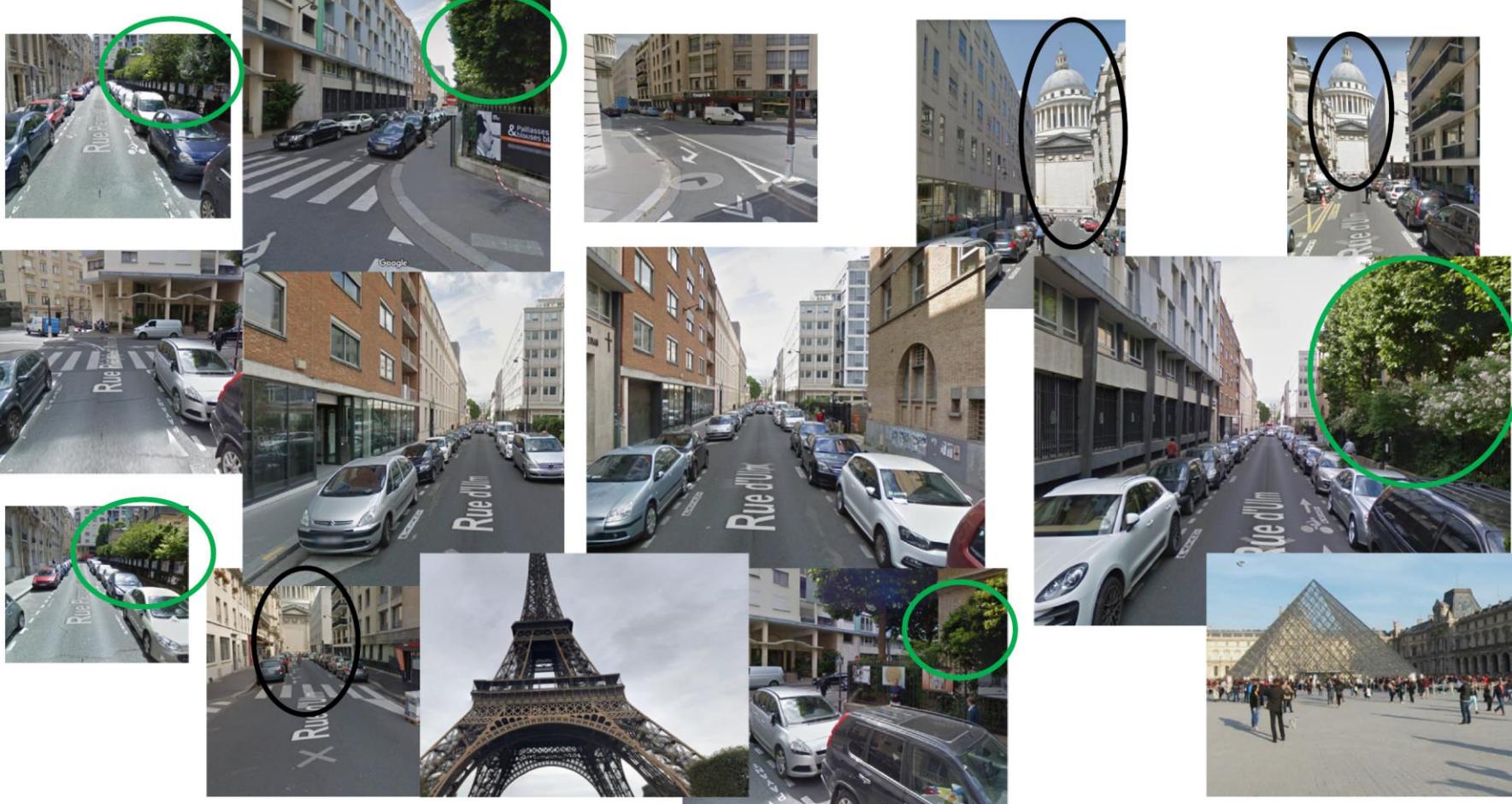
‘Branching’ data

Looking for paths



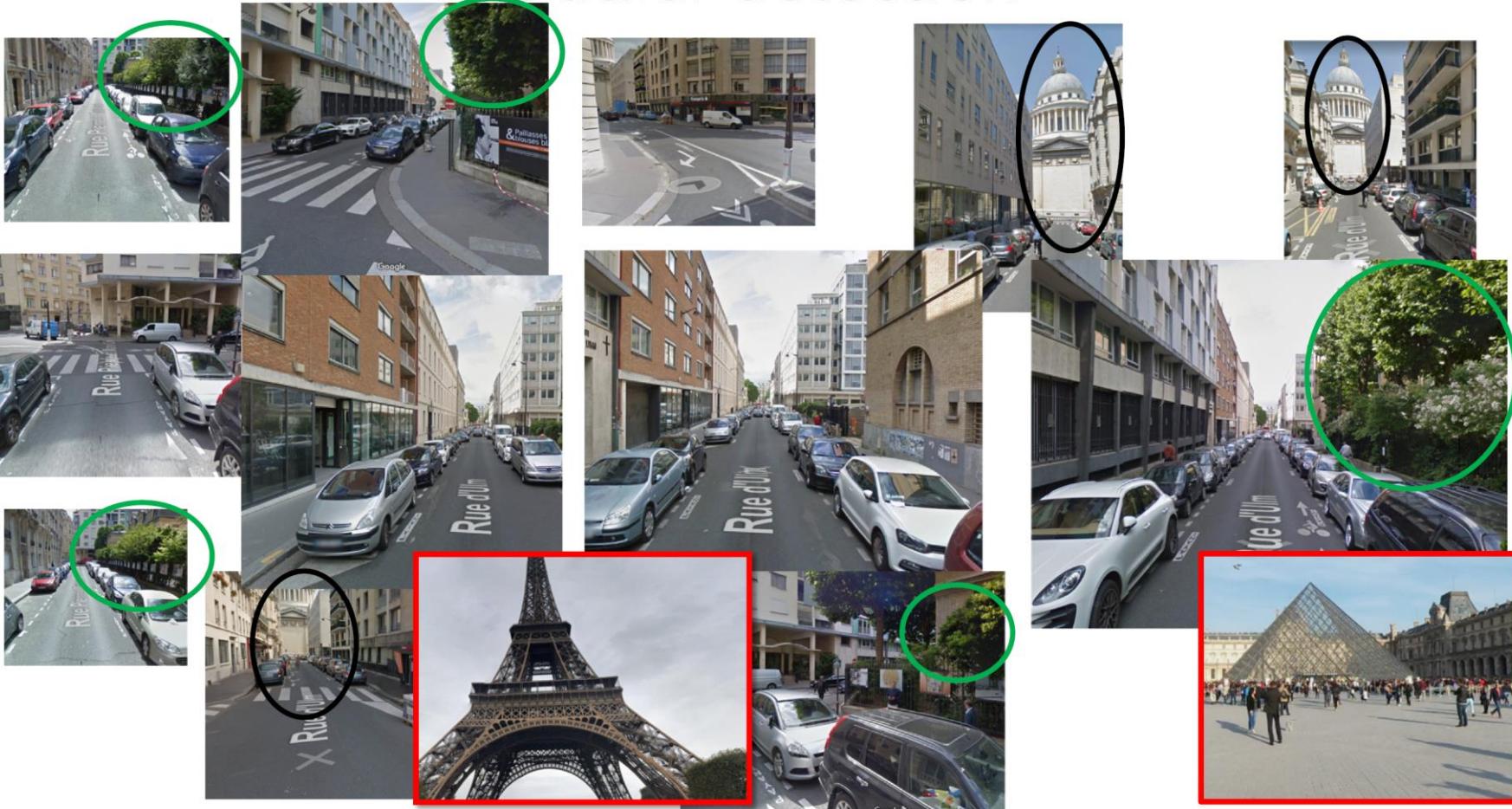
‘Branching’ data

Feature selection



‘Branching’ data

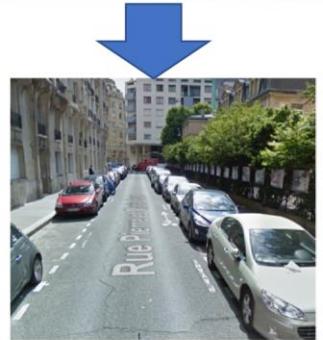
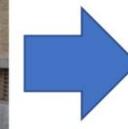
Outlier detection



'Branching' data

questions : how many 'bifurcations', where the beginning, what is the right sequence?

Looking for paths



Single cell data cartography of Planarian (Plass et al, 2018)

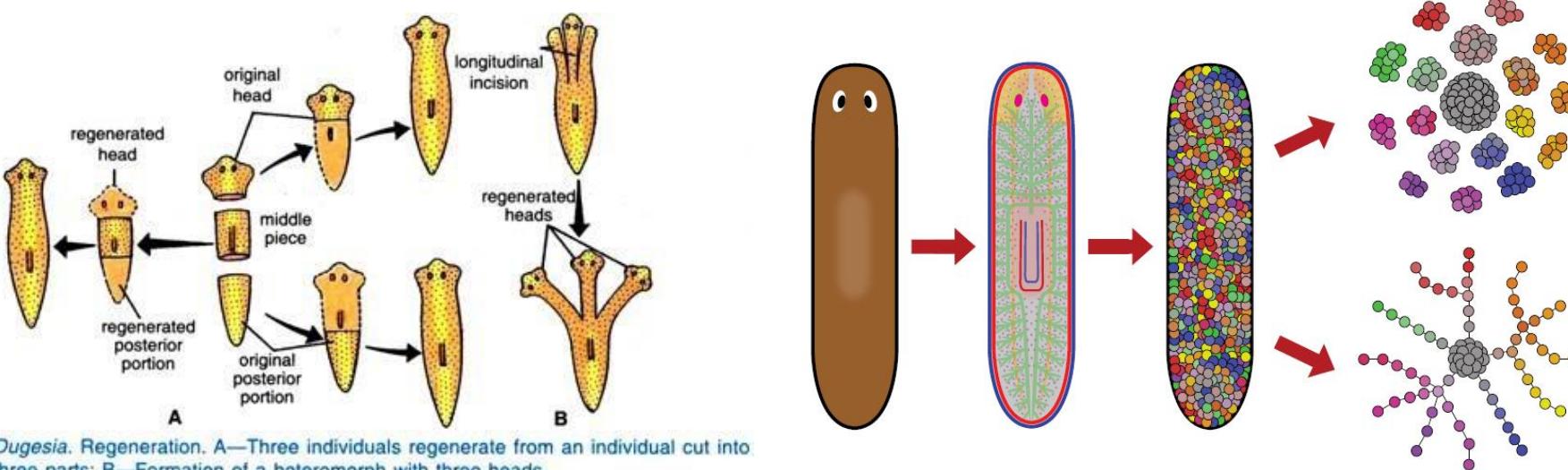
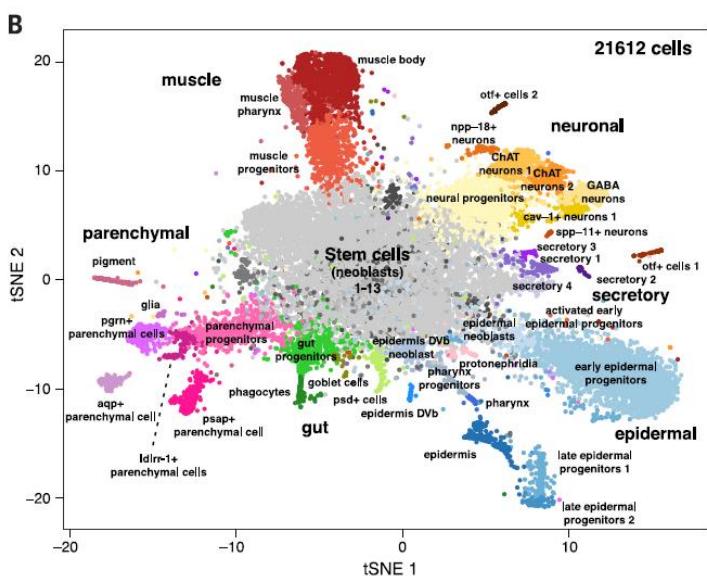
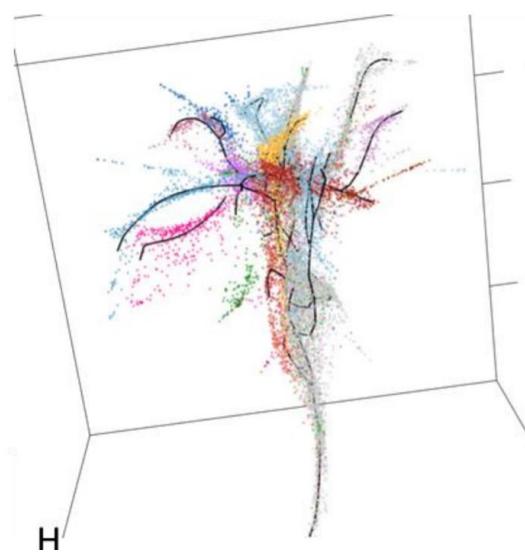
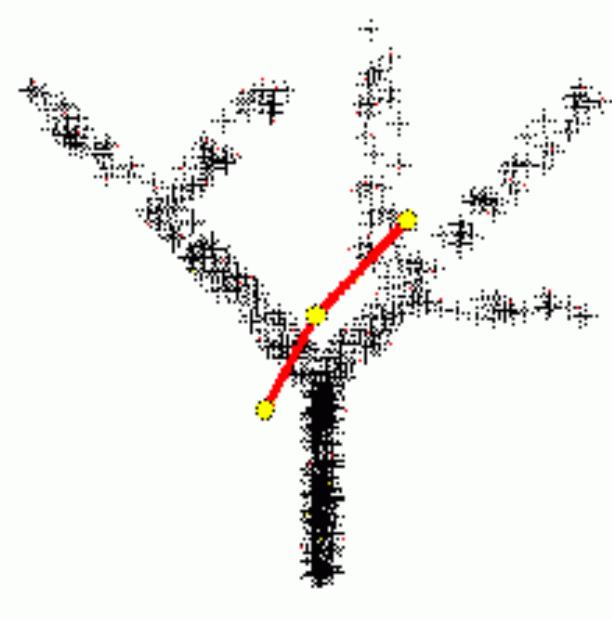


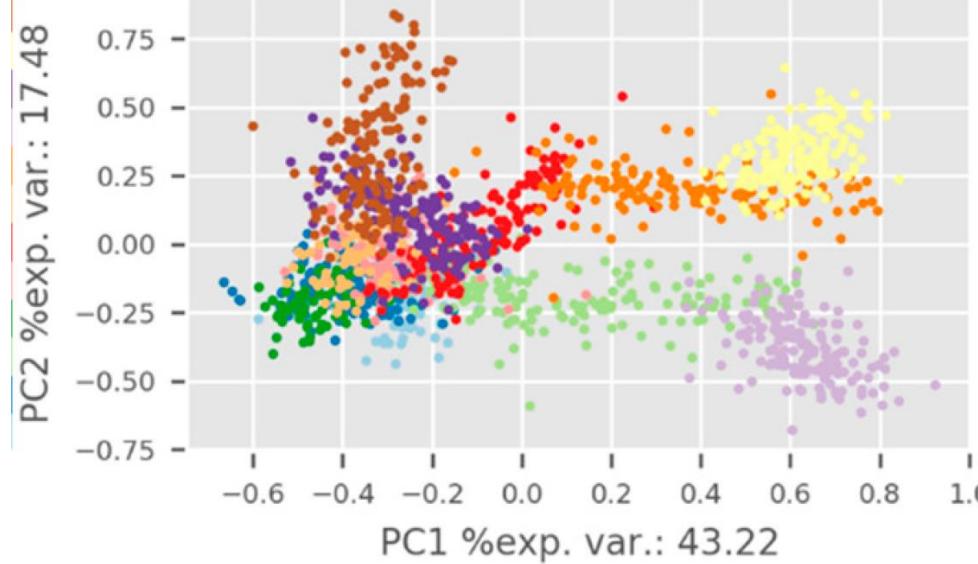
Fig. 39.17. *Dugesia*. Regeneration. A—Three individuals regenerate from an individual cut into three parts; B—Formation of a heteromorph with three heads.



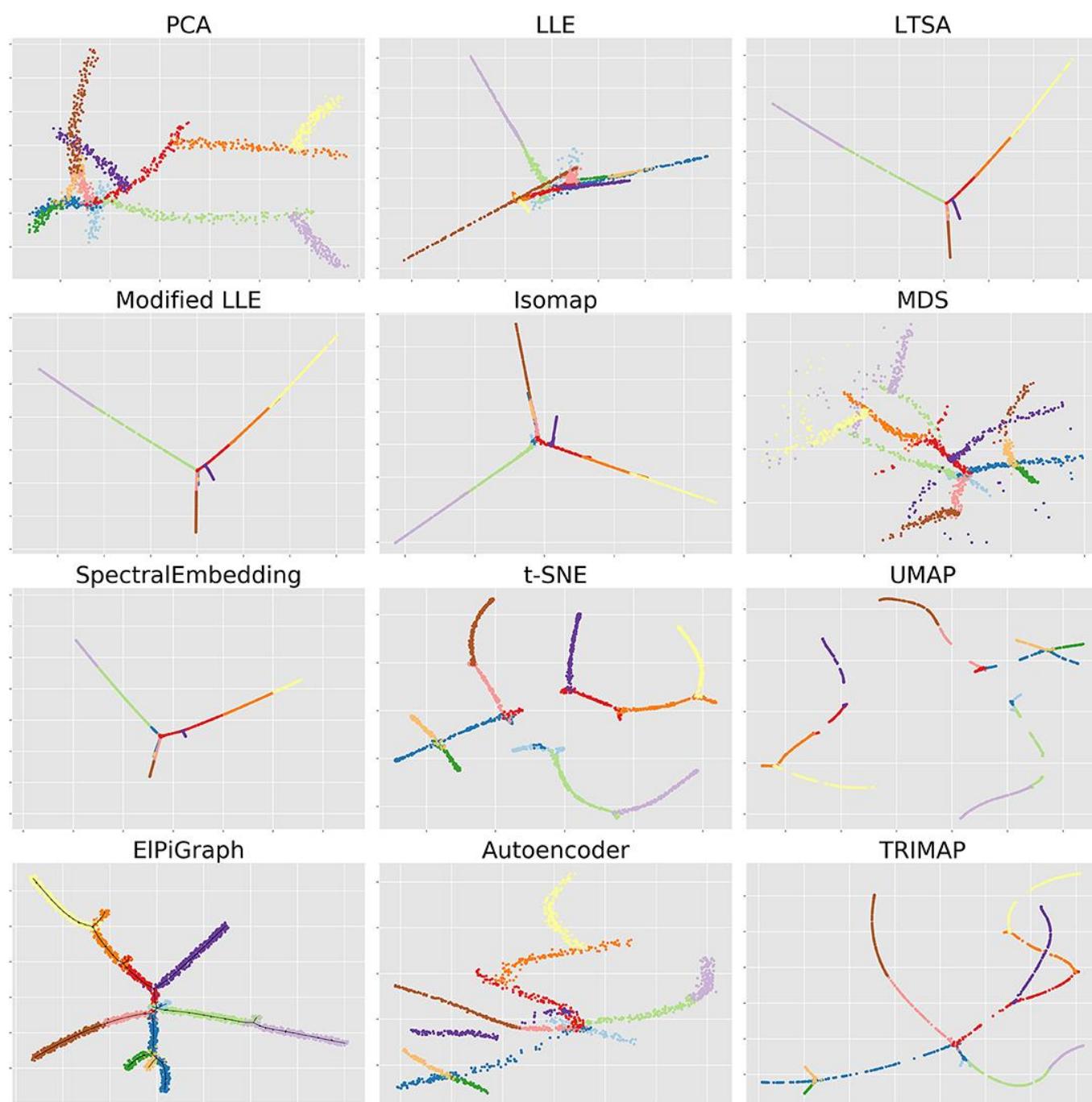
‘Branching data’



True graph



From Albergante et al, *Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph, Entropy, 2020*



‘Branching’ data distributions

True graph

Elastic principal graph (ElPiGraph)

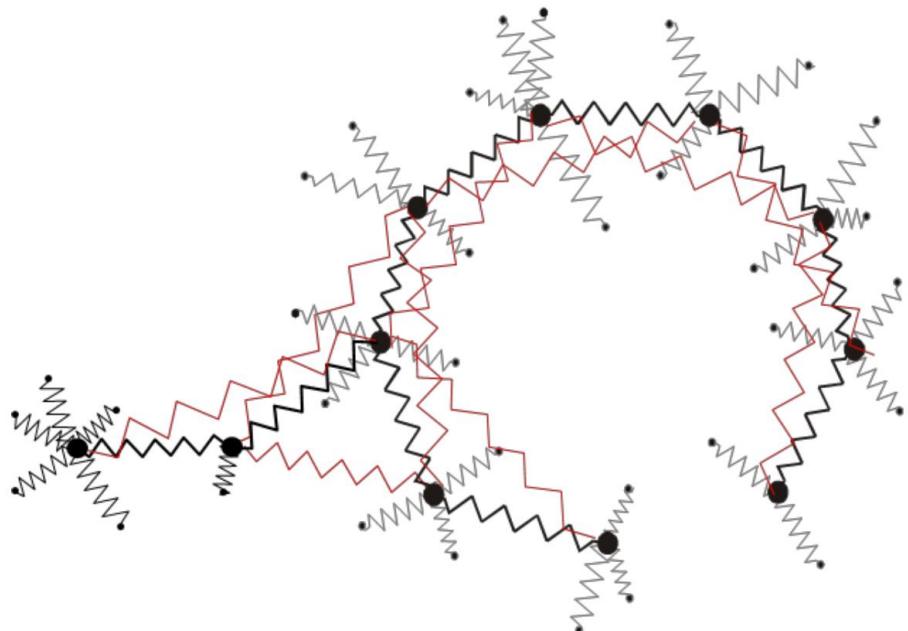
Two tasks have to be solved simultaneously:

- 1) Find the right graph ‘topology’
- 2) Fit the graph of given ‘topology’ to the data

Let us start from the second

Elastic principal graph (ElPiGraph)

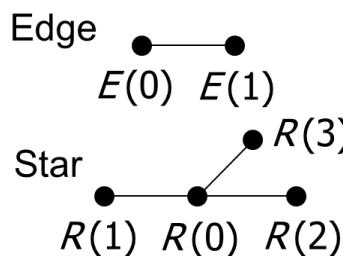
how to fit a graph to the data



- Data points
- Graph nodes
- Positive springs
- Negative springs

Penalty on
total length:

Penalty on deviation
from **harmonicity**:



We minimize the
Mean Squared
Distance to the
nearest graph node
(just like k-means)!

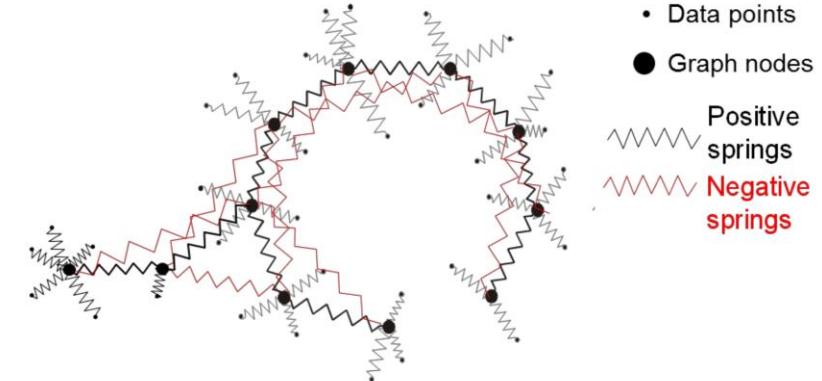
$$U^{(E)} = \sum_{i=1}^s \lambda_i \|E^{(i)}(1) - E^{(i)}(0)\|^2$$

$$U^{(R)} = \sum_{i=1}^r \mu_i \left\| R^{(i)}(0) - \frac{1}{k} \sum_{j=1..k} R^{(i)}(j) \right\|^2$$

Elastic principal graph (ElPiGraph)

how to fit a graph to the data

- Splitting algorithm (Expectation-Maximization-like, very similar to k-means)
 - 1) Start with an initial guess for the node positions
 - 2) Perform the nearest node search for all data points
 - 3) Solve linear equations to minimize the quadratic form
 - 4) Repeat 2-3 until convergence

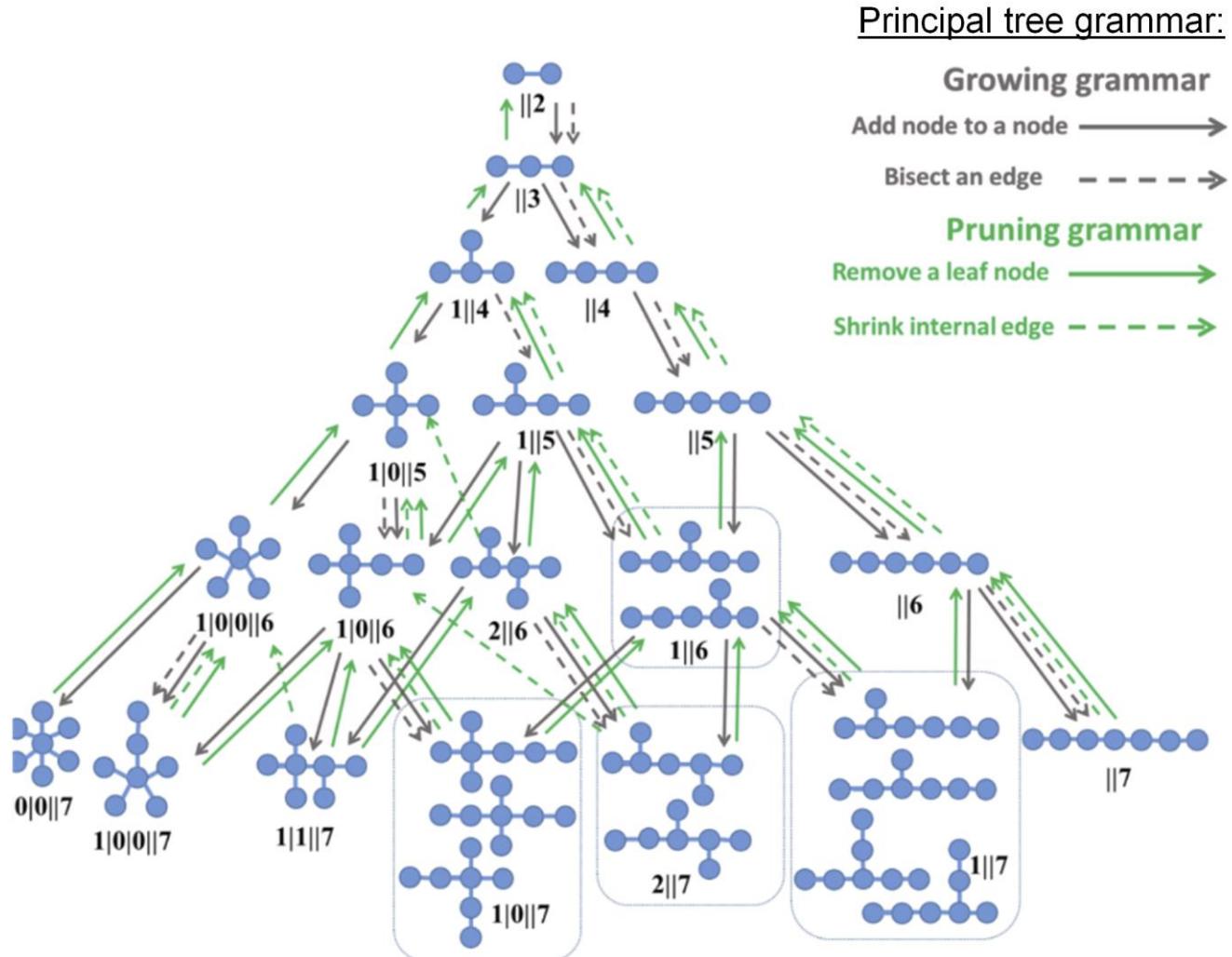


$$U^{(E)} = \sum_{i=1}^s \lambda_i \|E^{(i)}(1) - E^{(i)}(0)\|^2$$

$$U^{(R)} = \sum_{i=1}^r \mu_i \left\| R^{(i)}(0) - \frac{1}{k} \sum_{j=1..k} R^{(i)}(j) \right\|^2$$

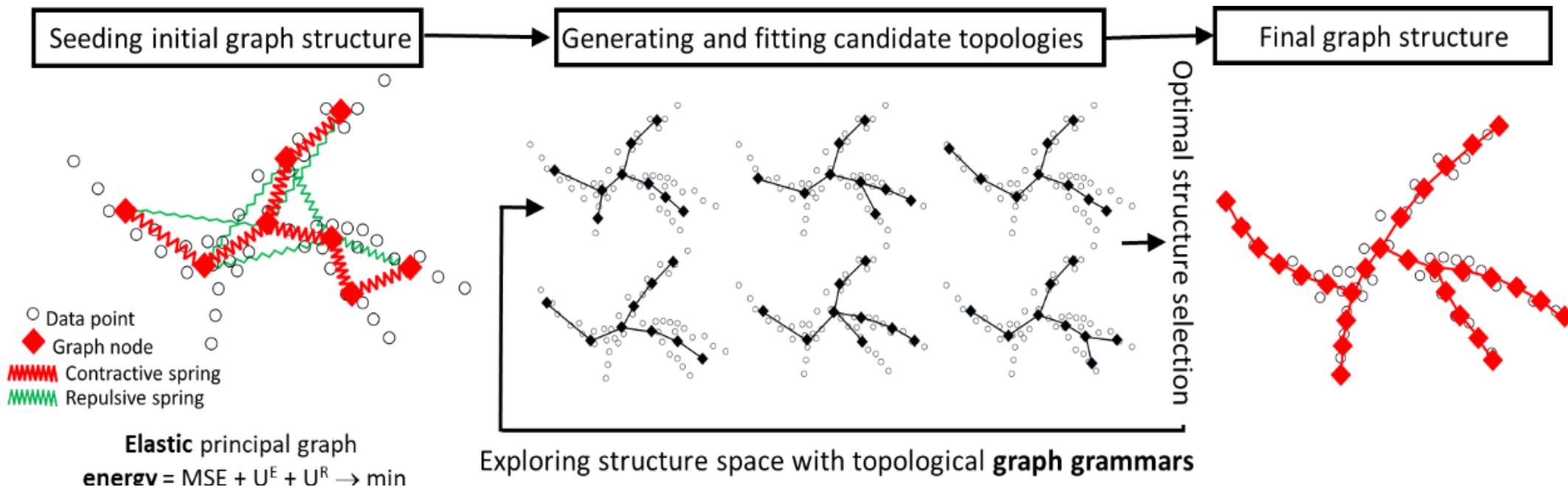
Elastic principal graph (ElPiGraph)

how to find the right graph structure



Topological grammars and gradient-based descent in the discrete space of graph structures

Elastic principal graph (ElPiGraph) *final algorithm*



Small demo

Java applet, can be downloaded from :

http://www.ihes.fr/~zinovyev/FundamentalsOfAI2020_lectures/applet/

