
Two killer applications in manifold 
learning/dimred
• t-distributed stochastic neighbor embedding (t-SNE)

•Uniform manifold approximation and projection 
(UMAP)

Manifold learning

Fundamentals of AI



Reminder on Multi-dimensional scaling (MDS)



t-SNE and UMAP are projective methods

ENCODE or PROJECT

DECODE or INJECT

Variant 2: The projector is known only for yX



Using graph layouts to reduce data dimensionality

• Simple algorithm:
• Compute the KNN-graph

• Apply graph drawing (layouting) algorithm to visualize it in 2D (3D)

• Force-directed layout (e.g., Fruchterman–Reingold’s algorithm)

https://demo.zoomcharts.com/net-
chart/examples/layout/layout-forced.html https://www.ihes.fr/~zinovyev/mosaic/SPRING/springViewer.ht

ml?datasets/CHLA9_nufp

https://demo.zoomcharts.com/net-chart/examples/layout/layout-forced.html
https://www.ihes.fr/~zinovyev/mosaic/SPRING/springViewer.html?datasets/CHLA9_nufp


Problems with drawing knn-graphs

• In many situations, it is already a usefull solution for visualizing the data, but…

• The structure of knn graph heavily depends on the local density

• Point crowding

• The graph is very ‘rigid’

• Solutions: 
• Makes the structure of the neighbourhood graph more adapted to the density variations
• Introduce a ‘softer’ probabilistic model in constructing the neighborhood graph – instead of a 

‘hard’ connection a probability of being connected

• Two methods have become famous for this in recent years: t-SNE and UMAP



Stochastic neighbor embedding
(SNE and t-SNE)



t-SNE uses the Kullback-Leibler (KL) 
divergence
• Reminder:

• KL measures ‘distance’ from distribution P to Q

• Not a metric function - not symmetric!

• Measures how much more information is contained in P with respect 
to Q (similar to the mutual information for which Q is the product of 
marginal distributions)



t-distributed stochastic neighbor embedding
(t-SNE)

• SNE by Sam Roweis
and Geoffrey Hinton 
in 2002

• Laurens van der 
Maaten proposed 
the t-distributed 
variant (t-SNE) in 
2008



Notion of perplexity

• In information theory, perplexity is a measurement of how well a 
probability distribution or probability model predicts a sample

• It may be used to compare probability models. 

• A low perplexity indicates the probability distribution is good at 
predicting the sample

• The perplexity PP of a discrete probability distribution p is defined as

• For Gaussian distribution PP(p) = 
1

2
ln( 2𝜋𝑒𝜎)



Stochastic neighbor embedding (SNE)

• Conditional probability
Reminds Kernel 
Density Estimate 
of PDF
in point i , but 
i depends on i!
(adaptive KDE)

Conditional probability of that xi would 
pick xj as its neighbor if neighbors were 
picked in proportion to their probability 
density under a Gaussian centered at xi



Stochastic neighbor embedding (SNE)
evaluating 𝜎𝑖

• Perplexity of distribution PP(𝑝𝑗|𝑖) must be the same for each i

PP(𝑝𝑗|𝑖) = PP = const

• Perplexity PP is the main parameter of the method

• Large perplexity -> larger 𝜎s

• Maximum perplexity is N – 1, corresponding to 𝜎 = ∞ (in this case 
the similarities are distributed uniformly)



Stochastic neighbor embedding (SNE)

We try to minimize Kullback-Leibler divergence between p and q

Expression for the gradient of C:



t-distributed Stochastic neighbor embedding (t-SNE)

We try to minimize Kullback-Leibler divergence between p and q

Expression for the gradient of C:



Discussion on t-SNE

• Some remarks:

• if ||𝑥𝑖 − 𝑥𝑗|| ≫ 𝜎𝑖 then 𝑝𝑖|𝑗 ≈ 0

• if ||𝑥𝑖 − 𝑥𝑗|| ≪ 𝜎𝑖 (large perplexity) then 

𝑝𝑖|𝑗 ≈ 1 −
𝑥𝑖−𝑥𝑗

2

2𝜎𝑖
2 /σ𝑘(1 −
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2 )

and t-SNE becomes very close to Multi-Dimensional Scaling (PCA)



Point ‘crowding problem’

• In high dimension we have more room, points can have a lot of 
different neighbors 

• In 2D a point can have a few neighbors at distance one all far from 
each other 

• This is the ”crowding problem” - we don’t have enough room to 
accommodate all neighbors

• This is a problem with SNE (and other dimensionality reduction 
methods such as MDS)

• t-SNE solution: change the Gaussian in q to a heavy tailed distribution 
(Student distribution)

Gradient for SNE Gradient for t-SNE – less attractive



Discussion on t-SNE

• Low values of perplexity will unveil the local structure in the data, 
whereas high values of perplexity will enhance the emergence of the 
global structure at the cost of blurring the local structure

• Short and long distances

• Pro: In linear and non-linear principal manifolds, distant points can 
become close after projection; in t-SNE it usually does not happen

• Cons: Exaggerated clustering (sometimes)



Uniform Manifold Approximation and 
Projection (UMAP)



Uniform Manifold Approximation and 
Projection (UMAP)
• Starts with a ‘fuzzy simplicial complex’ but ends with a simple 

weighted neighbourhood graph

https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

https://umap-learn.readthedocs.io/en/latest/how_umap_works.html


Constructing weighted neighbourhood graph

k=4

For each point i, define distance to the 
nearest neighbour

‘Uniform’ case kNN graph
Fuzzy weighted neighbourhood
graph (‘UMAP-modified kNN’)

Define 𝜎𝑖 using the following equation 
(local dispersion)

Weight of the neighbourhood graph



i

w(xi, x)

xxi

nearest 
neighbor for i

Fuzzy weighted neighbourhood
graph (‘UMAP-modified kNN’)

1

Slope i sufficient
to capture k nearest
neighbours



Minimizing ‘cross-entropy’

1 ≥ wh > 0 – weights in high-dimensional space
1 ≥ wl > 0 – weights in low-dimensional space

Actual algorithm is very close to force-directed 
layout algorithm

[

[

Preservation of 
small distances

Preservation of 
large distances



Hyperparameters of UMAP

• Min-dist:

minimal distance between

points in low-dimensional space

• N_neighbours: 

k in the kNN graph

https://pair-code.github.io/understanding-umap/supplement.html

https://pair-code.github.io/understanding-umap/supplement.html


Toy example to play with parameters: 
Projecting a mammoth from 3D to 2D

https://pair-code.github.io/understanding-umap/

https://duhaime.s3.amazonaws.com/apps/umap-zoo/index.html

https://pair-code.github.io/understanding-umap/
https://duhaime.s3.amazonaws.com/apps/umap-zoo/index.html


UMAP ‘inverse transform’:
provide a sort of DECODE/INJECT function

https://umap-learn.readthedocs.io/en/latest/inverse_transform.html



Comparing tSNE and UMAP

• Speed



Comparing tSNE and UMAP

• UMAP better represents the global structure of the dataset

• UMAP is way faster than t-SNE

• UMAP is more stable to subsampling than t-SNE

• UMAP can work directly in very 

high ambient dimensionalities (>106)

from https://arxiv.org/pdf/1802.03426.pdf

https://arxiv.org/pdf/1802.03426.pdf


from https://arxiv.org/pdf/1802.03426.pdf

https://arxiv.org/pdf/1802.03426.pdf




Comments to both t-SNE and UMAP methods

• Hyperparameters really matter

• Cluster sizes in a UMAP plot mean nothing

• Distances between clusters might not mean anything

• Random noise doesn’t always look random

• You may need more than one plot

• For large ‘neighbourhood’ parameters, both methods give results similar to 
Multi-dimensional scaling

• Both can work with non-Euclidean metrics in Rp



Minimum Distortion Embedding (MDE)
Agrawal, Ali and Boyd, arXiv 2021

• “Modern” version of metric MDS

• Avoids computing the complete distance matrix

• Quadratic MDE (𝑓𝑖𝑗 𝑑𝑖𝑗 = 𝑤𝑖𝑗𝑑𝑖𝑗
2 ,                                                     ) can be

reduced to an eigenproblem

• pyMDE Python package



Usage example: RNA-seq dataset, 𝑛 > 40,000

UMAP MDE



Comparison of (many) methods:
https://colab.research.google.com/drive/1miQpnYAa9pZa-
YWng1C7V78hM-nPR8Ly?usp=sharing
viz_results = 
apply_panel_of_manifold_learning_methods(X,color,
methods_to_apply=['PCA','UMAP','TRIMAP','MDE','TSNE',
'LLE','MLLE','ISOMAP','MDS','SE', 'AUTOENCODER'])

MNIST dataset (downsampled to 2000 points)

PCA: 0.19 sec
LLE: 9.9 sec
Modified LLE: 11 sec
Isomap: 11 sec
MDS: 11 sec
SpectralEmbedding: 8.1 sec
t-SNE: 21 sec
UMAP: 9.8 sec
TRIMAP: 2.6 sec
MDE: 2.3 sec
Autoencoder: 34 sec

https://colab.research.google.com/drive/1miQpnYAa9pZa-YWng1C7V78hM-nPR8Ly?usp=sharing


Comparison of (many) methods:
https://colab.research.google.com/drive/1miQpnYAa9pZa-
YWng1C7V78hM-nPR8Ly?usp=sharing
viz_results = 
apply_panel_of_manifold_learning_methods(X,color,
methods_to_apply=['PCA','UMAP','TRIMAP','MDE','TSNE',
'LLE','MLLE','ISOMAP','MDS','SE', 'AUTOENCODER'])

MNIST dataset (downsampled to 2000 points)

PCA: 0.82 sec
LLE: 260 sec
Modified LLE: 270 sec
Isomap: 280 sec
MDS: 240 sec
SpectralEmbedding: 202 sec
t-SNE: 250 sec
UMAP: 44 sec
TRIMAP: 12 sec
MDE: 15 sec
Autoencoder: 170 sec

https://colab.research.google.com/drive/1miQpnYAa9pZa-YWng1C7V78hM-nPR8Ly?usp=sharing


UMAP (or any other methods) become less informative in higher intrinsic dimensions

Some simple intuition for this

Uniformly sampled ball in RN observed in R2


