Fundamentals of Al
Manifold learning

Two killer applications in manifold
learning/dimred

* t-distributed stochastic neighbor embedding (t-SNE)

* Uniform manifold approximation and projection
(UMAP)




Reminder on Multi-dimensional scaling (MDS)

Input: a distance or dissimilarity matrix

From http://www.analytictech.com/networks/mds.htm
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t-SNE and UMAP are projective methods

ENCODE or PROJECT

N\
RP R m<<p

DEC% ECT

Variant 2: The projector is known only for yeX



Using graph layouts to reduce data dimensionality

* Simple algorithm:
 Compute the KNN-graph
* Apply graph drawing (layouting) algorithm to visualize it in 2D (3D)
* Force-directed layout (e.g., Fruchterman—Reingold’s algorithm)
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https://demo.zoomcharts.com/net-
chart/examples/layout/layout-forced.html https://www.ihes.fr/~zinovyev/mosaic/SPRING/springViewer.ht
ml?datasets/CHLA9 nufp



https://demo.zoomcharts.com/net-chart/examples/layout/layout-forced.html
https://www.ihes.fr/~zinovyev/mosaic/SPRING/springViewer.html?datasets/CHLA9_nufp

Problems with drawing knn-graphs

* In many situations, it is already a usefull solution for visualizing the data, but...

* The structure of knn graph heavily depends on the local density
* Point crowding
* The graph is very ‘rigid’

 Solutions:
* Makes the structure of the neighbourhood graph more adapted to the density variations

* Introduce a ‘softer’ probabilistic model in constructing the neighborhood graph — instead of a
‘hard’ connection a probability of being connected

* Two methods have become famous for this in recent years: t-SNE and UMAP



Stochastic neighbor embedding
(SNE and t-SNE)




t-SNE uses the Kullback-Leibler (KL)
divergence

e Reminder:

bt - (22

KL measures ‘distance’ from distribution P to Q
* Not a metric function - not symmetric!

* Measures how much more information is contained in P with respect
to Q (similar to the mutual information for which Q is the product of
marginal distributions)



t-distributed stochastic neighbor embedding

t-SNE

* SNE by Sam Roweis
and Geoffrey Hinton

in 2002

* Laurens van der
Maaten proposed
the t-distributed
variant (t-SNE) in

2008
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Figure 1: The result of running the SNE algorithm on 3000 256-dimensional grayscale
images of handwritten digits. Pictures of the original data vectors x; (scans of handwritten
digit) are shown at the location corresponding to their low-dimensional images y; as found
by SNE. The classes are quite well separated even though SNE had no information about
class labels. Furthermore, within each class, properties like orientation, skew and stroke-
thickness tend to vary smoothly across the space. Not all points are shown: to produce this
display, digits are chosen in random order and are only displayed if a 16 x 16 region of the
display centered on the 2-D location of the digit in the embedding does not overlap any of
the 16 x16 regions for digits that have already been displayed.

(a) Visualization by t-SNE.



Notion of perplexity

* In information theory, perplexity is a measurement of how well a
probability distribution or probability model predicts a sample

* It may be used to compare probability models.

* A low perplexity indicates the probability distribution is good at
predicting the sample

* The perplexity PP of a discrete probability distribution p is defined as

PP(p) e 2H(p) — 9 >z P(z) logy p(z)

* For Gaussian distribution PP(p) = %ln(\/ 2meo)



Stochastic neighbor embedding (SNE)

 Conditional probability Reminds Kernel

exp(—||x; — x; "2/203) Density Estimate

P D i €XP(— % — xx]12/207) of PDF
in point j, but
Conditional probability of that x; would o; depends on /!
pick x; as its neighbor if neighbors were (adaptive KDE)

picked in proportion to their probability
density under a Gaussian centered at x;
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Stochastic neighbor embedding (SNE)

evaluating o;

* Perplexity of distribution PP(p;|;) must be the same for each i
PP(p;}i) = PP = const

* Perplexity PP is the main parameter of the method
* Large perplexity -> larger os

* Maximum perplexity is N — 1, corresponding to 0 = oo (in this case
the similarities are distributed uniformly)



Stochastic neighbor embedding (SNE)

RP R™ m<<p
o exp(—||x; — x;||*/20?) S exp(—|ly: — y;|I?)
o D hzi €Xp(—|xi — xx[12/207) T Yk exp(—lyi — yel?)

We try to minimize Kullback-Leibler divergence between p and g
C = Zznglog ZKLPHQJ

Expression for the gradient of C:
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t-distributed Stochastic neighbor embedding (t-SNE)

RP R m<<p
1
B exp(—||x; — x;||*/20?) g = (1 + ||;Vi—yj||2)
o S exp(— % — xc?/207) D S (L e —wil?) !

We try to minimize Kullback-Leibler divergence between p and g
C = Zznglog ZKLPHQJ

Expression for the gradient of C:
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Discussion on t-SNE

e Some remarks:
exp(—||x; — x;|*/207)
D hzi €Xp(—|x; — xx[12/207)

bjli =
¢ |f||xl —Xj” > 0} then pl|] ~ ()

* if ||x; — x;|| < g; (large perplexity) then

|z | i~}
pigj ~ 1 - | ]|/Zk(1 |20’|

and t-SNE becomes very close to Multl-DimensionaI Scaling (PCA)




Point ‘crowding problem’

* In high dimension we have more room, points can have a lot of
different neighbors

* In 2D a point can have a few neighbors at distance one all far from
each other

* This is the “crowding problem” - we don’t have enough room to
accommodate all neighbors

* This is a problem with SNE (and other dimensionality reduction
methods such as MDS)

* t-SNE solution: change the Gaussian in q to a heavy tailed distribution
(Student distribution)

Gradient for SNE Gradient for t-SNE — less attractive
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Discussion on t-SNE

* Low values of perplexity will unveil the local structure in the data,
whereas high values of perplexity will enhance the emergence of the
global structure at the cost of blurring the local structure

e Short and long distances

* Pro: In linear and non-linear principal manifolds, distant points can
become close after projection; in t-SNE it usually does not happen

* Cons: Exaggerated clustering (sometimes)



Uniform Manifold Approximation and
Projection (UMAP)




Uniform Manifold Approximation and
Projection (UMAP)

e Starts with a ‘fuzzy simplicial complex’ but ends with a simple
weighted neighbourhood graph

. A D

0-simplex 1-simplex 2-simplex 3-simplex

https://umap-learn.readthedocs.io/en/latest/how umap works.html



https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

Constructing weighted neighbourhood graph

For each point i, define distance to the L . .
nearest neighbour Pi = mln{d(mi’ x’ij) | 1 <7<k, d(xiv xij) > O}a

—max(0, d(z, zi;) — pi)

) = logy (k)

k

Define o; using the following equation E :exp (
, 0;
7=1

(local dispersion)

- 0,d(xi, xi;) — pi
Weight of the neighbourhood graph w((ws,x4;)) = exp ( max( (Jm Tiy) =P ))
_ Fuzzy weighted neighbourhood
Uniform’ case kNN graph graph (‘UMAP-modified kNN’)
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Minimizing ‘cross-entropy’

Preservation of Preservation of
small distances large distances
wp(e) 1 — wp(e)
Z[’wh(e) log( ) + (1 —wp(e)) log( ]
eck wl(e) L wl(e)

12w, >0 - weights in high-dimensional space
12w, >0 - weights in low-dimensional space

Actual algorithm is very close to force-directed
layout algorithm



Hyperparameters of UMAP

* Min-dist:
minimal distance between
points in low-dimensional space

* N_neighbours:
k in the kNN graph

https://pair-code.github.io/understanding-umap/supplement.html



https://pair-code.github.io/understanding-umap/supplement.html

Toy example to play with parameters:
Projecting a mammoth from 3D to 2D

Original 3D Data 2D UMAP Projection

n_neighbors: 200 o
min_dist; 0.25 o

https://pair-code.github.io/understanding-umap/

https://duhaime.s3.amazonaws.com/apps/umap-zoo/index.html



https://pair-code.github.io/understanding-umap/
https://duhaime.s3.amazonaws.com/apps/umap-zoo/index.html

UMAP ‘inverse transform’:

provide a sort of DECODE/INJECT function
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https://umap-learn.readthedocs.io/en/latest/inverse_transform.html



Comparing tSNE and UMAP
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Comparing tSNE and UMAP

* UMAP better represents the global structure of the dataset
« UMAP is way faster than t-SNE

* UMAP is more stable to subsampling than t-SNE

* UMAP can work directly in very

high ambient dimensionalities (>10°) B v e LN
P X e 74 :
L 4 v
Mw - '
(a) UMAP (b) t-SNE

Figure 7: Procrustes based alignment of a 10% subsample (red) against the full
dataset (blue) for the flow cytometry dataset for both UMAP and t-SNE.

from https://arxiv.org/pdf/1802.03426.pdf



https://arxiv.org/pdf/1802.03426.pdf

igure 13: Visualization of 30,000,000 integers as represented by binary vector§llFigure 14: Visualization of 30,000,000 integers as represented by binary vectors
f prime divisibility, colored by density of points. f prime divisibility, colored by integer value of the point (larger values are green
or yellow, smaller values are blue or purple).



https://arxiv.org/pdf/1802.03426.pdf
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Comments to both t-SNE and UMAP methods

* Hyperparameters really matter

* Cluster sizes in a UMAP plot mean nothing

* Distances between clusters might not mean anything
* Random noise doesn’t always look random

* You may need more than one plot

 For large ‘neighbourhood’ parameters, both methods give results similar to
Multi-dimensional scaling

e Both can work with non-Euclidean metrics in RP



Minimum Distortion Embedding (MDE)

Agrawal, Ali and Boyd, arXiv 2021

* “Modern” version of metric MDS
* Avoids computing the complete distance matrix

o Quadratic MDE (fij(dij) — Wijdizjz w;; represents similarity between i andj) can be
reduced to an eigenproblem

 pyMDE Python package

fij: Distortion function d;j: Embedding distance
betweeni andj. between X; and X;.
E(X) = B fij(d;ij)
/ (i,J))EE
X: Objective embedding / "
Of course, for positive f;; the problem

is trivial. The authors propose several
constraints (e.qg. standardized) to
avoid X = 0.

E: All sample pairs if
tractable, otherwise a
set of edges



RNA-seq dataset, n > 40,000

Usage example

MDE

UMAP
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LLE MLLE
Comparison of (many) methods:
https://colab.research.google.com/drive/1miQpnYAa9pZa-
YWngl1C7V78hM-nPR8Ly?usp=sharing
viz_results =

apply_panel_of manifold learning_methods(X,color,
methods_to_apply=['PCA",'UMAP','TRIMAP','MDE','TSNE',
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https://colab.research.google.com/drive/1miQpnYAa9pZa-YWng1C7V78hM-nPR8Ly?usp=sharing

Comparison of (many) methods:
https://colab.research.google.com/drive/1miQpnYAa9pZa-

YWngl1C7V78hM-nPR8Ly?usp=sharing

viz_results =

apply_panel_of manifold_learning_methods(X,color,
methods_to_apply=['PCA",'UMAP','TRIMAP','MDE','TSNE',
'LLE",'MLLE','ISOMAP',"MDS','SE', 'AUTOENCODER'])

MNIST dataset (downsampled to 2000 points)

PCA: 0.82 sec

LLE: 260 sec

Modified LLE: 270 sec
Isomap: 280 sec
MDS: 240 sec
SpectralEmbedding: 202 sec
t-SNE: 250 sec

UMAP: 44 sec
TRIMAP: 12 sec

MDE: 15 sec
Autoencoder: 170 sec
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https://colab.research.google.com/drive/1miQpnYAa9pZa-YWng1C7V78hM-nPR8Ly?usp=sharing

UMAP (or any other methods) become less informative in higher intrinsic dimensions
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Some simple intuition for this

= dim=2
175 40 dim=5

= dim=20
125
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0.0 0.2 12

Uniformly sampled ball in RN observed in R?

N=10 . N=100 N=1000

Does not matter what distribution, it will look normal in any
2D or 3D projection (law of big numbers)



