

Fundamentals of AI

Manifold learning

Non-linear autoencoders for
dimensionality reduction

Let us recapitulate

- General principle of autoencoding

$$\text{Distortion} = \sum_{i=1}^R (\mathbf{x}_i - \text{DECODE}[\text{ENCODE}(\mathbf{x}_i)])^2$$

Distortion \rightarrow min

- Discrete autoencoder, k-means: $R^p \xrightarrow{\text{ENCODE}} \text{integer number} \xrightarrow{\text{DECODE}} R^p$
- Continuous linear autoencoder, PCA: $R^p \xrightarrow[\text{ENCODE}]{\text{linear}} \text{real number} \xrightarrow[\text{DECODE}]{\text{linear}} R^p$
- Non-linear autoencoder, ?: $R^p \xrightarrow[\text{ENCODE}]{\text{non-linear}} R^m \xrightarrow[\text{DECODE}]{\text{non-linear}} R^p$

Non-linear PCA using autoassociative neural networks (Mark Kramer, AIChE, 1991)

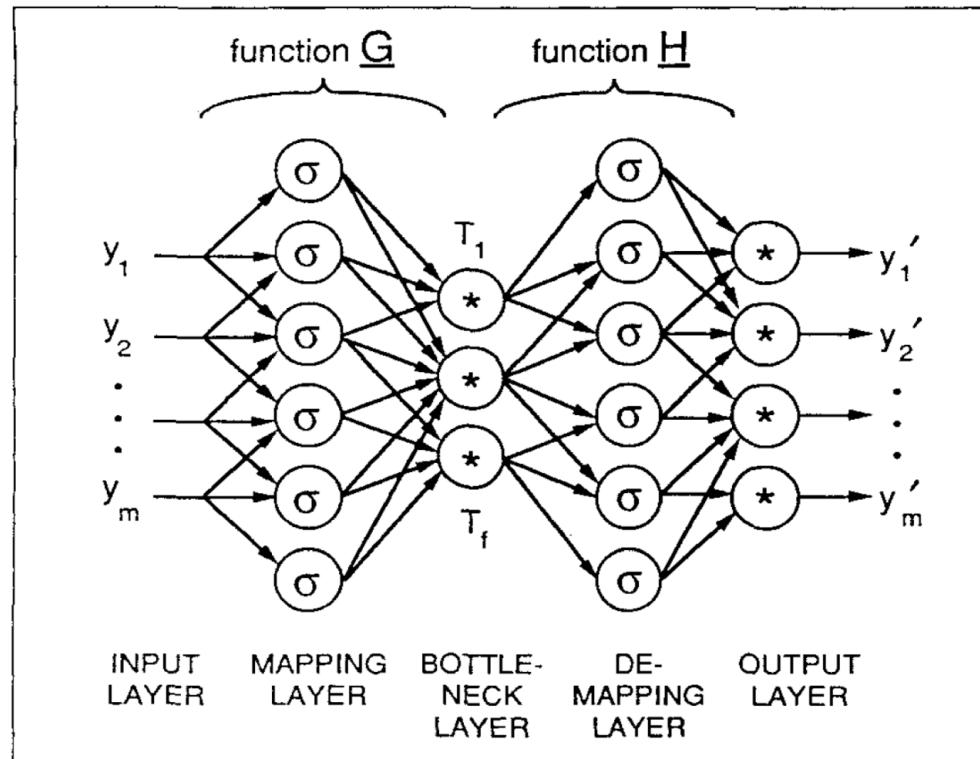
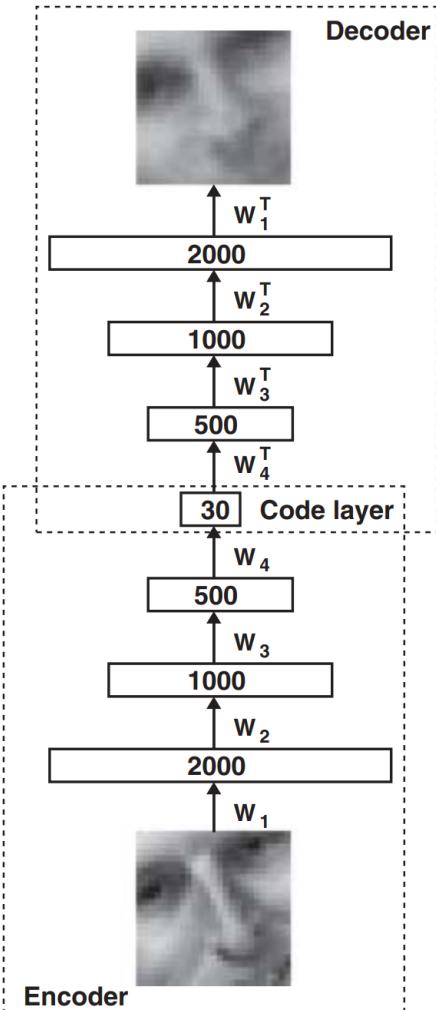


Figure 2. Network architecture for simultaneous determination of f nonlinear factors using an autoassociative network.

σ indicates sigmoidal nodes, $*$ indicates sigmoidal or linear nodes.

Reducing the Dimensionality of Data with Neural Networks (G.E.Hinton&R.R.Salakhutdinov, Science 2006)

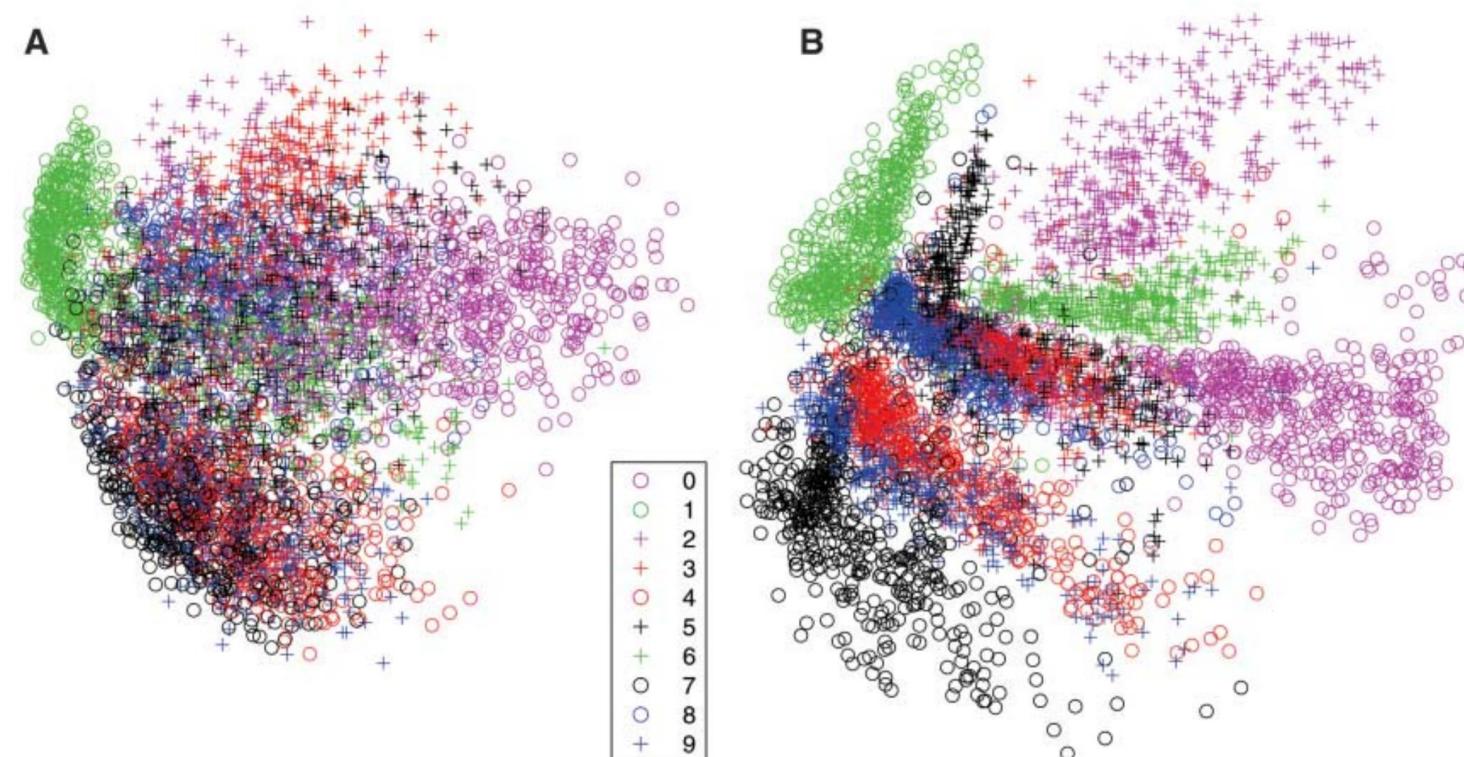


Original
ANN autoencoder
with 30 neurons
PCA with 30
dimensions

Reducing the Dimensionality of Data with Neural Networks (G.E.Hinton&R.R.Salakhutdinov, Science 2006)

MNIST dataset

Fig. 3. (A) The two-dimensional codes for 500 digits of each class produced by taking the first two principal components of all 60,000 training images. **(B)** The two-dimensional codes found by a 784-1000-500-250-2 autoencoder. For an alternative visualization, see (8).



Problems of training deep autoencoders

- **Data hungry approach**
- **Weight initialization** “With large initial weights, autoencoders typically find poor local minima; with small initial weights, the gradients in the early layers are tiny, making it infeasible to train autoencoders with many hidden layers”
- **Suggested approach for training:** pretraining every couple of neighbour layers using another type of neural networks (restricted Boltzman machine) + fine-tuning using back propagation afterwards

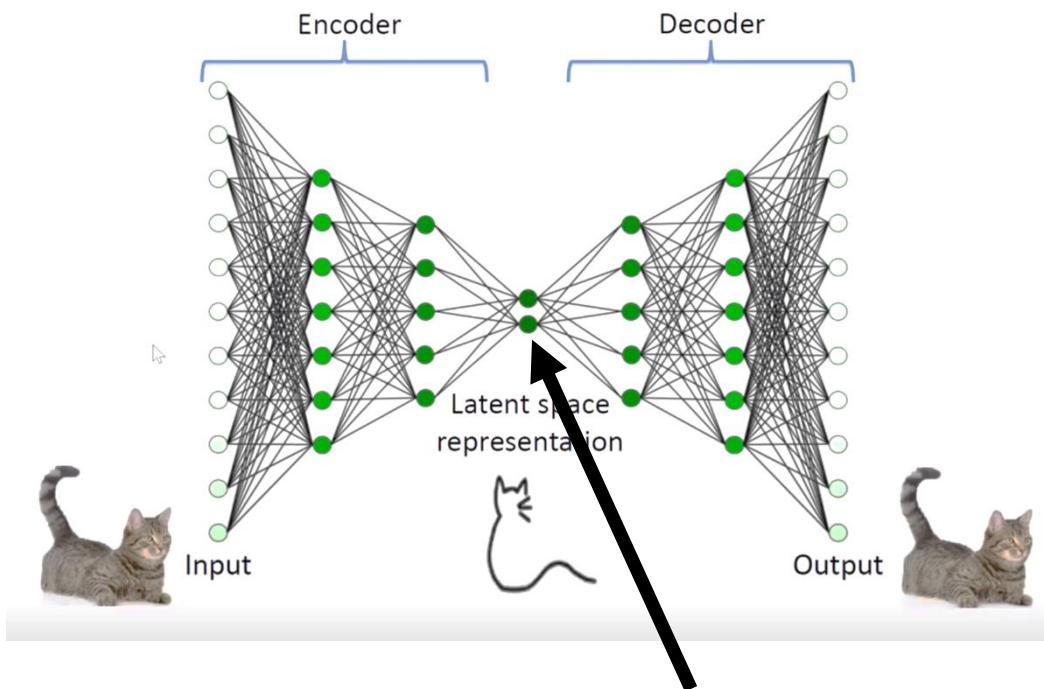
Advantages of deep vs shallow autoencoders*

- Depth can exponentially reduce the computational cost of representing some functions
- Depth can exponentially decrease the amount of training data needed to learn some functions
- Experimentally, deep autoencoders yield better compression compared to shallow or linear autoencoders

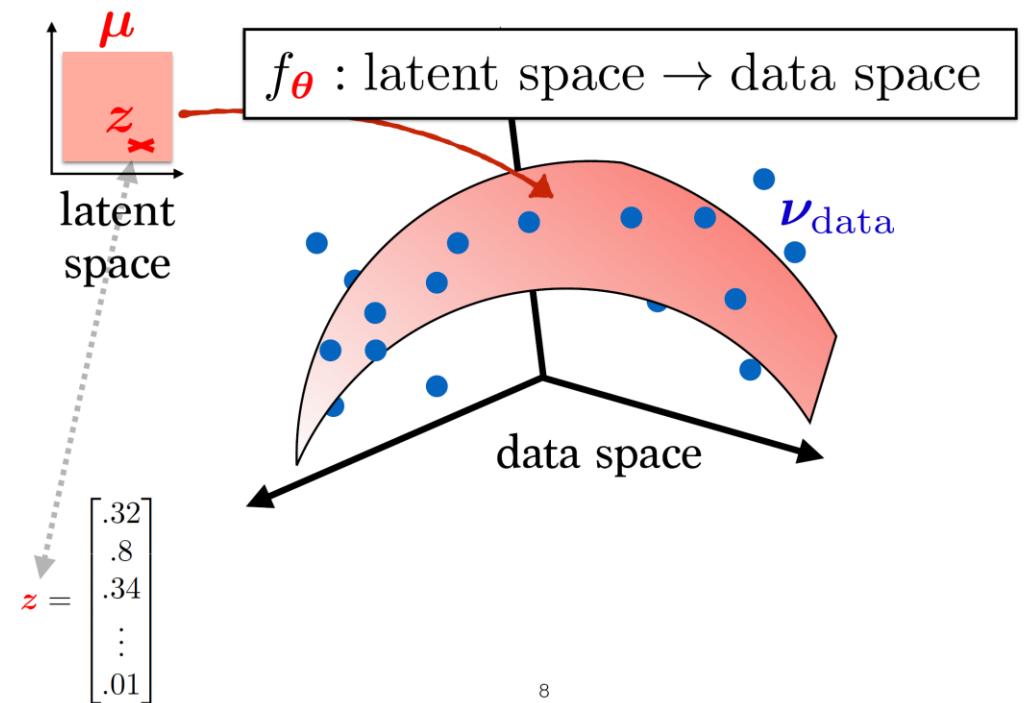
* Take this message critically

Deep generative models

Autoencoders are **injective** dimensionality reduction methods (we know the DECODE!)



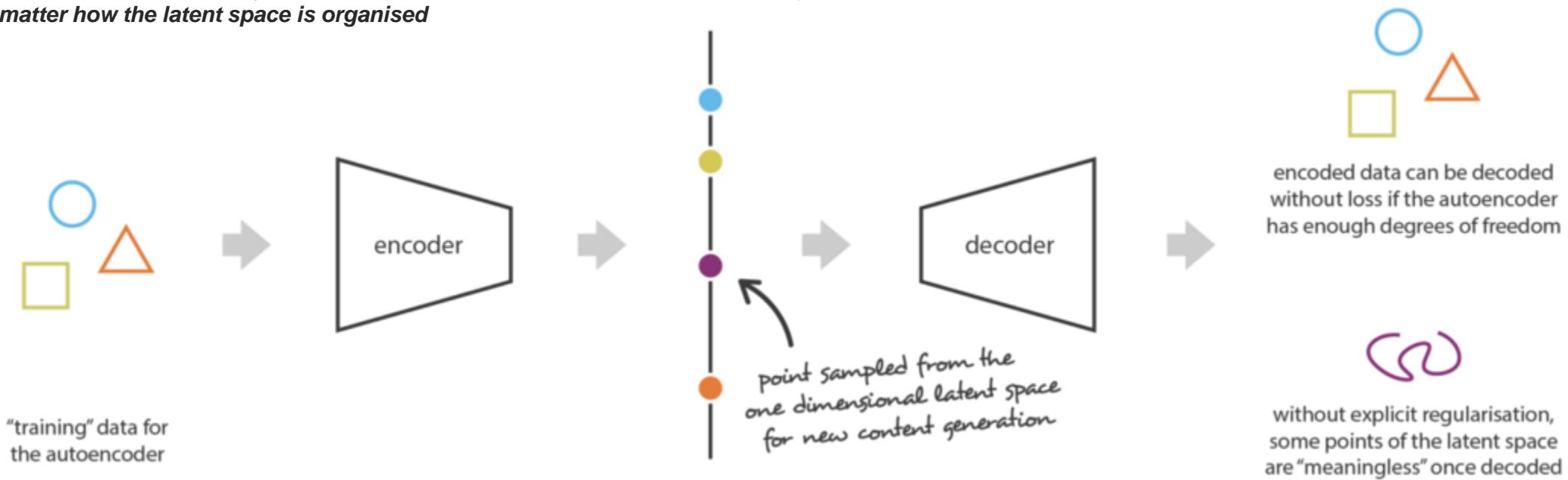
We need to know the distribution to sample!
Let us denote it z . We want it to have some regular properties!



From <https://marcocuturi.net/>

Latent autoencoder space without regularization is frequently not usable for generating new data

the autoencoder is solely trained to encode and decode with as few loss as possible, no matter how the latent space is organised



<https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73>

Latent autoencoder space without regularization is frequently not usable for generating new data

<https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73>

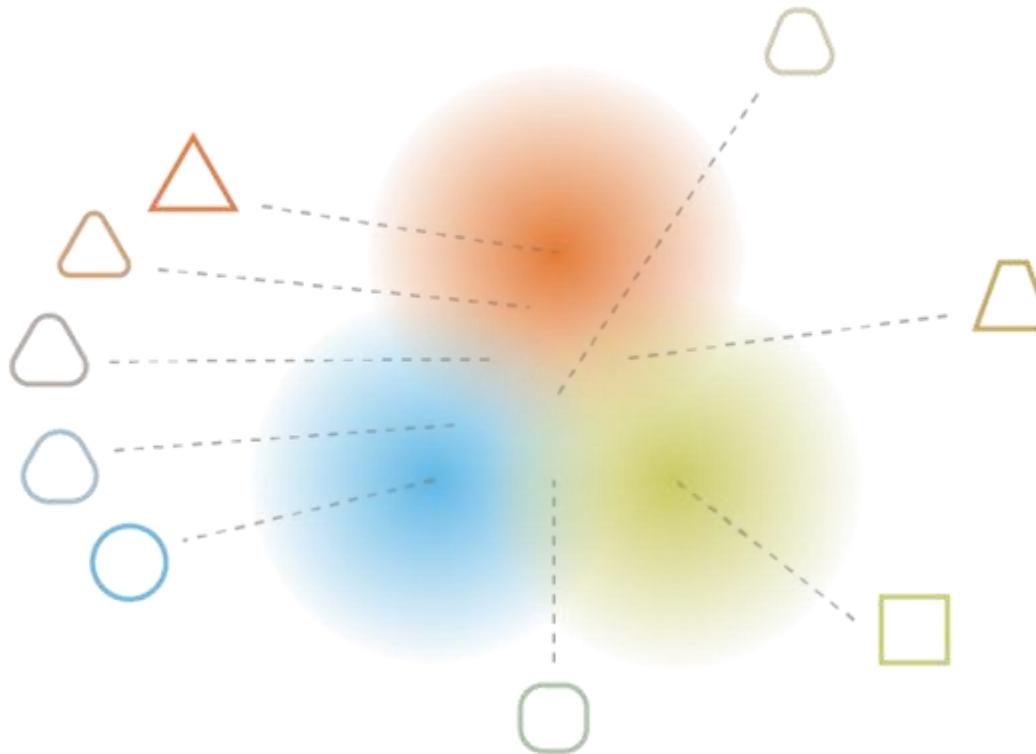
Variational AutoEncoder trick

- Variational autoencoder (VAE) can be defined as being an autoencoder whose training is regularised to avoid overfitting and ensure that the latent space has good properties that enable generative process
- first, the input is encoded as distribution (*usually, Gaussian*) over the latent space
- second, a point from the latent space is sampled from that distribution
- third, the sampled point is decoded and the reconstruction error can be computed
- finally, the reconstruction error is backpropagated through the network

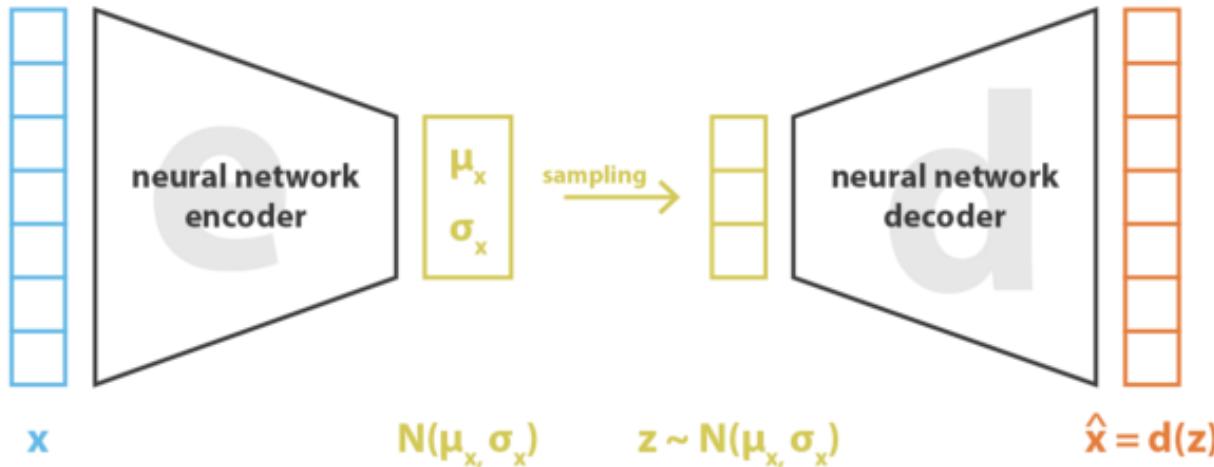
Latent distribution must be as compact as possible (regularization)

We force individual distributions $p(z|x)$ to be as close to the standard Gaussian (zero mean, unit covariance) as possible

Then the new generated data is smooth



Mathematical formulation



$$\text{loss} = \|x - \hat{x}\|^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)] = \|x - d(z)\|^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)]$$

A special technique how to train such a network:

- 1) *variational inference*
- 2) *reparametrization trick*

<https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73>

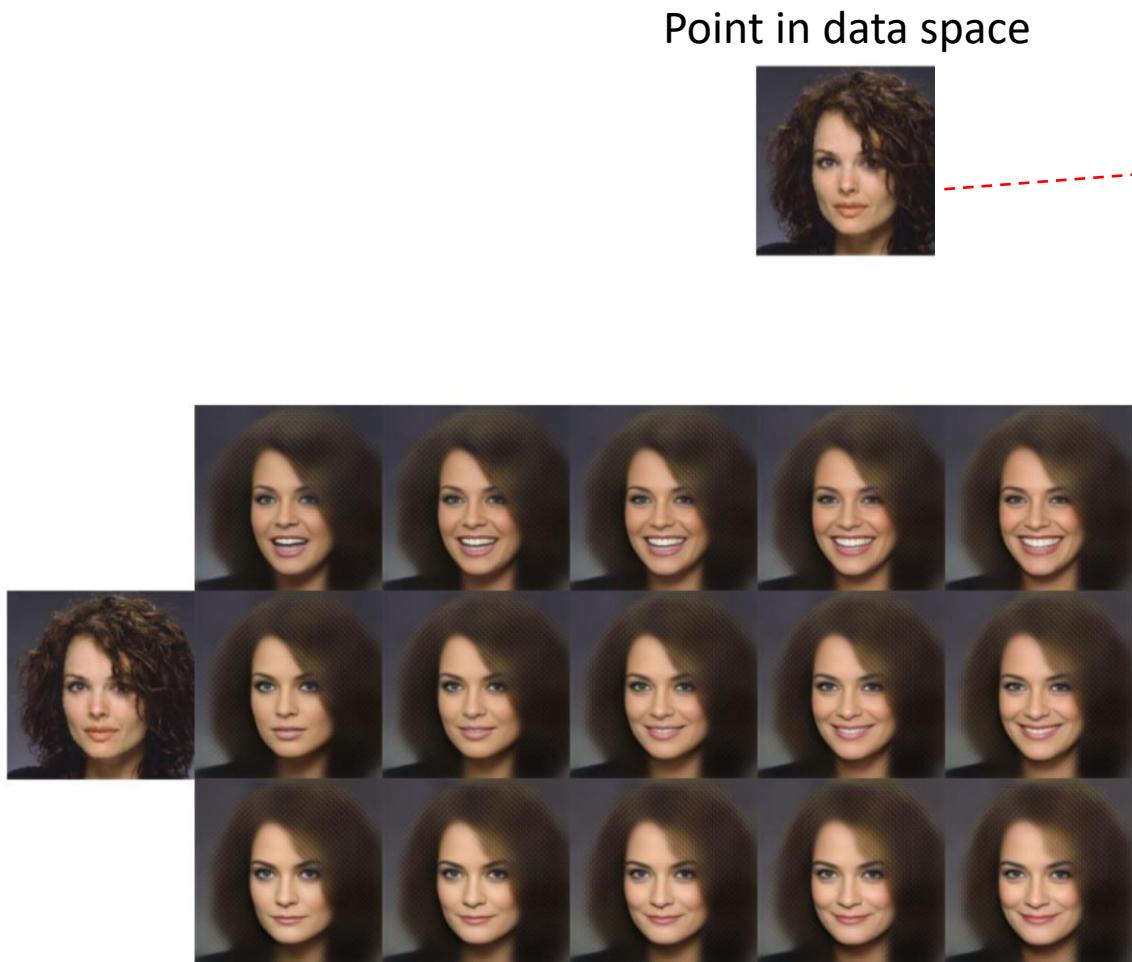


Figure 7: Decoupling attribute vectors for smiling (x-axis) and mouth open (y-axis) allows for more flexible latent space transformations. Input shown at left with reconstruction adjacent. (model: VAE from Lamb 16 on CelebA)

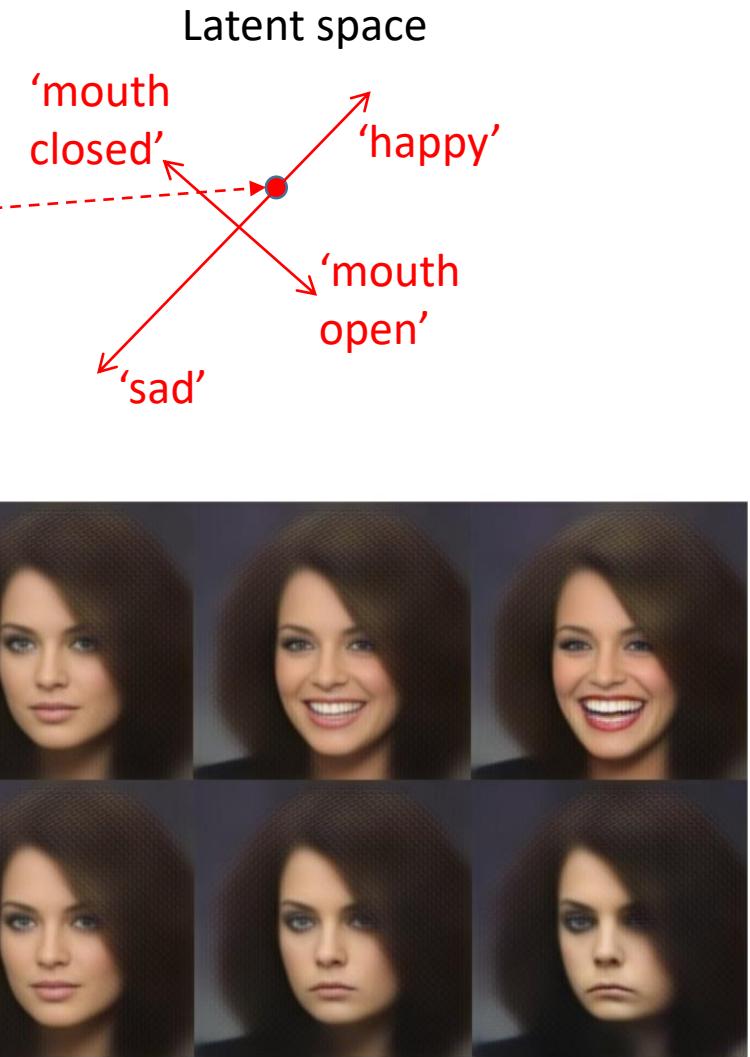


Figure 4.4: VAEs can be used for image resynthesis. In this example by White, 2016, an original image (left) is modified in a latent space in the direction of a *smile* vector, producing a range of versions of the original, from smiling to sadness.

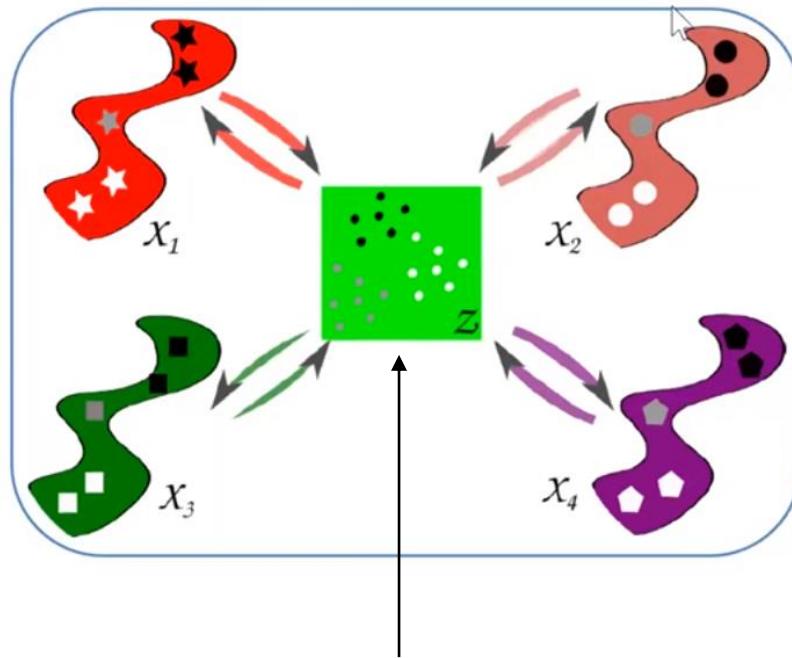
Which face is real?

<https://www.whichfaceisreal.com/>

You are **correct**. The image on the left is real.

[Play again.](#)

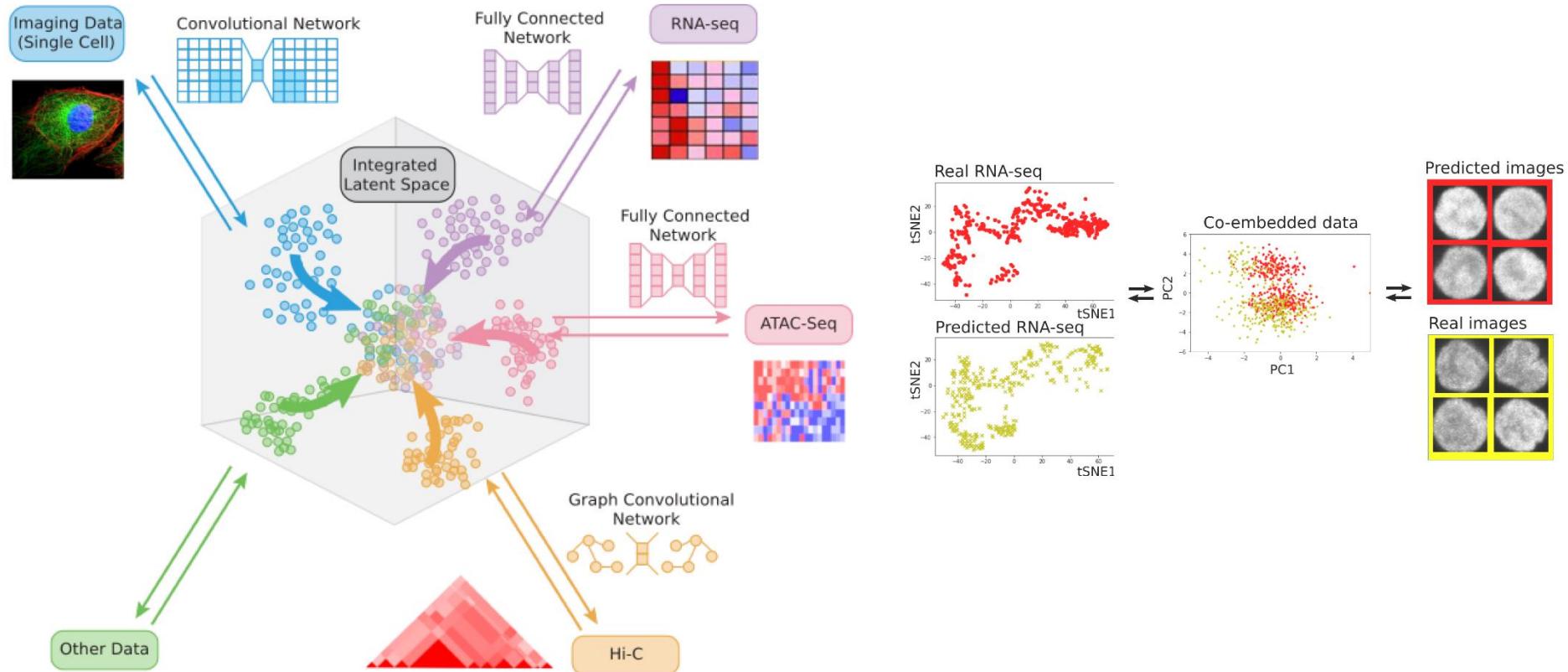
Mapping disjoint data spaces



Distribution matching method: Generative Adversarial Network (GAN), optimal transport (Wasserstein distance), maximum mean discrepancy (MMD)

(from
<https://www.youtube.com/watch?v=Z2T9ZqCsRW8> ,
Caroline Uhler's presentation)

Learning latent spaces of biological systems: multi-domain data ‘translation’



From Yang et al, Multi-Domain Translation between Single-Cell Imaging and Sequencing Data using Autoencoders. BioRxiv, 2019

What you have to take with you

- Manifold learning methods either learn an explicit manifold (extensions of PCA) or are equivalent to projective non-linear dimensionality reduction (extensions of MDS)
- We can learn something which is more complex than a manifold (e.g., graphs approximating the data)
- Artificial neural network-based autoencoders and variational autoencoders provide both encoding and decoding functions
- Decoding (injection) function of any dimensionality reduction method can be used for generative data modeling