Fundamentals of Al
Manifold learning

Non-linear autoencoders for
dimensionality reduction




Let us recapitulate

* General principle of autoencoding
R
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e Continuous linear autoencoder, PCA: RP ">~ realnumber — RP
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e Discrete autoencoder, k-means: R
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 Non-linear autoencoder, ? : RP > R™ - RP
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Non-linear PCA using autoassociative neural
networks (Mark Kramer, AlChe, 1991)
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Figure 2. Network architecture for simultaneous deter-
mination of f nonlinear factors using an
autoassociative network.

o indicates sigmoidal nodes, *indicates sigmoidal or linear nodes.



Reducing the Dimensionality of Data with Neural
Networks (G.E.Hinton&R.R.Salakhutdinov, Science 2006)

Original

ANN autoencoder
with 30 neurons

PCA with 30
dimensions




Reducing the Dimensionality of Data with Neural
Networks (G.E.Hinton&R.R.Salakhutdinov, Science 2006

MNIST dataset

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).
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Problems of training deep autoencoders

* Data hungry approach

* Weight initialization “With large initial weights, autoencoders
typically find poor local minima; with small initial weights, the
gradients in the early layers are tiny, making it infeasible to train
autoencoders with many hidden layers”

* Suggested approach for training: pretraining every couple of
neighbour layers using another type of neural networks (restricted
Boltzman machine) + fine-tuning using back propagation afterwards



Advantages of deep vs shallow autoencoders?

* Depth can exponentially reduce the computational cost of
representing some functions

* Depth can exponentially decrease the amount of training data
needed to learn some functions

* Experimentally, deep autoencoders yield better compression
compared to shallow or linear autoencoders

* Take this message critically



Deep generative models

Autoencoders are injective dimensionality
reduction methods (we know the DECODE!)
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We need to know the distribution to sample!
Let us denote it z. We want it to have some
regular properties!

latent
space

[.32]

34

.01

7

z

><

iy

fo : latent space — data space

data space

8

From https://marcocuturi.net/



https://marcocuturi.net/

Latent autoencoder space without regularization is
frequently not usable for generating new data

the autoencoder is solely trained to encode and decode with as few loss as possible, no
matter how the latent space is organised

encoded data can be decoded

without loss if the autoencoder
has enough degrees of freedom
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https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Latent autoencoder space without regularization is
frequently not usable for generating new data
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https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Variational AutoEncoder trick

Variational autoencoder (VAE) can be defined as being an autoencoder whose training is
regularised to avoid overfitting and ensure that the latent space has good properties that enable
generative process

first, the input is encoded as distribution (usually, Gaussian) over the latent space
second, a point from the latent space is sampled from that distribution
third, the sampled point is decoded and the reconstruction error can be computed

finally, the reconstruction error is backpropagated through the network

latent input
" input representation reconstruction
simple
autoencoders X z=-e(x) d(z)
latent sampled latent input
input distribution representation reconstruction

variational
autoencoders X p(z|x) z~ plz|x) d(z)



Latent distribution must be as compact as possible
(regularization)

what can happen without regularisation x V what we want to obtain with regularisation

We force individual distributions p(z|x) to be as close to the standard
Gaussian (zero mean, unit covariance) as possible



Then the new generated data is smooth



Mathematical formulation

neural network neural network

encoder decoder

X =d(z)

loss = |[x-x]|]* + KL N0, )] = || x-d(2) || + KL ,N(0, )]

A special technique how to train such a network:
1) variational inference
2) reparametrization trick

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Latent space

Point in data space

Figure 7: Decoupling attribute vectors for smiling (x-axis) and

mouth open (y-axis) allows for more flexible latent space Figure 4.4: VAEs can be used for‘image resynthesis. In this example by White,
transformations. Input shown at left with reconstruction 2016, an original image (left) is modified in a latent space in the direction of a smile

. ) vector, producing a range of versions of the original, from smiling to sadness.
adjacent. (model: VAE from Lamb 16 on CelebA)

https://arxiv.org/vc/arxiv/papers/1609/1609.04468v2.pdf



Which face is real?
https://www.whichfaceisreal.com/

correct. The image on the left is real

Play again.



https://www.whichfaceisreal.com/

Mapping disjoint data spaces

Distribution matching method: Generative
Adversarial Network (GAN), optimal transport
(Wasserstein distance), maximum mean
discrepancy (MMD)

(from
https://www.youtube.com/wa

tch?v=722T9Z2qCsRW8 ,

Caroline Uhler’s
presentation)


https://www.youtube.com/watch?v=Z2T9ZgCsRW8

Learning latent spaces of biological systems:
multi-domain data ‘translation’
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From Yang et al, Multi-Domain Translation between Single-Cell Imaging and Sequencing Data
using Autoencoders. BioRxiv, 2019



What you have to take with you

* Manifold learning methods either learn an explicit manifold
(extensions of PCA) or are equivalent to projective non-linear
dimensionality reduction (extensions of MDS)

* We can learn something which is more complex that a
manifold (e.g., graphs approximating the data)

* Artificial neural network-based autoencoders and variational
autoencoders provide both encoding and decoding functions

* Decoding (injection) function of any dimensionality
reduction method can be used for generative data modeling



