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Abstract 

 

We analyze several genetic texts, using visual representations of triplet count distribution in a 
sliding window. After appropriate normalization and projection onto a linear manifold spanned by 
the first three principal components, the distribution of 64-dimensional vectors of triplet frequencies 
appears as a cloud of points, displaying a well-detectable cluster structure. In several complete 
bacterial and yeast genomes selected for analysis, as well as some model sequences, the structure 
was found to consist of seven clusters, corresponding to protein-coding information in three 
possible phases in one of the two complementary strands and in the non-coding regions. Formation 
of such a seven-cluster structure reflects the unevenness of codon usage, particularly the presence of 
codon bias. Awareness of the existence of this structure allows development of methods for the 
segmentation of sequences into regions with the same coding phase and non-coding regions. This 
method may be completely unsupervised or use some external information (for example, known 
codon usage and codon order correlations.) In both cases, final segmentation corresponds with 
convincing accuracy to the positions of known exons (sensitivity and specificity both higher then 
0.9) compared on the base-pair level. 

 
Introduction 
 
One of the most well-stated problems in mathematical molecular biology over the last 
two decades is that of computational gene recognition; i.e., of predicting the location 
and content of coding regions in sequenced genomes.  Since this problem was of such 
great practical interest to experimental biologists, it became the main arena for testing 
and comparing various mathematical methods and ideas.  This competition led to the 
development of a wide variety of both free and commercially available software 
tools, upon which modern bioinformatics is based.   
There are many reviews of the spectrum of approaches used in computational gene 
recognition.  For recent ones see, for example, Fickett (1996,) Claverie (1997,) Burge 
and Karlin (1998,) and Haussler (1998).  Generally, all of them use one of the 
following information types for recognition: signals, content measures, and similarity 
measures, or some combination thereof.   
Content measures are statistical properties of a DNA region that can aid in 
distinguishing coding from non-coding regions.  A wide variety of such measures is 
used in modern gene recognition.  Several authors (see, for example, Fickett, 1992) 
have carried out systematic comparative analyses of such measures, several of which 
have been identified as promising candidates for use in gene recognition.  Many of 
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them implement the concept of codon bias; i.e., that each species employs a bias in its 
choice of codons such that synonymous codons are not used with the same frequency.  
Examples of these are codon usage, composition, position asymmetry, and entropy 
measures (for definitions, see Fickett, 1996.)   
Several authors have reported that a measure known as the inphase hexamer count 
(the number of hexamers in a segment of DNA text offset by 0, 1, and 2 base-pairs 
from the starting base of the test codons) appears to be the best content measure.  
With few exceptions, almost all commonly used gene-finding programs employ a 
learning dataset for tuning the parameters of the learning rule.  A method developed 
for unsupervised segmentation of whole DNA texts has been described in several 
recent papers (Bernaola, 2000; Li, 2001).  It uses the fact of codon bias by 
introducing a 12-letter alphabet, corresponding to various positions of base-pairs in 
test codons.  This method is able to detect borders between coding and non-coding 
regions without a preliminary learning stage.   
Thus, many researchers report success in applying new, heuristically discovered 
measures in this field.  Surprisingly, the relevant literature contains a relatively low 
number of publications in which the space of the variables used is thoroughly 
explored.  As a result, there is still poor theoretical understanding of why some 
variables are good for gene recognition while others are not.  For example, in one of 
these papers, Fickett (1992,) many measures were compared with the linear 
discriminative analysis method, which in fact, relies on a rather strong hypothesis 
concerning the structure of data distribution.  M. Zhang (1997) successfully exploited 
quadratic discriminative surfaces in the spaces of some special variables, but left the 
underlying reasons for the application of quadrics unclear.   
Of course, the success of a given technique in this field may be measured more or 
less objectively and independently.  Much research has been carried out in the aim of 
comparing the effectiveness of various gene-finders on the base, exon, and gene 
levels (see, for example, the recent papers of Rogic, 2001 and Guigo, 2000.)  The 
effectiveness of an approach often serves as its own self-justification.  However, we 
believe that the detailed exploration of geometric metaphors for data-sets used in 
various learning algorithms can greatly improve their effectiveness and provide 
insight into the underlying mechanisms of the learning process.  In this respect, 
multidimensional data visualization methods are invaluable because they can provide 
a foothold in attempting to understand what happens in the highly multidimensional 
spaces of learning processes; why some of them are very effective and successful 
while others are not.   
In this paper we will try to explore the space of a very simple measure, which is in 
fact the oldest measure used for gene recognition: triplet counts in a sliding window.  
We will visually demonstrate the structure of a dataset used for learning and try to 
formalize the conditions of learning process effectiveness.   We will show that in 
special cases, traditional use of a learning data-set (a set of examples of already 
known coding and non-coding regions) may be substituted for learning without a 
teacher; i.e., an unsupervised procedure.   
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Very generally, the problem may be stated as follows:  We have  
 

1) codon usage; i.e., a set of three-letter words (trinucleotides) that may be used for 
coding biological information.  Each trinucleotide has its own frequency, which is 
more or less maintained during coding.  For example, some codons always have an 
almost-zero frequency (the codon bias phenomenon).   

 
2) text, containing two types of sequences: coding regions, consisting of codons that 
succeed each other without delimiters; these regions are strictly conserved during the 
evolutionary process; and non-coding regions (or junk) which allow mutations, and 
thus have no specific structure; for example, we can assume that non-coding regions  
are composed of the same set of codons, but only after a number of random insertions 
and deletions of various base-pairs.   

 
Here we must underline that to a certain degree, these principles are very naive and 
oversimplified; we will nevertheless use them to construct several simple models of 
DNA text.  
The following question emerges: Using text alone without knowing the code, is it 
possible to identify coding regions, and if so, with what accuracy it is possible to 
detect where the segments of coding information are?  To answer this question, we 
will analyze the structure of triplet distribution in one very simple space of 
frequencies.   

 
Results 

 
Operations over codon usage 

 
Let us denote codon frequency distribution by fijk , where i,j,k∈{A,C,G,T}, i.e., for 
example, fACG is equal to the frequency of the ACG codon in a given coding region.  
One can introduce such natural operations over the frequency distribution as phase 
shifts P(1,) P(2) and complementary reversion CR:   

∑≡
nml

kmnlijijk fffP
,,

)1( , 

∑≡
nml

ijnlmiijk fffP
,,

)2(
 

ˆ ˆ ˆ
ˆ ,R
ijk ijk k j i

f C f f≡ ≡
ijkijk

R
ijk ffCf ˆˆˆ
ˆ ≡≡ , where î  is complementary to i, i.e., TA =ˆ , Ĉ = 

G,  etc. 
The phase-shift operator P(n) calculates the new triplet distribution, but now counted 
with a frame-shift on n positions, in the hypothesis that no correlations exist in codon 
order.  Complementary reversion constructs the distribution of codons from a coding 
region in the complementary strand, but counted in the forward strand.  
Let us introduce the distance between two distributions as:  
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∑ −=−
ijk

ijkijkijkijk gfgf . 

It is then natural to expect that the problem stated at the end of the introduction may 
be solved if one of the numbers, ijkijk fPf )1(− , ijkijk fPf )2(−  is large enough.  It follows 
from that remark that after a large number of insertion and deletion operations of one 
base-pair at a time, we would have  

0)1( ≈− ijkijk fPf , 0)2( ≈− ijkijk fPf . 
Let us introduce a measure of how effective fijk is in recognizing coding sites:  

( )ijkijkijkijk fPffPfCP )2()1( ,max −−=  
Real distributions in the first and second phases (where correlations are taken into 
account) will be denoted as )1(

ijkf , )2(
ijkf , )1(

îjkf , )2(
îjkf .  Let us introduce the term “codon 

correlation contribution measure” as the average distance between real and 
calculated distributions   

( ))2()2()1()1(

2
1

ijkijkijkijk ffPffPCC −+−= . 

  
Visualization using principal component analysis 

 
We have constructed datasets of triplet frequencies for several real genomes and for 
several model genetic sequences, as follows:  

 
1)  Only the forward strands of genomes are used for triplet counting; 
2)  Every p positions in the sequence, we open a window (x-W/2,x+W/2,) of size 

W and centered at position x; 
3)  Every window, starting from the first base-pair, is divided into W/3 non-

overlapping triplets, and the frequencies of all triplets fijk are calculated; 
4)  The dataset consists of N = [L/p] points, where L is the entire length of the 

sequence.  Every data point Xi={xis} corresponds to one window and has 64 
coordinates, corresponding to each frequency of the sth possible triplet.    

 
A standard centering and normalization on a unit dispersion procedure is then 
applied, i.e.,  

s

sis
is

mxx
σ
−=~ ,  

where isx~  is the value of the sth coordinate of the ith point after normalization, and 

∑
=

=
N

t
tss x

N
m

1

1  is the mean value of the sth coordinate, and 

( )∑
=

−=
N

t
stss mx

N 1

21σ is the standard deviation of the sth coordinate.   
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We then apply the principal components algorithm  (see Methods section,) in order to 
visualize a 64-dimension dataset on a 3-dimensional linear manifold spanned by the 
first three principal vectors of the distribution.  It is known that projection onto this 
manifold is only as informative as the higher value of ν(3) = D(3)/D, where D is the 
dispersion of the dataset, calculated in 64-dimensional data-space:   

∑
=

−=
N

t
t XX

N
D

1

21 , X  is the mean point of the data-point distribution  

and D(3) is the analogous quantity calculated after projecting the vectors in  
3-dimensional space.    
In practice, even if the value of v(3) is not high enough, we may still try to visualize 
the dataset, in the hope of being able to pick up qualitative “signals” of the presence 
of hidden patterns in the data distribution, as well as to visually represent the dataset.   

 
Real texts 
 
Figures 1 through 5 present several distributions calculated for real genetic texts.  It is 
clear that the distribution consists of seven clusters.  In some cases these clusters are 
situated quite symmetrically, in others they are not.  In addition to the distribution 
itself, we introduced two triangles, formed by the points fijk, (1)

ijkP f , (2)
ijkP f  and 

ijkf̂ , ijkfP ˆ)1( , ijkfP ˆ)2( , into the figures.  The large spheres correspond to the points fijk and 

ijkf̂ , where fijk was calculated from the genome’s known annotation.  Data-points have 
different shapes and colors, according to whether they are coding or non-coding in 
one of the two strands.  A rough explanation of the structure is rather clear: Coding 
information from windows in the forward strand has one of three possible phase 
shifts.  Since this phase shift is not known in advance, approximately one-third of the 
windows fall into the vicinity of the point that corresponds to the fijk (0-shift,) one-
third are close to the  )1(

ijkf (1-shift,) and the last third are close to the )2(
ijkf  (2-shift).  

This is also true for the complementary strand, but with the centers corresponding to 
complementary distributions.   
One can see from the pictures that the centers of phase-shifted distributions are close 
enough to the calculated points, assuming an absence of correlations.  Indeed, the 
calculated values of CC are not high (see Table 1, CC column.)   
 
Model texts 
 
 In order to understand which property of codon usage renders the formation of such 
spatial structures possible, we generated four model distributions of codon usage and 
constructed four model sequences.  They all are 100,000 bp long, with an average 
coding region length of 500 bp.  The exon length distribution was chosen to be 
Gaussian, with a standard deviation of 100 bp.  The minimal length of exons was 50 
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bp.   The junk region length distribution was chosen to be uniform in the 50-1000 bp 
interval.  “Junk” was generated from the same codons as the coding regions, but after 
l/4 random insertion and deletion operations of one base-pair (l is the length of a 
piece of junk.)   
 
• In the UNIFORM model text, the frequencies of all codons were set to 1/64.   

• In the RANDOM model text, the frequencies of all codons were set to be 
random and normalized on the unit sum.   
• In the RANDOM_BIAS model text, the frequencies of all codons were set to 
be random, after which half of them (randomly selected) were set to zero. The 
distribution was then normalized on the unit sum.  
• In the GC_CORR model text, the frequencies of all codons were set to be 
proportional to the codon GC-content.   
 
It is clear from the table and from Fig. 6 that the RANDOM_BIAS text leads to 
efficient detection of coding segments.  The worst case is the UNIFORM text, 
although GC_CORR also does not result in detection with any reasonable accuracy.  
All generated sequences are available on the accompanying web-page: 
http://www.ihes.fr/~zinovyev/bullet. 
 
Clusterization, phase graphs   
 
Using visual representation of data-point distribution, it is possible to propose a rather 
natural way of segmenting sequences into regions that are homogeneous with respect 
to coding phase.  One would expect that regions with the same coding phase 
correspond to protein-coding regions.  This procedure was accomplished using the 
well-known K-means clusterization algorithm.  After clustering the distribution into 
seven clusters, triplet distribution may be calculated in the (x-W/2,x+W/2) window for 
every base-pair in position x, and after appropriate normalization, the closest cluster 
in the data space may be found.  If it is the central cluster, that point is likely to be 
non-coding; otherwise the presence of coding information should be suspected in one 
of three possible phases.   
To evaluate the ability of this procedure to differentiate between “coding” and “non-
coding” base-pairs, we used base-level sensitivity and specificity of exon recognition, 
which are very commonly used measures in this case:  

FNTP
TPSn
+

= ,
FPTP

TPSp
+

=  

where  
TP is the number of true-positives, i.e., coding bases predicted to be coding;  

http://www.ihes.fr/~zinovyev/bullet
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TN is the number of true-negatives, i.e., non-coding bases predicted to be non-
coding;  
FP is the number of false-positives, i.e., coding bases predicted to be non-coding, and  
FN is the number of false-negatives, i.e., non-coding bases predicted to be coding.   
The results are shown in the Sn1 and Sp1 columns of Table 1.  These values are quite 
high, especially if we take into account that fact that the method does not really use a 
learning dataset.  The only parameter – window size – may be visually evaluated by 
comparing pictures of data constructed with various values of W (see following 
sections.)  In fact, the dependence of effectiveness on window-size is not strong over 
a rather long interval of W.)   
This method of sequence segmentation may also be regarded as detection of the 
borders between “coding” and “non-coding” regions.  It is possible to draw a graph of 
the “coding phase” for a genome.  As one can see from Figure 7, which illustrates 
several randomly chosen regions of the analyzed genomes, change in coding phase 
correctly detects the borders between coding and non-coding regions.  Of course, this 
method has the same drawback mentioned in Bernaola, et al. (2000,) namely that if 
two exons are close enough and the number of base-pairs between them is divisible 
by 3, they will most likely be recognized as a single exon.   
 

Table 1 
Summary table of results and parameters used for genome analysis 

 

Sequence L W p ν(3)
% of 

coding
bases

CP CC CD Sn1 Sp1
 Sn2 Sp2

Helicobacter pylori, complete genome
(NC_000921) 
Caulobacter crescentus, complete genome
(NC_002696) 
Prototheca wickerhamii mitochondrion 
(NC_001613) 
Saccharomyces cerevisiae chromosome III 
(NC_001135) 
Saccharomyces cerevisiae chromosome IV 
(NC_001136) 

1643831

4016947

55328

316613

1531929

300

300

120

399

399

120

300

18

99

120

0.35

0.21

0.17

0.16

0.15

90

91

49

69

73

0.68

1.07

0.83

0.45

0.48

0.28

0.16

0.11

0.10

0.09

1.21

0.74

1.34

1.77

1.69

0.93

0.93

0.82

0.90

0.89

 
0.97 

 
0.97 

 
0.93 

 
0.88 

 
0.91 

0.93

0.94

0.84

0.90

0.92

0.98

0.98

0.95

0.90

0.92
Model text RANDOM 
Model text RANDOM_BIAS 
Model text UNIFORM 
Model text GC_CORR 

100000
100000
100000
100000

500
500
500
500

30
30
30
30

0.13
0.30
0.09
0.09

49
45
50
49

0.46
1.20
0.08
0.16

0.05
0.06
0.06
0.05

1.40
0.53
6.90
3.60

0.90
0.99
0.70
0.71

0.61 
0.83 
0.49 
0.49 

0.82
0.94
0.78
0.78

0.77
0.90
0.53
0.56

 
Using known data 
 
In the previous section the learning process used no information other than the 
sequence itself; it was completely “unsupervised.”  Of course, one could try to make 
use of some previous knowledge, as discussed in the next paragraph. 
Studying a set of training examples, it is possible to explicitly calculate the centers of 
all seven clusters.  We have done this, using annotation of the analyzed genomes. 



 9

First, half of the genes were used to calculate the centers, and the rest for accuracy 
testing. Using these seven vectors as centroids, we calculated new values for the 
sensitivity and specificity of gene recognition.  They are shown in the Sn2 and  Sp2 
columns of Table 1.  Once the centers are known, it is possible to visualize the 
trajectories of shorter DNA segments.  If a sliding window is set every three base-
pairs (p=3,) the sequence of data points in the data space will form a kind of 
continuous trajectory (because two neighbors differ only by two codons, one of 
which is  eliminated, and the other added.)  The trajectory tends to be located near 
cluster centers.  Two examples of such trajectories for relatively short segments of 
DNA text are shown on Figs.8  and 9.    
 
Single genes 
 
Detection of the presence of a “coding phase” can be demonstrated not only for 
complete genomes, but also for short DNA segments containing a single long exon.  
In some cases it may be possible to determine whether a given DNA segment of, for 
example, 500-1000 bp, contains information coded by codons.   Since in this case we 
have only one exon and there is no “accidental” phase-shift, we should set sliding 
windows every p positions, where p is not divisible by 3; for example, p=1.  In the 
space of triplet frequencies, the succession of sliding windows will form some 
trajectory.  For the coding sequence, this trajectory will form a triangle-like path, 
such as shown in Fig.10.  If the sequence contains both coding and non-coding 
information, only part of the trajectory will be triangle-like.  It would be interesting to 
detect in a formal way the instant at which the change in trajectory-type occurs.   
 
Dependence on window-size 
 
It is interesting to see how the distribution cluster structure changes with variation in 
the value of window size W.  It is evident that in the case of very small window size 
(30-50 bp,) the calculated statistics of triplet frequencies are not reliable.  The large 
amount of statistical noise does not allow the cluster structure to form.  In the case of 
large windows (>1500 bp,) clusters do not correspond well to coding and non-coding 
regions.  Optimal window-size seems to correspond to average exon length.   
An example of evolution in the visual presentation of data distribution is shown in 
Fig.12.  It is not easy to propose a natural measure for the formal calculation of 
optimal window size.  We tested several candidates (such as average in-cluster 
variation,) but still found the visual evaluation of optimal window-size to be the most 
useful and practical.  Also, if the average length of protein-coding exons is known, it 
is reasonable to take this value to be the window-size.  Table 2 presents the results of 
testing segmentation for various window sizes.  It is clear that the dependence of 
segmentation accuracy on W is not very strong over a rather long interval.   
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Table 2 
Comparison of exon recognition accuracy for several values of W 

 
Sequence W Sn1 Sp1

 

Helicobacter pylori, complete genome  50 0.799 0.907 
(NC_000921) 100 0.889 0.921 
 150 0.929 0.969 
 200 0.930 0.971 
 250 0.929 0.974 
 300 0.928 0.973 
 350 0.919 0.972 
 400 0.912 0.971 
 450 0.908 0.968 
 500 0.911 0.966 
 550 0.888 0.962 
 600 0.901 0.963 
 650 0.896 0.961 
 700 0.892 0.959 
 750 0.892 0.958 
 800 0.893 0.957 
 850 0.891 0.952 
 900 0.889 0.950 
 950 0.882 0.949 
 1000 0.878 0.949 
 1050 0.881 0.947 
 1100 0.876 0.944 
 1150 0.869 0.946 
 1200 0.864 0.943 
 1250 0.862 0.941 

 
Human genes 
 
The methods of visualization proposed are mainly suitable for bacterial and lower 
eukaryote genomes (such as those of yeast,) due to the comparatively high density of 
coding information.  Therefore, the distribution of triplet frequencies forms a clearly 
visible seven-cluster structure, after projection onto the linear 3-dimensional principal 
manifold.  Otherwise, large numbers of windows, in the absence of a synchronized 
coding phase, would make the number of  “coding” windows statistically negligible, 
therefore invisible, after projection onto the principal manifold.   
Nevertheless, knowing genome annotation, we can still find triangle-like structures in 
the distributions of triplets by assigning a weight to every data point that corresponds 
to the number of coding and non-coding windows.  “Coding” data-points are assigned 
higher weights and “non-coding” ones lower weights, proportional to the relation 
between the numbers of coding and non-coding windows.  Principal component 
analysis with weights may then be applied (see Methods section).  This was done for 
the HMR195 dataset of human genes used for testing gene-finder programs in (Rogic 
2001,) available at http://www.cs.ubc.ca/rogic/evaluation/dataset.html.  The results 
are shown in Fig.11.   
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Non-homogeneity of codon usage 
 
Another measure is used to compare the maximal distance between the zero and non-
zero coding phases, and the standard deviation in the measurement of codon usage.   

CP
fCD σ= ,  

where ( )∑
=

−=
N

l
ijklijk ff

N
f

1

21σ , (fijk)l are codons frequencies in the lth window.   

The standard deviation of codon usage is the result of two factors: statistical deviation 
caused by measurements being carried out in a comparatively narrow window, and 
non-homogeneity of codon usage along the whole genome.   The CD value is 
responsible for the distribution “contrast,” i.e., how well various phases clusters are 
separated from each other in data space.  CD values for the genomes analyzed are 
shown in the CD column of Table 1.  A “contrast” picture of distribution corresponds 
to the 1CD ≤  values.  Satisfactory clusterization corresponds to the case in which 

1.7CD ≤ . 

 
Discussion 
 
We can interpret the process of sequence-generating in probabilistic terms in order to 
make it easier to understand how our approach is related to the standard approaches, 
such as hidden Markov modeling. Using the notation of Burge and Karlin (1997,) we 
can consider a set of states Q = {N, E0

(+,) E1
(+,) E2

(+,) E0
(–,) E1

(–,) E2
(–)}. In every one of 

these states, triplets are generated according to the corresponding frequency 
distributions F = {junkijk, ijkf , )1(

ijkf , )2(
ijkf , ijkf̂ , )1(

îjkf , )2(
îjkf }. The algorithm generates a 

sequence as follows: 
1) One of the states qt∈Q is taken randomly, with probability Aqt (s = 1…7). 
Transition into the same state is prohibited. 
2) A length (state duration,) dt, corresponding to the state qt is generated 
conditional on the value of qt from the length distribution lqt.  
3) A sequence segment st of length dt is generated, conditional on dt and qt, 
according to an appropriate triplet-generating frequency ft∈F for state type 
qt. 
4) This process is repeated until the sum ∑ = nt td

..1
of the state durations first 

equals or exceeds the sequence length L, at which point the last state 
duration dn is appropriately truncated, the final stretch of sequence is 
generated, and the process stops. The sequence generated is simply the 
concatenation of the sequence segments, S = s1s2…sn.  
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This process is similar to the semi-Markov type, but is actually simpler, since it does 
not use transition probabilities (of course, it is possible to introduce them.)  It would 
then be possible to derive a variant of the Viterbi algorithm, but we could claim that 
performance of such a probabilistic calculation would not be better than the simpler 
method proposed. 
Using a sliding window is somehow “out of fashion” in modern biological sequence 
analysis. In fact, it explicitly introduces scale into the process of evaluating 
frequencies. But hidden Markov models with explicit state durations also implicitly 
introduce scale by length distribution. It is possible to develop a weighted scheme of 
calculating triplets in a sliding window that takes exon length distributions into 
account. 
As mentioned above, this model is oversimplified, but in prokaryotes (for example, 
Helicobacter pylori) it has essentially the same performance as the GLIMMER gene-
finder (Salzberg, et al., 1998,) despite the fact that it does not include any parameters 
other than sliding window size. This means that the model captures the essential part 
of the information needed to discriminate between coding and non-coding regions, 
and further complication (such as introducing Markov models with a complicated 
scheme of interpolating oligomer frequencies, as in Salzberg, et al., 1998) is 
unnecessary and leads to an excessive number of parameters. In addition, because of 
unsupervised learning, the method does not depend on the way genes are chosen for 
the learning process.  
It is clear from the constructed representations of datasets that the spatial structure of 
triplet distributions is almost completely determined by two factors: 1) the frequency 
distribution of the 64 codons in the coding phase; 2) the dispersion of codon 
frequency distribution.  From the figures, it is evident that the distribution structure 
renders linear discrimination analysis (frequently applied in this situation) absolutely 
inapplicable.  Applying linear methods in this case would lead to the incorrect  
conclusion that the dataset is not well-separable and that this measure is worse than 
others more suitable for a linear discrimination function.  For example, in the case of 
Helicobacter pylori, linear discrimination yields a specificity of ≈0.83 (which means 
many false positives,) while the method we proposed yields ≈0.97.  This fact stresses 
once again that understanding the spatial structure of a learning dataset is absolutely 
necessary for the reasonable application of pattern recognition methods.   
Frequency normalization plays a key role in cluster structure formation.  It indicates 
the important role in distinguishing coding and non-coding regions played by triplets 
which may not have high frequency values but that considerably change their 
frequency after a coding phase-shift (codons that are “prohibited,” due to bias.)   
From the general point of view, codon distribution that is efficient for gene 
recognition corresponds to a high value of mutual information, i.e.,  

∑=
ijk kji

ijk
ijk ppp

f
fM 2log , 
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where pi is the average frequency of letter { , , , }i A C G T∈ .  This value may be zero only 
in the case kjiijk pppf = .   In this case, we would have ijkijkijk ffPfP == )2()1( , i.e., phase-
shift does not change the codon distribution.  High values of M guarantee the 
presence of a “three-phase triangle” in the data space, as well as the formation of a 
cluster structure.   
In this paper we have shown that visual analysis of a spatial dataset structure does not 
require the use of a learning dataset in order to accurately solve gene recognition 
tasks, at least in DNA segments with high concentrations of coding information.  This 
property of the method we propose seems to be very useful, since the problem of 
choosing  a “good” learning dataset is not very well defined.  We also showed that 
even in the case of completely unknown codon usage properties, it is possible to 
predict how reliable the gene recognition procedure will be.  We deliberately did not 
use additional biological information in detecting gene borders.  Of course, if the 
method were to be proposed for practical use, it would be reasonable to conduct some 
post-processing steps, e.g., aligning the borders of exons, using known signals (stop-
start codons, promoter regions, etc.,) or merging very short regions that have the 
same phase, thereby enhancing the accuracy of the method.  What we tried to show is 
that in many cases, the structure itself provides good accuracy for DNA segmentation 
with respect to the coding phase.   

 
Methods 
 
Principal component analysis is an effective method for reducing the dimension of 
experimental datasets and may be exploited as a data visualization method.   
Principal component analysis uses orthogonal projection of data points Xi (i – the 
number of data point) onto a linear manifold spanned by several first eigen vectors 
(corresponding to the highest eigen values) of covariation matrix S:  
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where X is the average vector.  For purposes of data visualization, the first three 
principal components (eigen vectors) may be used.    
If every point of a dataset has some weight wi, then the formulas should be slightly 
corrected as follows:   
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For example, if a dataset is divided into two unequal classes with N1 and N2 points, it 
is sometimes then reasonable to assign to every point a weight that is inversely 
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proportional to the number of points in the class, i.e., weights 
1

21
1 N

NNw +=  for points 

from the first class and 
2

21
1 N

NNw +=  for the second class.   

All datasets were prepared from sequences in the GenBank flat-file format.  The 
programs used for data analysis, including simple implementation of the K-means 
clusterization algorithm, were written in Java and are available with instructions at 
the accompanying web page: http://www.ihes.fr/~zinovyev/bullet/.  These programs 
actively use the BioJava package.  Technically, the data visualization and all 
illustrations were produced using the ViDaExpert data visualization tool under 
Windows, and are available at the author’s home page:  
http://www.ihes.fr/~zinovyev/vidaexpert/vidaexpert.htm. 

 
Conclusion 
 
In this paper we have reported the results of analysis carried out on several genetic 
texts, based on visual representations one of the oldest measures used for gene 
recognition: triplet counts in a sliding window.  We showed that after appropriate 
normalization and projection onto a linear manifold spanned by the first three 
principal components, the distribution of 64-dimensional vectors of triplet 
frequencies appears as a cloud of points with a rather well-defined cluster structure.  
We also showed that, for several complete bacterial and yeast chromosome genomes 
chosen for study, as well as for some model sequences, the structure consists of seven 
clusters, corresponding to the presence of protein-coding information in three 
possible phases in one of the two complementary strands, and in non-coding regions.  
Formation of such a seven-cluster structure reflects the unevenness of codon usage, 
particularly the presence of codon bias.   
Knowledge of the existence of this structure allows developing methods for 
segmenting a sequence into regions with the same coding phase and non-coding 
regions.  The method may be either completely unsupervised, or use some “external” 
information (for example, known codon usage and correlations in codon order.)  With 
convincing accuracy in both cases, the final sequence segmentation corresponds to 
known exon positions (sensitivity and specificity are both higher then 0.9,) with 
respect to the base level.  In this respect, it would be interesting to explore spaces of 
other learning processes; for example, those of inphase hexamers, widely used in 
hidden Markov models, which are very popular in modern gene recognition.  We 
believe that a clear understanding of the spatial structure of data distribution will lead 
to a higher quality of gene recognition, as well as make it more reliable and 
controllable.  Statistical methods alone are definitely not enough for successful gene 
recognition, however, they remain one of the main components of modern gene 
recognition, especially in cases of newly sequenced complete genomes in which 
many genes have no analogs in databases.   The methods we propose are mainly 
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suitable for bacterial and low-eukaryote genomes (such as yeasts,) because of the 
comparatively high density of coding information.  However the principles 
considered are rather universal and could certainly be exploited in other studies.  For 
example, we show that the dataset of human gene triplet distributions has the same 
symmetrical structure as found in lower organisms.   
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a)  

b)  c)  
 
 

 
 

Fig.1. Visualization of Prototheca wickerhamii mitochondrion (GenBank 
NC_001613,)  

a) top-view (components 1 and 2,) b) side-view (1 and 3,) c) side-view (2 and 3) 

 – junk,  – exons in forward strand, – exons in complementary strand, 
 – fijk,  – ijkfP )1( , ijkfP )2( ;  – ijkf̂ ,  – ijkfP ˆ)1( , ijkfP ˆ)2(  



 

 

a)  

b)  c)  
 
 

Fig.2. V
a) top-view
 – junk,  – exons in forward strand, – exons in complementary strand , 
)1( )2( ˆ ˆ)1( ˆ)2(
18

 
 

isualization of Caulobacter crescentus (GenBank NC_002696,)  
 (components 1 and 2,) b) side-view (1 and 3,) c) side-view (2 and 3) 

 – fijk,  – ijkfP , ijkfP ;  – ijkf ,  – ijkfP , ijkfP  
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a) 

b) c) 
 

 
Fig.3. Visualization of Helicobacter pylori (GenBank NC_000921,)  

a) top-view (components 1 and 2,) b) side-view (1 and 3,) c) side-view (2 and 3) 

 – junk,  – exons in forward strand, – exons in complementary strand , 
 – fijk,  – ijkfP )1( , ijkfP )2( ;  – ijkf̂ ,  – ijkfP ˆ)1( , ijkfP ˆ)2(  
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a) 

b) c) 
 
 

 
 

Fig.4. Visualization of Saccharomyces cerevisiae chromosome IV  
(GenBank NC_001136,)  

a) top-view (components 1 and 2,) b) side-view (1 and 3,) c) side-view (2 and 3) 

 – junk,  – exons in forward strand, – exons in complementary strand , 
 – fijk,  – ijkfP )1( , ijkfP )2( ;  – ijkf̂ ,  – ijkfP ˆ)1( , ijkfP ˆ)2(  



 21

 

 

a) 

b) c)
 
 

 
 

Fig.5. Visualization of Saccharomyces cerevisiae chromosome III  
(GenBank NC_001135,)  

a) top-view (components 1 and 2,) b) side-view (1 and 3,) c) side-view (2 and 3) 

 – junk,  – exons in forward strand, – exons in complementary strand , 
 – fijk,  – ijkfP )1( , ijkfP )2( ;  – ijkf̂ ,  – ijkfP ˆ)1( , ijkfP ˆ)2(  
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a)       b) 

 
   c)       d) 

 
 
 
 
Fig.6. Visualization of model texts. 

a) UNIFORM: uniform codon frequencies; 
b) RANDOM: random codon frequencies; 
c) RANDOM_BIAS: random codon frequencies, half of which are set to 
zero; 
d) GC_CORR: codon frequency is proportional to codon GC-content. 

 – junk,  – exons in forward strand,  – fijk,  – ijkfP )1( , ijkfP )2(  
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a)  

 
b) 

 
Figure 7. Correspondence between predicted coding phase and  

positions of coding regions (exons). 
a) Caulobacter crescentus region (120000..150000) 

b) Saccharomyces cerevisiae chromosome IV region (150000..200000) 
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Fig.8. Trajectory of triplet usage (p=3) in dataspace for 50000..100000 region  
of Helicobacter pylori 

 
 

 
 

Fig.9. Triplet usage trajectory (p=3) in dataspace for 50000..100000 region  
of Caulobacter crescentus 
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   a)        b) 

 
c) 
 
 

Fig.10. Visualization of triplet usage trajectory for short DNA segments (p=1) 
a) E.coli trpC gene; b) E.coli trpE gene;  

c) intron 1 of Prototheca wickerhamii mitochondrion cox1 gene. 
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a) 

b) 
 
 
 
 

Fig.11. Visualization of HMR195 human gene dataset.  
Projection onto the weighted principal components: a) top-view; b) side-view. 

 – junk,  – exons in forward strand, – exons in complementary strand , 
 – fijk,  – ijkfP )1( , ijkfP )2( ;  – ijkf̂ ,  – ijkfP ˆ)1( , ijkfP ˆ)2(  
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a) b) 

 
 

b) d) 
 
 

Fig.12. Visualization of triplet distributions for Helicobacter pylori, 
calculated with different window size W. 

a) W = 51; b) W=600; c) W=900; d) W=2000 
 


