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Abstract. A conjecture of Deligne predicts a relation between motivic L-functions and
geometric periods. In this synopsis, we will explain an approach towards this conjecture for
automorphic motives. This is a joint work with Harald Grobner and Michael Harris.
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Introduction

The goal of this synopsis is to introduce a conjecture of Deligne on special values of L-
functions and its automorphic variant. We first look at the most basic example of the Deligne
conjecture.

Recall that the Riemann zeta function is defined as

ζpsq :“
8
ÿ

n“1

1

ns
“

1

1s
`

1

2s
`

1

3s
` ¨ ¨ ¨

for s P C with Repsq ą 1.

Theorem 0.1. If m is a positive even integer, then ζpmq P p2πiqmQ.

For example, the values ζp2q “
π2

6
and ζp4q “

π4

90
.
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Proof. We briefly explain the proof given by Riemann in [Rie59] here.

The Gamma function Γpsq, defined by the integral
ż 8

0

tse´t
dt

t
, is a meromorphic function

on the whole complex plane. It has no zeros everywhere, and has simple poles with rational
residues at non-positive integers.

The product Γpsqζpsq has integral intepretation
ż 8

0

ts
1

et ´ 1

dt

t
. The integral defines a

meromorphic function on the whole complex plane. At a non-positive integer, it is either
holomorphic, or has a simple pole with rational residue.

In particular, ζpsq is a ratio of two meromorphic functions, and hence has analytic con-
tinuation to the whole complex plane. Moreover, it is holomorphic and takes rational values
at negative integers.

Let ζ8psq :“ π´
s
2 Γp

s

2
q. The Riemann zeta function satisfies the functional equation:

ζ8psqζpsq “ ζ8p1´ sqζp1´ sq.

Sincem is a positive even integer, both ζ8pmq and ζ8p1´mq are holomorphic at s “ m. In

this case, we saym is critical. One deduce easily that ζpmq “
ζ8p1´mq

ζ8pmq
ζp1´mq P p2πiqmQ

since ζp1´mq is a rational number.
�

Remark 0.2. For a positive odd integer m ě 3, ζ8p1´ sq has a pole at s “ m. This implies

that ζp1 ´ mq “ 0 and ζpmq “
Ress“mζ8p1´ sq

ζ8pmq
ζ 1p1 ´ mq. In this case, it is much more

difficult to calculate ζpmq.

In [Del79], Deligne generalized largely the above theorem as a conjecture. More precisely,
he constructed two periods and predicted a precise relation between critical values and his
periods.

In this synopsis, we first introduce Deligne’s conjecture in Section 1. We define some other
motivic periods and interpret Deligne’s periods in terms of these newly defined periods in
Section 2. The latter have natural automorphic analogues which are introduced in Section 3.
We reformulate the Deligne conjecture for tensor products of automorphic motives and gives
a variant of the Deligne conjecture in Section 4. We finally summarise the known results
and discuss some possible generalizations in Section 5.

At the end of the introduction, we want to warn the readers that since there is not enough
space in the synopsis, some definitions and statements are not very precise. We refer to the
references for more details.
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1. A conjecture of Deligne

Let M be a motive over Q with coefficients in a number field E and pure of weight w (c.f.
[Del79]). For simplicity, we fix an embedding E ãÑ C. The motiveM has several realizations
as follows:

1.0.1. The Betti realization: MB is a finite dimensional vector space over E endowed with:
‚ an E-linear action of the infinite Frobenius F8;
‚ a Hodge decomposition MB bE C “

À

p`q“w

Mp,q where each Mp,q is a vector space

over C. The action of F8 on MB extends naturally to an action on MB bE C which
exchanges Mp,q and M q,p.

1.0.2. The de Rham realization: MDR is also a finite dimensional vector space over E en-
dowed with an E-rational Hodge filtration: MDR Ą ¨ ¨ ¨ Ą F iM Ą F i`1M Ą ¨ ¨ ¨ .

1.0.3. The comparison isomorphism: I8 : MB bE C „
ÝÑ MDR bE C is compatible with the

Hodge structures on the two sides. More preciesly, for all integer p0, we have:

I8p
à

pěp0

Mp,w´p
q “ F p0M b C.

1.0.4. The λ-adic realizations: Mλ is a finite dimensional vector space over Eλ endowed with
an action of GalpQ{Qq for each finite place λ of E. The family tMλuλ forms a compatible
system of Galois representations.

More precisely, for each finite place p of Q, let Ip be the inertia subgroup of a decom-
position group at p. Let Fp be the geometric Frobenius of this decomposition group. For
a compatible system we mean that for any λ - p, the polynomial detp1 ´ FpX | M

Ip
λ q has

coefficients in E Ă Eλ, and is independent of the choice of λ.

We can hence define the local L-factor Lpps,Mq :“ detp1´p´sFp|pMλq
Ipq´1 as an element

in Cpp´sq by taking whatever λ - p (recall that we have fixed an embedding of E in C). We
define the L-function for the motive M as the Euler product:

Lps,Mq “
ź

p

Lpps,Mq.

It converges absolutely for Repsq ąą 0.

As for the Riemann zeta function, one can define an archimedean factor L8ps,Mq explic-
itly, determined by the Hodge type of the motive M , and the ε-factor εps,Mq as in [Del79].
It is expected that:

Conjecture 1.1. The motivic L-function Lps,Mq has an analytic continuation to the whole
complex plane, and satisfies a functional equation:

L8ps,MqLps,Mq “ εps,MqL8p1´ s, M̌qLp1´ s, M̌q

where M̌ is the dual motive of M .
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Definition 1.2. We say an integer m is critical for the motive M if both L8ps,Mq and
L8p1´ s, M̌q are holomorphic at s “ m.

Deligne formulated his conjecture under the assumption that F8 acts as a scalar on
Mw{2,w{2. We assume a stronger assumption Mw{2,w{2 “ 0. In particular, we see that
dimEMB “ dimEMDR is even.

Remark 1.3. When the motive M is restricted from a quadratic imaginary field, the con-
dition Mw{2,w{2 “ 0 is equivalent to that M has critical points. This is the case that we are
going to consider in the next sections.

We define M˘
B “ M˘F8

B Ă MB, F˘M :“ Fw{2M Ă MDR. They are all vector spaces over
E of dimension dimEMB{2.

The comparison isomorphism then induces C-linear maps:

(1.4) I˘8 : M˘
B bE C ãÑMB bE C „

ÝÑMDR bE CÑ pMDR{F
˘Mq bE C.

It is easy to see that these maps are injective. Comparing the dimensions on the two sides,
one deduces easily that I`8 and I´8 are both isomorphisms.

We take any E-bases of M˘
B and MDR{F

˘M . They can be considered as C-bases of
M˘

B bE C and pMDR{F
˘Mq bE C.

Definition 1.5. The Deligne periods c˘pMq are defined as the determinants of I˘8 with
respect to these bases. They are non-zero complex numbers and are well-defined up to
multiplication by elements in Eˆ.

Conjecture 1.6 (Deligne 79). Let d˘ :“ dimEM
˘
B . If m P Z is critical for M , then

Lpm,Mq P p2πiqd
εmcεpMqE

where ε is the sign of p´1qm.

Remark 1.7. A positive integer is critical for the Riemann zeta function if and only if it is
even. In this case, Theorem 0.1 affirms the Deligne conjecture for the Riemann zeta function.

2. Motivic periods

In general, we know very few about the L-function of a motive unless it is the same as the
L-function of an automorphic representation after proper normalizations. In this case, we
say the motive is attached to the automorphic representation. Roughly speaking, the Lang-
lands correspondence asserts that any motive is attached to an automorphic representation
and vice versa.

In the automorphic setting, we shall consider the Rankin-Selberg L-function for a pair of
automorphic representations over a quadratic imaginary field K. This corresponds to the
tensor product of two motives over K in the motivic setting.
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We fix an embedding of K in C. Let M (resp. M1) be a regular pure motive over K with
coefficients in E and of rank n (resp. n1) with Hodge types p1 ą p2 ą ¨ ¨ ¨ ą pn at the fixed
embedding.

Let M :“ ResK{QM bM1 be a motive over Q. One can show that c`pMq{c´pMq is an
algebraic number. We refer to [Har-Lin16] and [Har13b] for more details..

In the following, we write x „ y if rx : ys P P1pQq. For simplicity, we only consider the
Deligne conjecture up to multiplication by elements in Qˆ. We can henceforth forget c´pMq.
The Deligne conjecture predicts that if m is critical then

(2.1) Lpm,ResK{QMbM1
q „ p2πiqd

`mc`pResK{QMbM1
qq

In order to separate M and M1 in the term c`pResK{QM bM1qq, we define motivic
periods QipMq, 1 ď i ď n, QjpM1q, 1 ď j ď n1 as in [Har-Lin16]. When the motive M is
polarised, then QipMq „ă ωi, F8ωi ą where ωi is a non-zero element in pF piM`F pi´1MbE
Cq X I8Mpi,w´pi and ă,ą is the inner product given by the polarisation.

We also define Q0pMq (resp. Q0pM1q) to be the determinant of the comparison isomor-
phism of M (resp. M1) at the fixed embedding of K.

In the automorphic setting, the vector ωi corresponds to a non-holomorphic automorphic
form in general. In order to calculate L-values, we need to construct some periods which are
related to holomorphic automorphic forms.

In fact, for each 0 ď s ď n, QpsqpMq :“
s

ś

i“0

QipMq can be related to holomorphic forms.

Similarly, we define QptqpM1q :“
t

ś

j“0

QjpMq for each 0 ď t ď n1.

Remark 2.2. Throughout the paper, the upper script p˚q always indicates that a represen-
tation is holomorphic or a period is related to a holomorphic form.

Proposition 2.3 ([Har-Lin16]). There exists an explicit monomial FM,M1, depending on the
Hodge types of M and M1, such that:

c`pResK{QMbM1
q „ FM,M1pQpsqpMq, 0 ď s ď n,QptqpM1

q, 0 ď t ď n1q.

3. Automorphic periods

We now consider motives coming from automorphic representations. c We want to define
a motive attached to Π. Recall that in the classical case, modular forms can be lifted to
cohomological classes on modular curves. In general, we hope to define a motive using co-
homologies of Shimura varieties. Since there is no Shimura variety attached to GLn when
n ě 3, we look at unitary groups instead.
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Let U be any unitary group of rank n over Q with respect to the quadratic extension
K{Q. Over K we have UK – GLn,K . Hence Π can be viewed as a representation of UpAKq.

Let G be a reductive group over Q. The theory of base change with respect to K{Q
predicts a map from certain (packets of) automorphic representations of GpAQq to certain
(packets of) automorphic representations of GpAKq. This map can be described more easily
in the motivic setting. For example, if an automorphic representation of GpAQq is attached
to a motive H˚pXq where X is a projective smooth variety over Q, then the automorphic
representation of GpAKq attached to H˚pXbQKq, whose existence is predicted by the Lang-
lands correspondence, is the image of the GpAQq-representation by base change.

One can also define base change in terms of Langlands parameters without referring to
motives (c.f. [Art03]). The theory of base change for unitary groups is well-understood
especially for cohomological representations (c.f. [Har-Lab04], [Lab11], [Shi14], [Mok14] and
[KMSW14]).

Recall that Π is an automorphic representation of UpAKq. A necessary condition for Π
to be in the image of base change is the conjugate self-duality. We henceforth assume that
Π is conjugate self-dual. When n is even, we assume moreover that Π is a discrete series
representation at a finite place of Q which is inert in K. Then there exists a unitary group
Upn ´ 1, 1q over Q of rank n with respect to the extension K{Q of signature pn ´ 1, 1q at
infinity such that Π is the base change of πp1q, a holomorphic cohomological automorphic
representation of Upn´ 1, 1qpAQq. We also say that Π descends to πp1q by base change.

The representation πp1q contributes in the interior coherent cohomologies of a Shimura
variety attached to Upn´ 1, 1q, and hence defines (the realizations of) a motive MpΠq over
K attached to the representation Π (c.f. [Har97], [Lin15b] and [Gro-Har-Lin18]).

The representation Π descends to not only one representation on the unitary group. At
the infinite place, Π8 descends to n inequivalent discrete series representations which can
be distinguished by the parabolic sub-Lie algebra cohomological degree (c.f. [Har14]). In
particular, Π descends to at least n automorphic representations of Upn´1, 1qpAQq, denoted
by πi for 1 ď i ď n where i ´ 1 refers to the cohomological degree. One can take π1 to be
πp1q, the holomorphic representation.

All the representations πi, 1 ď i ď n, contribute into the coherent cohomologies of the
Shimura variety and inherit rational structures from the de Rham cohomologies, called the
de Rham rational structures (c.f. [Har13a] and also [Clo90]). For each i, let 0 ‰ ωipΠq be a
de Rham rational automorphic form in πi. We define an automorphic period QipΠq as the
Petersson norm of ωipΠq which does not depend on the choice of ωipΠq up to multiplication
by elements in Qˆ. We have QipMpΠqq „ QipΠq for all i.
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We can define Q0pΠq as a CM period attached to the central character of Π (c.f. [Lin17]).

As in the motivic setting, we let QpsqpΠq :“
n

ś

i“0

QspΠq be an automorphic period for 0 ď s ď

n. Hence QpsqpMpΠqq „ QpsqpΠq for all s.

Let Π1 be a cuspidal cohomological conjugate self-dual representation of GLn1pAKq. Simi-
larly, we assume that it is a discrete series representation at a finite inert place if n1 is even.
One can define a motive MpΠ1q as well as periods QptqpΠq for 0 ď t ď n1 similarly.

4. The Deligne conjecture for automorphic motives

Combining Proposition 2.3 and the constructions in the previous section, the Deligne
conjecture for ResK{QMpΠq bMpΠ1q can be reformulated as follows:

Conjecture 4.1 (Deligne conjecture). If m P Z is critical for the motive ResK{QMpΠq b
MpΠ1q, then

Lpm,ResK{QMpΠqbMpΠ1qq „ p2πiqmnn
1

FMpΠq,MpΠ1qpQ
psq
pΠq, 0 ď s ď n,QptqpΠ1q, 0 ď t ď n1q.

The motivic L-function Lpm,ResK{QMpΠq bMpΠ1qq is equal to the Rankin-Selberg L-

function Lpm ´
n` n1 ´ 2

2
,Π ˆ Π1q (c.f. [Cog00]). It is easier to relate automorphic L-

values to holomorphic automorphic forms than non-holomorphic ones. The periods QpsqpΠq,
1 ď s ď n, are (expected to be) related to holomorphic automorphic forms not on Upn´1, 1q,
but on other unitary groups.

For each 1 ď s ď n, there exists Upn´ s, sq, a unitary group over Q with respect to K{Q
of signature pn´ s, sq at infinity, such that Π descends to πpsq, a holomorphic cohomological
automorphic representation of Upn ´ s, sqpAQq. Let ωpsqpΠq be a de Rham rational holo-
morphic element in πpsq. We define P psqpΠq as the Petersson norm of ωpsqpΠq which is well
defined up to multiplication by elements in Qˆ.

The cohomologies of a Shimura variety attached to Upn´ s, sq also define a motive whose
λ-adic realizations are isomorphic to those of ΛsMpΠq. This fact leads to the following
prediction on automorphic periods:

Conjecture 4.2 (Factorization conjecture). For each 0 ď s ď n, we have

P psqpΠq „ QpsqpΠq “
s

ź

i“0

QipΠq.

It is then natural to state the following variant of the Deligne conjecture:

Conjecture 4.3 (Automorphic Deligne conjecture). If m P Z is critical for the motive
ResK{QMpΠq bMpΠ1q, then

Lpm,ResK{QMpΠqbMpΠ1qq „ p2πiqmnn
1

FMpΠq,MpΠ1qpP
psq
pΠq, 0 ď s ď n, P ptqpΠ1q, 0 ď t ď n1q.
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It is clear that the above conjecture (Conjecture 4.3) and the factorization conjecture
(Conjecture 4.2) together imply the Deligne conjecture for tensor products of automorphic
motives (Conjecture 4.1).

5. Some known results

Theorem 5.1. Conjecture 4.3 is true if either pΠ,Π1q is in good position (c.f. [Lin15b]), or

if n ” n1 mod 2 and m “
n` n1

2
.

This theorem is proved in [Lin15b] based on previous results in [Bla86], [Har97] and
[Gro-Har15]. In the case where n1 “ 1 or |n ´ n1| “ 1, the L-values have good integral
interpretations and can be calculated as parings between cohomological classes. The other
cases are proved based on these two cases and some auxiliary constructions.

Theorem 5.2 ([Gro-Har-Lin18]). We assume the following hypotheses:
(a) The Ichino-Ikeda-N. Harris conjecture (c.f. [NHar14]) is true.
(b) Certain archimedean zeta integral is algebraic.
(c) For any integer a, there exists a Hecke character χ of infinity type zaz´a, such that

Lp1
2
,Πb χq ‰ 0.

Then Conjecture 4.2 is true when Π is very regular. In particular, the Deligne conjecture
is true in the setting of Theorem 5.1.

Remark 5.3. (1) The Ichino-Ikeda-N. Harris conjecture is known in many cases if Π is
supercuspidal at one finite split place (c.f. [Zhang14], [Xue17], [Beu-Ple15] and [He17]). The
general case should be a corollary to a work in progress by Chaudouard and Zydor.

(2) The second hypothesis is natural because its failure would contradict a conjecture of
Tate for motives. It is also known to be true in the few cases where it can be checked.
Methods are known for computing these integrals but they are not simple.

(3) The last hypothesis on non-vanishing of central value is expected to be true but seems
very difficult to prove. In the last year, however, there has been significant progress in the
cases n “ 3 and n “ 4, by two very different methods [Jia-Zha17, Blo-Li-Mil17].

We will prove another case of Theorem 5.1 in the future subsequent part of [Gro-Har-Lin18].

Theorem 5.4 (ongoing work of Grobner-Harris-Lin). Conjecture 4.3 is true if n ı n1 mod 2

and m “
n` n1 ´ 1

2
under hypothesis (a) and hypothesis (c) above.

Remark 5.5. The critical points for ResK{QMpΠq bMpΠ1q form an interval of integers.
The ratios of two successive critical values of a Rankin-Selberg L-function for GLpnqˆGLpn1q
have been studied by Harder and Raghuram in [Har-Rag17] over totally real fields. If one



9

can generalize their result to CM fields, then the general case of Conjecture 4.3 will follow
from Theorem 5.1 and Theorem.5.4.

Remark 5.6. At the end, we explain the unnecessary conditions which can be removed in
this synopsis.

(1) All the relations „ can be made over some number fields (not only over Q).

(2) The quadratic field K can be replaced by any CM field as in [Har-Lin16], [Lin15b],
[Gue16] and [Gue-Lin16]. The key step is that the periods factorize as products of local
periods over infinite places (c.f. [Lin17]). Hence one can reduce the general CM case to the
quadratic imaginary case easily.

(3) One does not need to fix an embedding of E in C. By varying the embeddings, we
consider L-values and periods as families of complex numbers parametrized by AutpCq. In
fact, the Deligne conjecture was formulated in a AutpCq-equivariant way, and all our results
were also proved AutpCq-equivariantly.

(4) The cuspidal condition on Π is also not necessary. Some results are already known
for endoscopic representations. Assuming Hypothesis (a), one should be able to remove the
cuspidal condition in most of the results above.

Acknowledgements. I would like to thank the organizers for the invitation. I also want
to thank the other speakers for their wonderful talks. Finally, I am grateful to Simons
Foundation and Meghan Fazzi for her help.
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