Surname: LIN (林), First name: Jie (洁)
Email: jie.lin@uni-due.de
Adress: Universität Duisburg-Essen,
Fakultät für Mathematik,
Mathematikcarrée
Thea-Leymann-Straße 9
45127 Essen
Surname: LIN (林), First name: Jie (洁)
Email: jie.lin@uni-due.de
Adress: Universität Duisburg-Essen,
Fakultät für Mathematik,
Mathematikcarrée
Thea-Leymann-Straße 9
45127 Essen
I am working at Duisburg-Essen University, in the group of Massimo Bertolini. I am working on special values of L-functions and periods of automorphic representations and motives.
I was a post-doc in mathematics at IHES under the direction of Michael HARRIS and the tutorship of Ahmed Abbes.
Publications and preprints:
8.Special values of Rankin-Selberg L-functions over quadratic imaginary fields.pdf, preprint 2022.
7. Deligne's conjeture for automorphic motives over CM-fields.pdf, with Harald Grobner and Michael Harris, preprint 2021.
6. Special values of L-functions and the refined Gan-Gross-Prasad conjecture.pdf, with Harald Grobner, Amer. J. Math 143, 2021.
5. Factorization of arithmetic automorphic periods.pdf, preprint 2017.
4. Galois equivariance of critical values of L-functions for unitary groups.pdf, with Lucio Guerberoff, preprint 2016.
3. Periods relations and special values of Rankin-Selberg L-functions.pdf with Michael HARRIS, Progress in Mathematics 323 (volume in honor of Roger Howe's 70th birthday), 2017.
2. An automorphic variant of a conjecture of Deligne.pdf, Contemporary Mathematics 691, 2017.
1. Period relations for automorphic induction and applications, I.pdf, Comptes rendus - Mathématique 353 (2015), pp. 95-100.
(The detailed version can be found here: http://arxiv.org/abs/1511.03517)
Posters:
Critical values for automorphic L-functions.pdf, Bonn, October 2015.
Critical values for automorphic L-functions.pdf, Orsay, June 2015.
Period relations for automorphic inductions and applications.pdf, MSRI, December 2014.
Mémoires:
Special values of automorphic L-functions for GL_n* GL_n' over CM fields, factorization and functoriality of arithmetic automorphic periods.pdf, sous la direction de Michael HARRIS, texte de thèse, November 2015.
Sur la conjecture de Ramanujan, d'après Clozel.pdf, sous la direction de Michael HARRIS, mémoire de M2, April 2013.
e^{\pi sqrt{163}} est presque un entier.pdf, avec Caroline ARVIS, sous la direction de François CHARLES, mémoire de magistère, Juin 2011.
Expository articles:
Periods and L-values of Automorphic Motives.pdf, synopsis of a talk at Simons Symposium, 2018.