Une nouvelle approche pour l’étude de la cohomologie des espaces de Lubin-Tate et des variétés de Shimura simples
ERC Advanced Grant : AAMOT (Arithmetic of Automorphic Motives)
PI : Michael HARRIS
Précédemment pour étudier la $mathbb{Q}_l$-cohomologie des variétés de Shimura de type
Kottwitz-Harris-Taylor (KHT), on a utilisé la filtration par les poids du faisceaux pervers des cycles évanescents. La suite spectrale de cohomologie associée $E_1^{p,q} Rightarrow E_infty^{p+q}$, dégénère alors en $E_2$ mais pas en $E_1$, ce qui la rend inutilisable sur tout $mathbb{Z}_l$-analogue: le même phénomène se produit pour la cohomologie des espaces de Lubin-Tate.
Dans cet exposé, j’expliquerai commet construire une nouvelle suite spectrale de nature géométrique dégénérant en $E_1$ et permettant:
a) de simplifier les précédents arguments sur $mathbb{Q}_l$,
b) de prouver l’absence de torsion dans la cohomologie des espaces de Lubin-Tate
c) et qui devrait fournir un procédé assez général pour construire des classes de torsion dans la cohomologie des variétés de Shimura de type KHT.
Algèbre de Hecke dérivée et formes modulaires de poids 1
ERC Advanced Grant : AAMOT (Arithmetic of Automorphic Motives)
PI : Michael HARRIS
A. Venkatesh a formulé une conjecture ambitieuse sur l'action des espaces de cohomologie motivique sur la cohomologie de la variété localement symétrique (adélique) d'un groupe réductif G. La cohomologie motivique en question est celle du motif adjoint du motif automorphe attaché à une représentation automorphe cuspidale de G ; la conjecture explique en quelque sorte la contribution de cette représentation à plusieurs degrés de cohomologie, et relie des questions profondes sur la K-théorie algébrique à des considérations non moins profondes sur les déformations de représentations galoisiennes automorphes. Dans mon exposé je vais présenter les premiers résultats d'un travail en commun avec Venkatesh sur une version de sa conjecture pour la cohomologie cohérente d'un fibré automorphe L sur une variété de Shimura, dans le cas où L a de la cohomologie (cuspidale) en plusieurs degrés. Le premier exemple concerne le fibré des formes modulaires de poids 1 sur une courbe modulaire. On voit des liens inattendus entre la vérification de la conjecture dans ce cas et des questions difficiles sur la version p-adique, dûe à Harris-Tilouine et à Darmon-Rotger, de la fonction L (de Garrett) d'un triplet de formes modulaires.
Diagonal Euler systems, p-adic L-functions and the arithmetic of elliptic curves in rank at most 2
ERC Advanced Grant : AAMOT (Arithmetic of Automorphic Motives)
PI : Michael HARRIS
In recent years there has been notable progress on the construction of Euler systems and their connection to special values of classical and p-adic L-functions. In this talk I will describe Euler systems associated to a triple (f,g,h) of classical (cuspidal or Eisenstein) modular forms and their relation with p-adic L-functions constructed by Hida, Harris and Tilouine, following ideas of Kato. As an application, I will explain how these Euler systems can be used to obtain new results on the arithmetic of elliptic curves when the rank of the Mordell-Weil group is 0, 1 or 2.
: In my talk I consider a q-deformation of the so-called Yangian Y(gl(m)). The standard Yangian Y(gl(m)) (associated with the Yang R-matrix) was introduced by V.Drinfeld and is rather well known. It possesses a lot of interesting properties and has applications in integrable models of mathematical physics (for example, in the non-linear Schroedinger model), W-algebras and so on. Its q-analog, called the q-Yangian, is usually defined as a « half » of a quantum affine group. D. Gurevich and me suggest a new construction for such a q-analog of the Yangian Y(gl(m)). We call it « braided Yangian ». We associate the braided Yangians with rational and trigonometric quantum R-matrices, depending on a formal parameter. These R-matrices arise from constant involutive or Hecke R-matrices by means of the Baxterization procedure. Our braided Yangians admit the evaluation morphism onto quantum matrix algebras and due to this one can construct a rich representation theory for them. In my talk I also plan to define analogs of symmetric polynomials (full, elementary and powers sums) which form a commutative subalgebra in the braided Yangian and exibit some noncommutative matrix identities similar to the Newton-Cayley-Hamilton identities of the classical matrix anlysis.
Normal Forms of Knots and Plane Curves
The talk summarizes my work on the classification of knots and closed plane curves, most of which was done jointly with O.Karpenkov and S.Avvakumov. The main idea is to supply the knot (or the closed plane curve) with an energy functional and to classify these objects via their {it normal forms}, which we define as the shapes of these objects that minimize the functional.
For any closed $mathcal C^2$ curve $gamma$, the functional that we choose is the {it Euler functional} $E(gamma)$ equal to the integral along $gamma$ of the squared curvature of $gamma$. We prove (using some fairly sophisticated methods of the calculus of variations) that:
(1) the critical points of $E$ are given by circles passed once or several times and by $infty$-shaped curves passed once or several times.
(2) the minima of $E$ are given by $infty$-shaped curves passed once and by circles passed once or several times. }
This solves a (long forgotten) problem set by Euler in 1774. The same result was obtained at about the same time (2012) by Yu.Sachkov by completely different methods. The result also gives a new proof of the famous Whitney–Graustein theorem on the classification of plane curves. It will be illustrated in the talk by an animation that shows in real time how a plane curve is homotoped to its normal form (by gradient descent along the functional).
For knots $k:S^1 to R^3$, we use a functional $F$ equal to the sum of the Euler functional $E(k)$ and a simple {it repulsive functional} $R(k)$ (the latter prevents self-intersections of $k$). We construct an algorithm (implemented in an animation that will be shown in the talk) which yields the isotopy of a given knot to its normal form (corresponding to the minimum of $F$) via a discretized version of gradient descent along $F$.
We then discuss to what extent this algorithm gives a practical solution of the knot classification problem and compare our theoretical normal forms with those obtained by physical experiments (which will be shown during the talk) with models of knots made out of flexible wire.
Quasiisométries harmoniques
Dans un travail commun avec D. Hulin nous montrons que toute quasiisométrie entre variétés de Hadamard pincées est à distance bornée d'une unique application harmonique.
Théorème de Pappus et représentations du groupe modulaire
Au début des années 90, R.E. Schwartz a montré que le théorème de Pappus permet de définir une famille d'actions du groupe modulaire sur le plan projectif avec des propriétés géométriques et dynamiques remarquables. Ces propriétés sont semblables à celles satisfaites par les représentations d'Anosov. Dans sa thèse (sous ma direction), V. Pardini Valerio a élucidé ce fait en montrant que les représentations de Schwartz, restreintes à un sous-groupe d'indice deux, sont limites de représentations d'Anosov.
Je présenterai ce travail de thèse, et les progrès récents obtenus conjointement avec Gye-Seon Lee.
Balls in Teichmüller space are not convex
We prove that when 3g − 3 + p > 3, the Teichmüller space of the closed surface of genus g with p punctures contains balls which are not convex in the Teichmüller metric. We analyze the quadratic differential associated to a Teichmüller geodesic and, as a key step, show that the extremal length of a curve (as a function of time) can have a local maximum. This is a joint work with Maxime Fortier Bourque.
Generalized cusps on convex projective manifolds
A convex projective manifold C = Ω/Γ is the quotient of convex subset of projective space, Ω, by a discrete group of projective transformations Γ ⊂ PGL(n+1,R). A generalized cusp in dimension 3 is a convex projective manifold that is the product of a ray and a torus. The holonomy centralizes a 1-parameter subgroup of PGL(n,R). I have shown: A generalized cusp on a properly convex projective 3-dimensional manifold is projectively equivalent to one of 4 possible cusps.
For a generalized cusp C = Ω/Γ in dimension n, we require that ∂C is compact and strictly convex (contains no line segment) and that there is a diffeomorphism h : [0,∞) × ∂C → C. Together with Sam Ballas and Daryl Cooper we have classified generalized cusps in dimension n, and explored new geometries arising from such cusps. We show the holonomy of a generalized cusp is a lattice in one of a family of Lie groups G(λ) parameterized by a point λ = (λ1, …, λn) ∈ Rn. More generally a maximal-rank cusp in a hyperbolic n-orbifold is determined by the similarity class of lattice in Isom(En-1).
Contrôle du déplacement d’une zone de fluide
Séminaire Laurent Schwartz — EDP et applications
Séminaire Laurent Schwartz — EDP et applications